You can Win an Intel® NUC

Create a DevCloud account in the link:

https://sforms.intel.com/DevCloud/?eventcode=lattice-07302021

Post your "DevCloud user id" in the zoom chat window

Towards the end of the workshop 5 registered users will be selected to receive an Intel® NUC

This is a platform with Intel integrated GPU for oneAPI code development

Data Parallel C++ Essentials

oneAPI VIRTUAL WORKSHOP

Praveen Kundurthy

What is oneAPI and Data Parallel C++?

Introduction to oneAPI

• Agenda

- a) Introduction & Overview to oneAPI
- b) Introduction to the Intel® DevCloud
- c) Introduction to Jupyter notebooks used for training
- d) Introduction to Data Parallel C++
- e) DPC++ Program Structure
- f) Unified Shared Memory (USM)
- g) Sub-Groups
- h) Reduction

• Hands On

- Introduction to DPC++ Simple
- Complex multiplication
- USM, Sub-Groups and Reductions

Learning Objectives

Explain how oneAPI can solve the challenges of programming in a heterogeneous world

Use oneAPI solutions to enable your workflows

Experiment with oneAPI tools and libraries on the Intel® DevCloud

Understand the Data Parallel C++ (DPC++) language and programming model

Use device selection to offload kernel workloads

Understand DPC++ New features (Unified Shared memory, Sub-Groups and Reductions)

Build a sample DPC++ application through hands-on lab exercises

Cross-Architecture Programming for Accelerated Compute, Freedom of Choice for Hardware

oneAPI: Industry Initiative & Intel Products

One Intel Software & Architecture group Intel Architecture, Graphics & Software November 2020

Programming Challenges

for Multiple Architectures

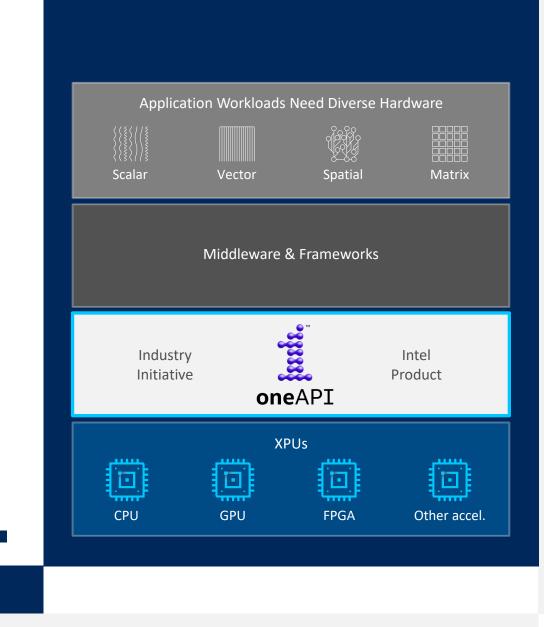
Growth in specialized workloads

Variety of data-centric hardware required

Separate programming models and toolchains for each architecture are required today

Software development complexity limits freedom of architectural choice

Applica	tion Workloads N	Need Diverse Har	dware
Scalar	Vector	Spatial	Matrix
	Middleware &	Frameworks	
CPU programming model	GPU programming model	FPGA programming model	Other accel. programming models
CPU	GPU	FPGA	Other accel.
	י XPI	Js	


Introducing ONEAPI

Cross-architecture programming that delivers freedom to choose the best hardware

Based on industry standards and open specifications

Exposes cutting-edge performance features of latest hardware

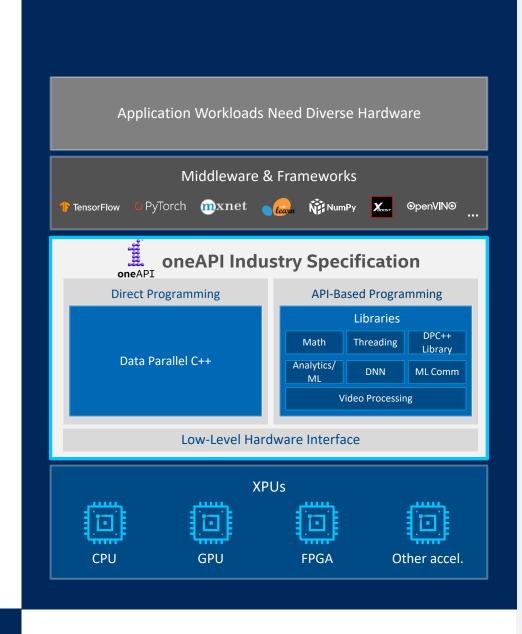
Compatible with existing high-performance languages and programming models including C++, OpenMP, Fortran, and MPI

oneAPI Industry Initiative

Break the Chains of Proprietary Lock-in

A cross-architecture language based on C++ and SYCL standards

Powerful libraries designed for acceleration of domain-specific functions


Low-level hardware abstraction layer

Open to promote community and industry collaboration

Enables code reuse across architectures and vendors

The productive, smart path to freedom for accelerated computing from the economic and technical burdens of proprietary programming models

Intel[®] oneAPI Toolkits

A complete set of proven developer tools expanded from CPU to XPU

Toolkits powered by oneAPI

Data Scientists & AI Developers

intel.

Analytics

Toolkit

Accelerate machine learning & data science pipelines with optimized DL frameworks & high-performing **Python libraries**

intel **OpenVINO**

Toolkit

OpenVINO™ Toolkit Deploy high performance

inference & applications from edge to cloud

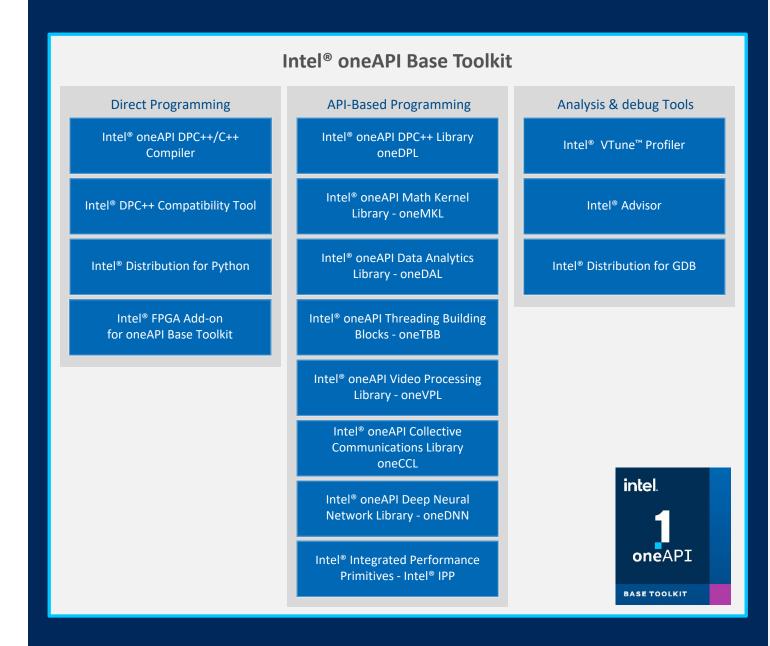
Intel[®] Distribution of

Optimization Notice Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Intel[®] oneAPI Base Toolkit Accelerate Data-centric Workloads

A core set of core tools and libraries for developing high-performance applications on Intel® CPUs, GPUs, and FPGAs.

Who Uses It?


Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.

- A broad range of developers across industries
- Add-on toolkit users since this is the base for all toolkits

Top Features/Benefits

- Data Parallel C++ compiler, library and analysis tools
- DPC++ Compatibility tool helps migrate existing code written in CUDA
- Python distribution includes accelerated scikit-learn, NumPy, SciPy libraries
- Optimized performance libraries for threading, math, data analytics, deep learning, and video/image/signal processing

Learn More: intel.com/oneAPI-BaseKit *Other names and brands may be claimed as the property of others.

Intel[®] oneAPI Data Parallel C++ Library (oneDPL)

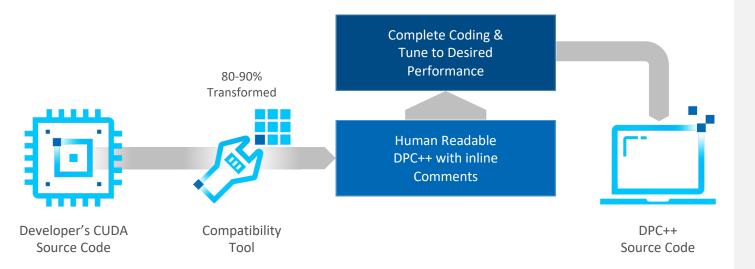
- Three components:
 - 1. Standard C++ APIs: Tested and supported within DPC++ kernels
 - 2. Parallel STL: C++17 algorithms extended with DPC++ execution policies
 - 3. STL Extensions: Additional algorithms, classes and iterators

```
sycl::queue q;
std::vector<int> v(N);
std::sort(oneapi::dpl::execution::make_device_policy(q), v.begin(), v.end());
```

Recommended for codes using C++17 algorithms, or libraries like Thrust

See https://spec.oneapi.com/versions/latest/elements/oneDPL/source/index.html

Intel[®] DPC++ Compatibility Tool


Minimizes Code Migration Time

Assists developers migrating code written in CUDA to DPC++ once, generating **human readable** code wherever possible

~80-90% of code typically migrates automatically

Inline comments are provided to help developers finish porting the application

Intel DPC ++ Compatibility Tool Usage Flow

Intel[®] VTune[™] Profiler

DPC++ Profiling-Tune for CPU, GPU & FPGA

Analyze Data Parallel C++ (DPC++)

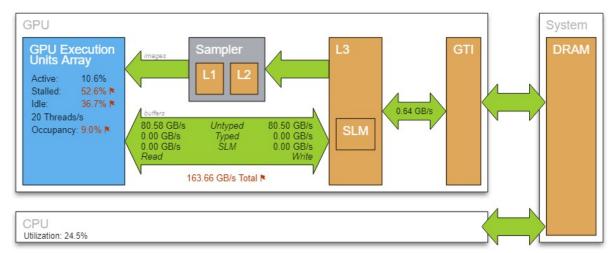
See the lines of DPC++ that consume the most time

Tune for Intel CPUs, GPUs & FPGAs

Optimize for any supported hardware accelerator

Optimize Offload

Tune OpenMP offload performance


Wide Range of Performance Profiles

CPU, GPU, FPGA, threading, memory, cache, storage...

Supports Popular Languages

DPC++, C, C++, Fortran, Python, Go, Java, or a mix

500	Assembly	٩٩
🔺	Source	 GPU Instructions Executed by Instruction T Control Flow Send & Wait Int32 & SP Float Int64 & DP Float Other
158	dx = ptr[j].pos[0] - ptr[i].pos[0]	75,002,500
159	<pre>dy = ptr[j].pos[1] - ptr[i].pos[1];</pre>	12,500,000 📒
160	<pre>dz = ptr[j].pos[2] - ptr[i].pos[2];</pre>	12,500,000 📒
161		
162	distanceSqr = dx*dx + dy*dy + dz*d;	87,500,000
163	distanceInv = 1.0 / sqrt(distanceSo	12,500,000
164		
165	ptr[i].acc[0] += dx * G * ptr[j].ma	162,503,750
166	ptr[i].acc[1] += dy * G * ptr[j].ma	150,000,000
167	ptr[i].acc[2] += dz * G * ptr[j].ma	150,000,000

There will still be a need to tune for each architecture.

Intel[®] Advisor

Design Assistant - Design for Modern Hardware

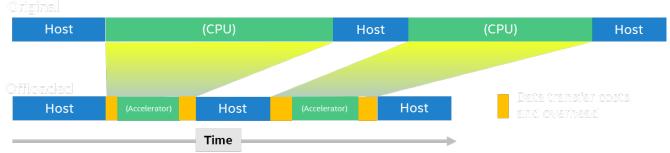
Offload Advisor

Estimate performance of offloading to an accelerator

Roofline Analysis

Optimize CPU/GPU code for memory and compute

Vectorization Advisor

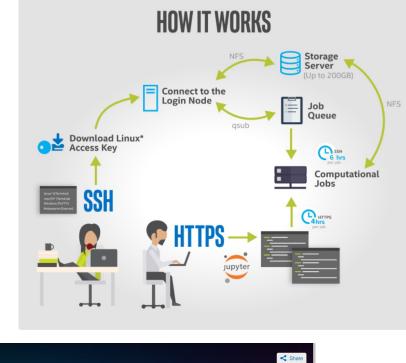

Add and optimize vectorization


Threading Advisor

Add effective threading to unthreaded applications

Flow Graph Analyzer

Create and analyze efficient flow graphs



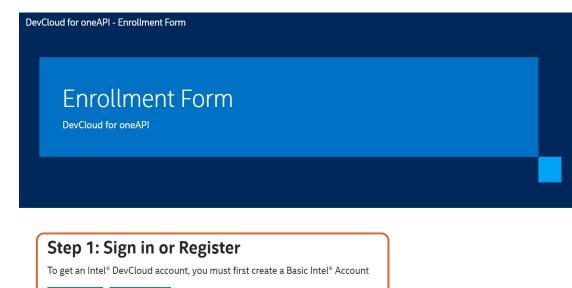
Optimization Notice Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

SETUP INTEL® DEVCLOUD AND JUPYTER ENVIRONMENT

Intel[®] devcloud for oneAPI

- A development sandbox to develop, test and run workloads across a range of Intel CPUs, GPUs, and FPGAs using Intel[®] oneAPI beta software
- A fast way to start coding
- Try the oneAPI toolkits, compilers, performance libraries, and tools
- Get 120 days of free access to the latest Intel[®] hardware and oneAPI software
- No downloads; No hardware acquisition; No installation

Get to Know Intel oneAPI^(Beta) Now No hardware acquisitions, system configurations, or software installations A Fast Way to Start Coding Get Access Now Are you a forward-thinking developer interested in the next generation of data-centric computing innovation? Required Fields(* ou've come to the right place The Intel® DevCloud is a development sandbox to learn about First Name and program oneAPI cross-architecture applications Sign up now for full access to the latest Intel® CPUs, GPUs, Last Name and FPGAs. Intel® oneAPI Toolkits, and the new programming language, Data Parallel C++ (DPC++). Email Address ' Access is free for 120 days, and extensions are totally nossible Country / Region - Select -Company or University oneA Which hardware and accelerator architectures are you What is the developing for? (Select all that apply.) ASICs (application-specific integrated circuits) CPU FPGA (field-programmable gate array) GPGPU (general-purpose GPU


Event code

lattice-07302021

Register to DevCloud using https://sforms.intel.com/DevCloud/?eventcode=lattice-07302021

Register to Devcloud

 Step 1: Register or Sign into Intel Developer Zone

Step 2: Activate Intel Devcloud Account

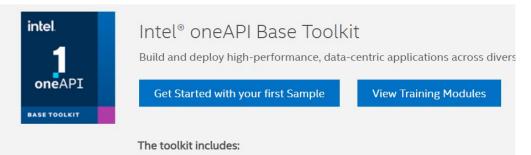
Step 2: Activate Intel® DevCloud for oneAPI

To get free access, tell us a bit more about yourself and how you would like to use the Intel DevCloud.

Required Fields(*)	* Country/region
First Name	Please select a country/region
* Last Name	*Company or University
Last Name	Company or Academic Institution
* Email Address	* What type of developer are you?
Business Email	-Select-
*Which hardware and accelerator architecture are you developing for?(Select all that pply) ASICSs (application-specific integrated circuits) CPU FPGA (field-programmable gate array) GPGPU (general-purpose GPU) GPU Integrated Graphics	Do you have an event code provided by Intel? (Optional)

Get Started with Devcloud

Step 3: Click on Get Started button


Intel[®] DevCloud for oneAPI

Get Started Documentation Forum 🖉

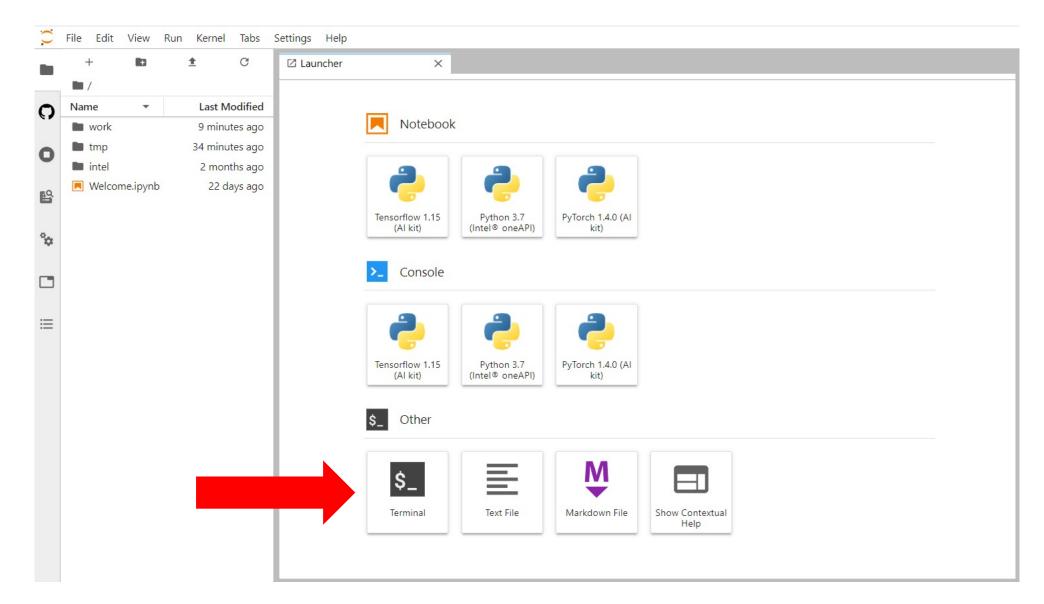
Step 4: Scroll Down to the bottom of the page and click on Launch JupyterLab

Explore Intel oneAPI Toolkits in the DevCloud

These toolkits are for performance-driven applications—HPC, IoT, advanced rendering, deep lear toolkit to see what it includes, explore training modules, and go deeper with developer guides.

Connect with Jupyter* Lab

Connect with Jupyter* Notebook


Use Jupyter Notebook to learn about how oneAPI can solve the challenges of programming in a heterogeneous world and understand the Data Parallel C++ (DPC++) language and programming model.

Overview

Setup Intel® DevCloud and Jupyter Environment

Launch Jupyter and select Terminal

Optimization Notice Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Commands to input in terminal

Please execute the following commands in the Jupyter Terminal window

/data/oneapi_workshop/get_jupyter_notebooks.sh

This command copies workshop into the user directory

s_ u30109@s001-n004: ~ ×

u30109@s001-n004:~\$ /data/oneapi_workshop/get_jupyter_notebooks.sh

Select Welcome.ipynb

10	+ 🗈		±	C	
_	/ oneAPI_Es	sentials /			
0	Name			Last Modified	
	00_Introduc	ction_to_Ju		2 months ago	
0	01_oneAPI_	Intro		2 months ago	
	02_DPCPP_	Program_St		2 months ago	
БQ	03_DPCPP_	Unified_Sha		2 months ago	
ß	04_DPCPP_	Sub_Groups		2 months ago	
	05_Intel_Ad	lvisor		2 months ago	
°¢	06_Intel_VTune_Profiler			2 months ago	
	07_DPCPP_Library			2 months ago	
	README.m	d		3 months ago	
	🛛 🗔 Welcome.ipynb			2 months ago	
≣		Λ IJ			

🗏 Welcome.ipynb 🛛 🗙

+ 💥 📋 📋 🕨 🔳 C Markdown 🗸

oneAPI Essentials Modules

The concepts build on top of each other introducing and reinforcing the concepts of Data Parallel C++.

Module 0 - Introduction to Jupyter Notebook (Optional)

Optional This module explains how to use Jupyter Notebook which is used in all of the modules to edit and run coding excecises, this can be skipped if you are already familiar with using Jupyter Notebooks.

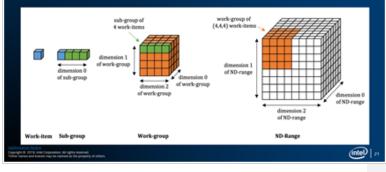
Module 1 - Introduction to oneAPI and DPC++ ¶

These initial hands-on exercises introduce you to DPC++ and the goal of oneAPI. In addition, it familiarizes you with the use of Jupyter notebooks as a front-end for all training exercises. This workshop is designed to be used on the DevCloud and includes details on how to submit batch jobs on DevCloud environment.

Module 2 - DPC++ Program Structure

These hands-on exercises present six basic DPC++ programs that illustrate the elements of a DPC++ application. You can modify the source code in some of the exercises to become more familiar with DPC++ programming concepts.

Python 3.7 (Intel® oneAPI)


DPC++essentials Course

ed in s iar C ary co	and heterogeneous or kernels can be same source files	Host code Accelerator	<pre>finclude ccl/sycl.hpp> elinclude cicl/sycl.hpp> constexpr int num=16; using numespace cl:sycl; int main() { auto R = range(1){ num }; buffercint> A(R }; queue{}.submit([&](handler& h) { auto out = A.get_access(access::mode::write>(h); h.parallel_for(R, [=](id<l> idx) { out[idx] = idx([0]);); };</l></pre>
truct	Purpose		auto result =
2	Work targeting		A.get_access <access::mode::read>();</access::mode::read>
r	Data management		<pre>for (int i=0; i<num; "\n";<="" ++i)="" <<="" pre="" result[i]="" std::cout=""></num;></pre>
el for	Parallelism		return 0:

ND_RANGE KERNEL EXECUTION

Parallel execution with ND_RANGE Kernel helps to group work items that maps to hardware resources. This helps to tune applications for performance.

INTEL OFFLOAD ADVISOR (BETA)

Starting from a baseline binary (running on CPU)

- Helps defining which sections of the code should run on a given accelerator
- Provides performance projection on accelerators (currently gen9 and gen11)

Propert method 2			Officials Insurated by 7	Gard VC configuration (2)
Nepet time Sussaid time Nepetiment time Nepetiment time Nepetiment time Nepetiment Nepet	Theorem for the	20	Figure 1 5 Cristeller 5 Cristeller 6 Cristeller 6 Cristeller 6 Cristeller 6 Cristeller 7 Cristeller 7 Cris	5 100 100001 100 100000 100 1000000 100 10000000 100 10000000 100 10000000 100 10000000 100 10000000 100 10000000 100 1000000 100 1000000 100 100000 100 100000 100 100000 100 100000 100 100000 100 100000 100 100000 100 10000 100 100000 100 10000 100 100000 100 100000 100 100000 100000 10000000 10000000000
Tay Musled 7			Tay you official of the	
under it	Aprenti da P	Autority of Concession, Name	a control in	an hander 1 dans dans 1 mar 20 mar
Second Strategy and Strategy an	1.14 1 2 12	10,00 4000	141-141-141-141-141 1	
			hard state of a log of the log of the	
			341-346-14-36,46-18	an an analysis

INTEL® VTUNE"	* PROFILER: HARDWARE ANALYSIS EXTENDED	HOW IT MAPS TO HAR	DWARE (INTEL GENIT GRAPHICS)
DPC++ kernels and their hardware metrics		Intel [®] Processor Graphics Gen11	All work-items in a work-group are scheduled on one Compute Unit, which has its own local memory
GPU hardware metrics GPU compute Shader GPU L3 Cache misses GPU Texture Memory 			All work-items in a sub-group are mapped to vector hardware
GPU queue and utilization -		and a second sec	

DPC++ Essentials Course Curriculum provides 20 hours of training and exercises using Jupyter Notebooks integrated with Intel® DevCloud

Qsub

- qsub can be used to submit jobs to the DevCloud job queue
- Jobs run asynchronously and report status upon completion
- The traditional way to execute qsub is to pass it a script: "qsub <script.sh>"
- qsub requires absolute paths, e.g. /bin/ls
- qsub –w \$PWD Runs in current folder
- Output file is <scriptname>.o<jobid>

QSTAT/QDEL

- qstat displays running jobs
- qdel <jobid> deletes pending jobs

Job ID	Name	User	Time Use S	Queue
591829.v-qsvr-1	ub-sing	leuser u42485	00:01:06	R jupyterhub
591832.v-qsvr-1	STDIN	u42485	0 1	R batch
591833.v-qsvr-1	STDIN	u42485	0	R batch
591834.v-qsvr-1	STDIN	u42485	0 1	R batch
591835.v-qsvr-1	STDIN	u42485	0	R batch
u42485@s001-n003:~\$ qd	el 591835			

Interactive shells

- Getting an interactive shell
 - qsub –l
- Requesting an iGPU/FPGA node
 - qsub -I -l nodes=1:gpu:ppn=2
 - clinfo lists iGPU info

Hands-on Coding on Intel DevCloud

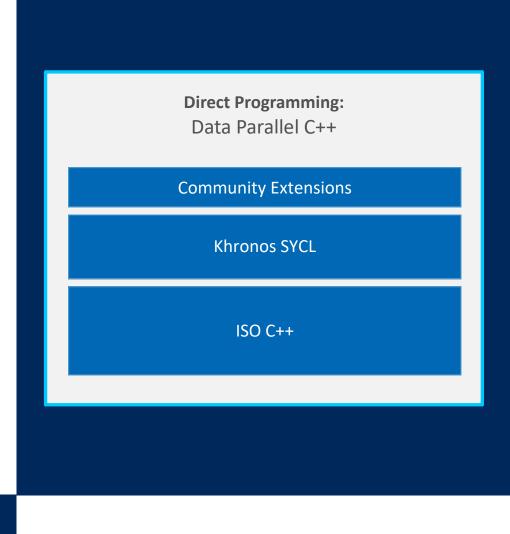
Run Simple DPC++ Program

Data Parallel C++

Standards-based, Cross-architecture Language DPC++ = ISO C++ and Khronos SYCL

Parallelism, productivity and performance for CPUs and Accelerators

- Delivers accelerated computing by exposing hardware features
- Allows code reuse across hardware targets, while permitting custom tuning for specific accelerators
- Provides an open, cross-industry solution to single architecture proprietary lock-in


Based on C++ and SYCL

- Delivers C++ productivity benefits, using common, familiar C and C++ constructs
- Incorporates SYCL from the Khronos Group to support data parallelism and heterogeneous programming

Community Project to drive language enhancements

- Provides extensions to simplify data parallel programming
- Continues evolution through open and cooperative development

Apply your skills to the next innovation, not rewriting software for the next hardware platform

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. The open source and Intel DPC++/C++ compiler supports Intel CPUs, GPUs, and FPGAs. Codeplay announced a <u>DPC++ compiler that targets Nvidia GPUs</u>.

What is Data Parallel C++?

- Data Parallel C++
- = C++ and SYCL* standard and extensions Based on modern C++
- C++ productivity benefits and familiar constructs

Standards-based, cross-architecture

 Incorporates the SYCL standard for data parallelism and heterogeneous programming

DPC++ Extends SYCL* standard

Enhance Productivity

- Simple things should be simple to express
- Reduce verbosity and programmer burden

Enhance Performance

- Give programmers control over program execution
- Enable hardware-specific features

DPC++: Fast-moving open collaboration feeding into the SYCL* standard

- Open source implementation with goal of upstream LLVM
- DPC++ extensions aim to become core SYCL*, or Khronos* extensions

A Complete DPC++ Program

Single source

 Host code and heterogeneous accelerator kernels can be mixed in same source files

Familiar C++

 Library constructs add functionality, such as:

Construct	Purpose
queue	Work targeting
malloc_shared	Data management
parallel_for	Parallelism

#include <CL/sycl.hpp> constexpr int N=16; using namespace sycl; int main() { queue q; int *data = malloc_shared<int>(N, q); q.parallel_for(N, [=](auto i) { Accelerator device code data[i] = i; }).wait(); for (int i=0; i<N; i++) std::cout << data[i] << "\n";</pre> free(data, q); return 0;

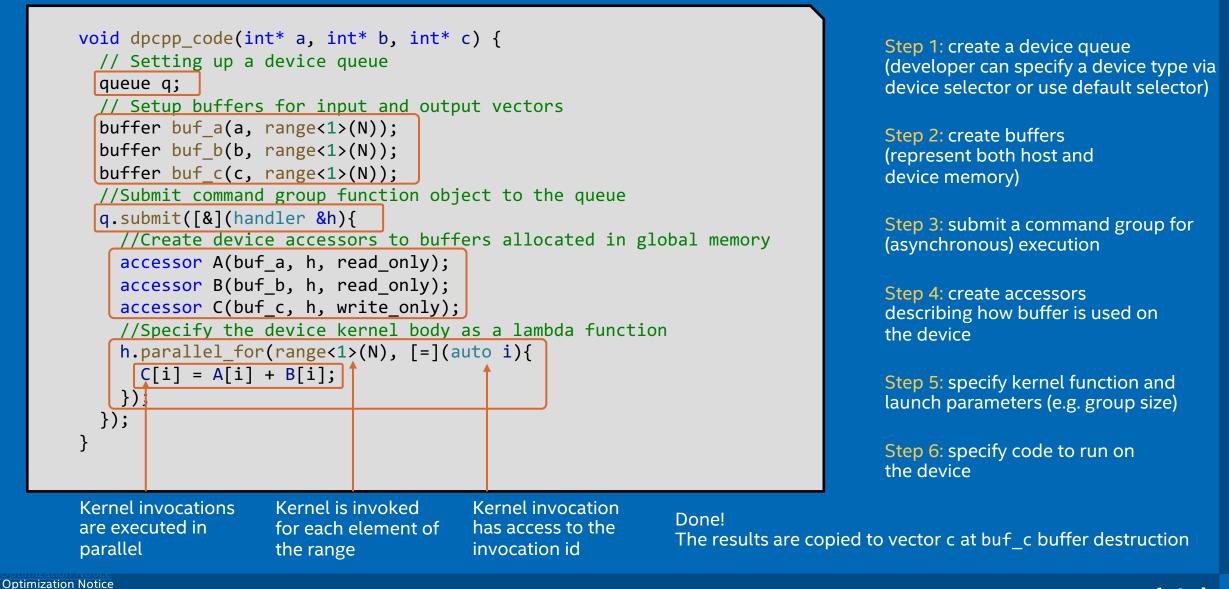
Optimization Notice Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

DPC++ Program Structure

• Agenda

- Deciding where code is run
- Data transfers and synchronization
- DPC++ execution model and memory model
- Hands On
 - Complex Multiplication

Buffer Memory Model

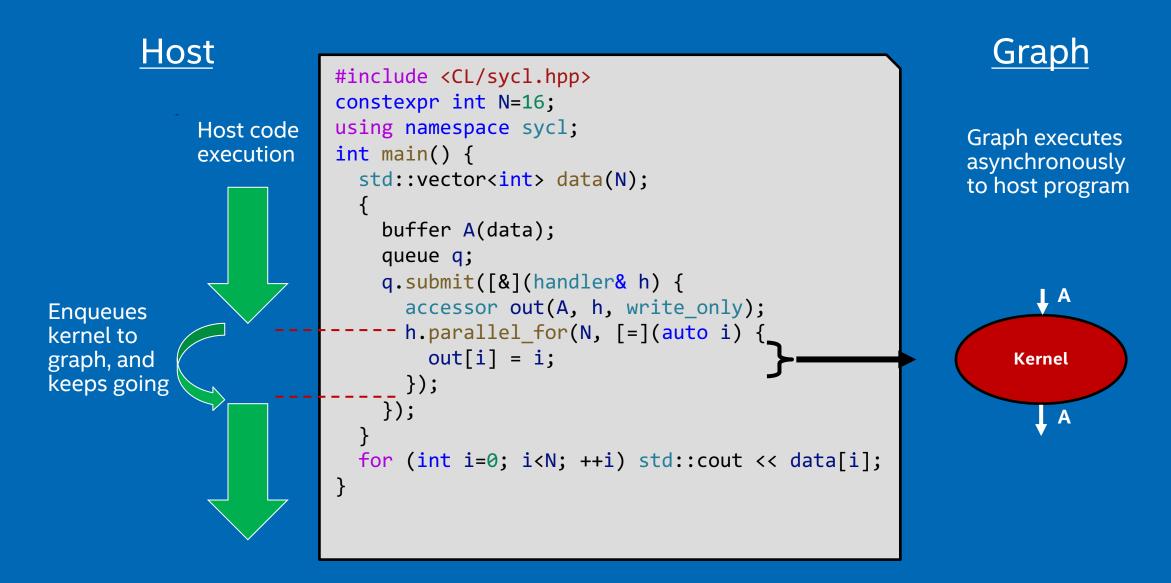

Buffers encapsulate data shared between host and device.

Accessors provide access to data stored in buffers and create data dependences in the graph.

Unified Shared Memory (USM) provides an alternative pointerbased mechanism for managing memory;

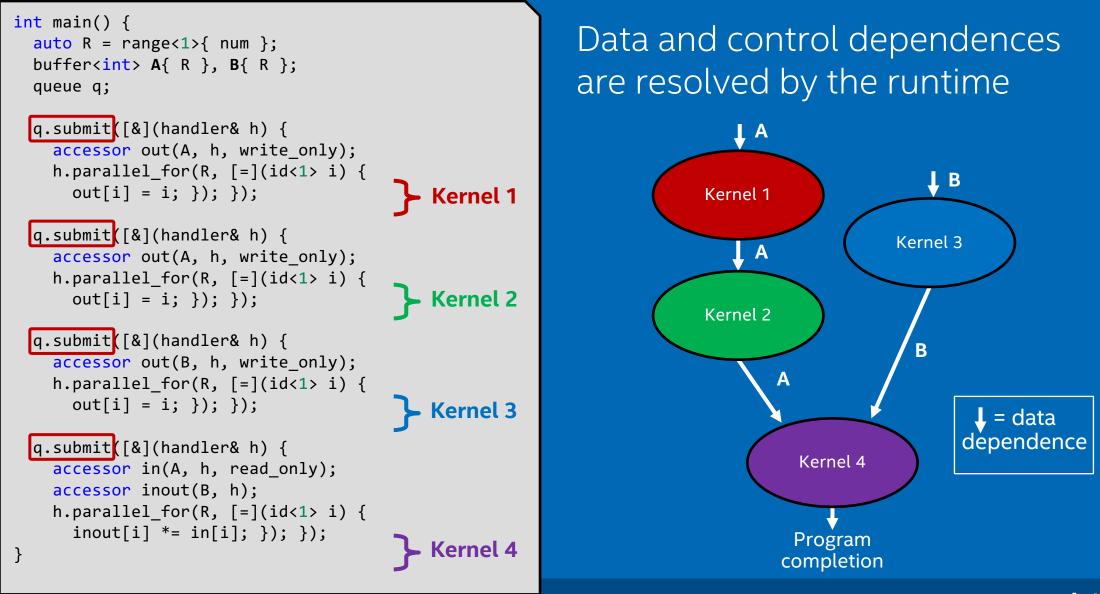
```
queue q;
std::vector<int> v(N, 10);
{
  buffer buf(v);
  q.submit([&](handler& h) {
    accessor a(buf, h , write_only);
    h.parallel_for(N, [=](auto i) { a[i] = i; });
  });
}
for (int i = 0; i < N; i++) std::cout << v[i] << " ";</pre>
```

DPC++ Code Anatomy


Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Submitting to a Device

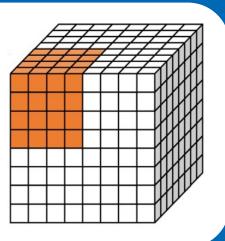
- A **device** represents a specific accelerator in the system.
- Work is not submitted to devices directly, but to a queue associated with the device.
- Creating a queue for a specific device requires a **device_selector**.


```
default_selector selector;
// host_selector selector;
// cpu_selector selector;
// gpu_selector selector;
queue q(selector);
std::cout << "Device: " << q.get device().get info<info::device::name>() << std::endl;</pre>
```

Asynchronous Execution

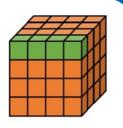
Optimization Notice Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Asynchronous Execution


Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Optimization

Mapping to Hardware (INTEL GEN11 GRAPHICS)



All work-items in a **work-group** are scheduled on one subslice, which has its own local memory.

All work-items in a **sub-group** execute on a single EU thread.

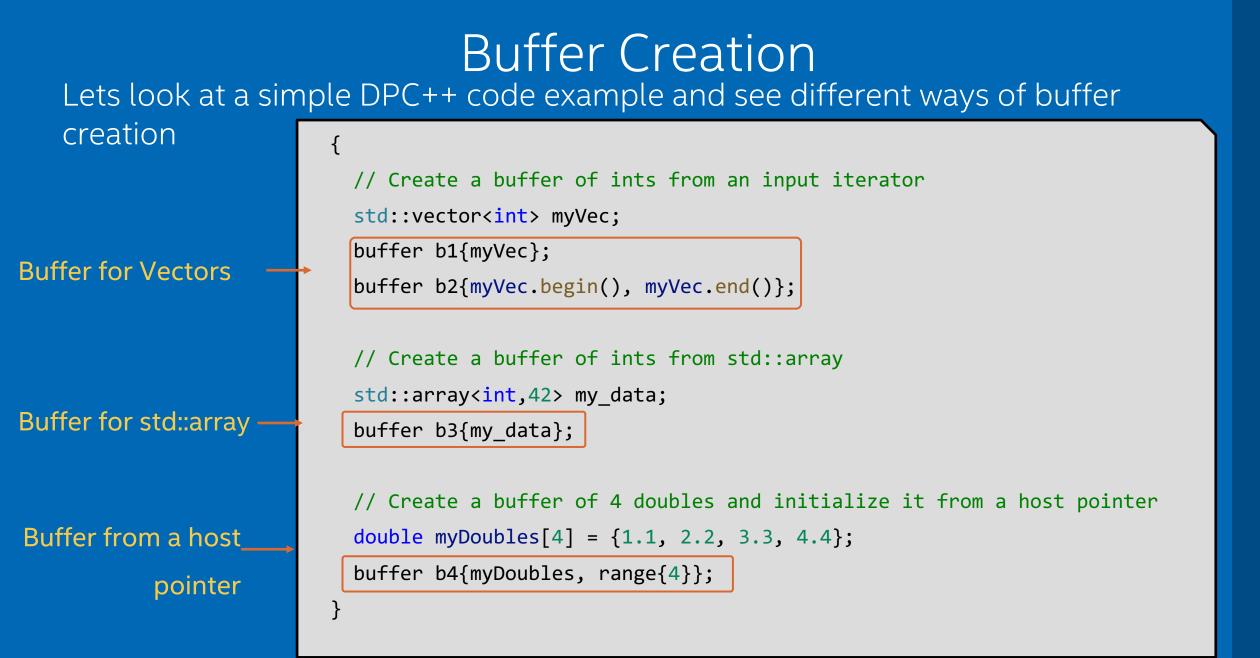
Each work-item in a **sub-group** is mapped to a SIMD lane/channel.

Optimization Notice

Recap: Important Classes in DPC++

Class	Functionality
sycl::device	Represents a specific CPU, GPU, FPGA or other device that can execute SYCL kernels.
sycl::queue	Represents a queue to which kernels can be submitted (enqueued). Multiple queues may map to the same sycl::device.
sycl::buffer	Encapsulates an allocation that the runtime can transfer between host and device.
sycl::handler	Used to define a command-group scope that connects buffers to kernels.
sycl::accessor	Used to define the access requirements of specific kernels (e.g. read, write, read-write).
<pre>sycl::range, sycl::nd_range sycl::id, sycl::item, sycl::nd_item</pre>	Representations of execution ranges and individual execution agents in the range.

Accessor Modes


Access Mode	Description
read_only	Read only Access
write_only	Write-only access. Previous contents not discarded
read_write	Read and Write access

Buffer Creation

Buffer Class: Template class with three arguments

- Type of the Object
- Dimensionality of the Buffer
- Optional C++ Allocator

The choice of buffer creation depends on how the buffer needs to be used as well as programmer's coding preferences

Optimization Notice Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Buffer: use_host_ptr

Use_host_ptr requires the buffer to not allocate any memory on the host

Buffer should use the memory pointed to by a host pointer that is passed to the constructor.

This option can be useful when the program wants full control over all host memory allocations

int main() { queue q; int myInts[42]; // create a buffer of 42 ints, initialize //with a host pointer, // and add the use_host_pointer property buffer b1(myInts, range(42), property::use_host_ptr{}); }

Buffer Properties: use_host_ptr

This property requires the buffer to not allocate any memory on the host, Instead, the buffer should use the memory pointed to by a host pointer that is passed to the constructor.

Initialize vector a and b

Use property::use_host_ptr ()

Submit the work

```
queue q;
```

```
std::vector<float> a(N, 10.0f);
```

```
std::vector<float> b(N, 20.0f);
```

```
buffer buf_a(a,{property::buffer::use_host_ptr()});
buffer buf_b(b,{property::buffer::use_host_ptr()});
```

```
q.submit([&](handler& h) {
```

```
//create Accessors for a and b
```

```
accessor A(buf_a,h);
```

```
accessor B(buf_b,h,read_only);
```

```
h.parallel_for(R, [=](auto i) { A[i] += B[1] ; });
```

});

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Buffer: set_final_data

{

The `set_final_data` method of a buffer is the way to update host memory however the buffer was created.

When the buffer is destroyed, data will be written to the host using the supplied location.

Call the set_final_data to the created shared ptr where the values will be written back when the buffer gets destructed

```
queue q;
buffer my_buffer(my_data);
my_buffer.set_final_data(nullptr);
q.submit([&](handler &h) {
accessor my accessor(my buffer, h);
       h.parallel_for(N, [=](id<1> i) {
        my accessor[i]*=2;
      });
  });
```

Buffer: sub_buffers

A sub-buffer requires three things, a reference to a parent buffer, a base index, and the range of the sub-buffer.

The main advantage of using the sub-buffers is different kernels can operate on different sub buffers concurrently. Sub Buffer for one dimensional buffer

Sub buffer for a 2-dimensional buffer —

buffer B(data, range(N));

```
buffer<int> B1(B, 0, range{ N / 2 });
```

```
buffer<int> B2(B, 32, range{ N / 2 });
```

buffer<int, 2> b10{range{2, 5}};

```
buffer b11{b10, id{0, 0}, range{1, 5}};
buffer b12{b10, id{1, 0}, range{1, 5}};
```

Sub Buffers	<pre>int main() {</pre>	
SUD DUITEIS	<pre>const int N = 64; const int num1 = 2; const int num2 = 3;</pre>	
	<pre>int data[N];</pre>	
	<pre>for (int i = 0; i < N; i++) data[i] = i; for (int i = 0; i < N; i++) std::cout << data[i] << " ";</pre>	
Buffer for Vectors —	<pre>buffer B(data, range(N));</pre>	
Create sub buffers B1—	<pre>buffer<int> B1(B, 0, range{ N / 2 });</int></pre>	
	<pre>buffer<int> B2(B, 32, range{ N / 2 });</int></pre>	
and B2	queue q1;	
	<pre>q1.submit([&](handler& h) {</pre>	
Submit q1 using B1	accessor a1(B1, h);	
	h.parallel_for(N/2, [=](auto i) { a1[i] *= num1; });	
	});	
	queue q2;	
	<pre>q2.submit([&](handler& h) {</pre>	
Submit q2 using B2	accessor a2(B2, h);	
	h.parallel_for(N/2, [=](auto i) { a2[i] *= num2; });	
	});	
Create Host accessors	<pre>host_accessor b1(B1, read_only);</pre>	
	host_accessor b2(B2, read_only);	
	return 0;	
Optimization Notice	1	

Optimization Notice Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Synchronization – Host Accessors

```
#include <CL/sycl.hpp>
using namespace sycl;
constexpr int N = 16;
```

```
int main() {
   std::vector<double> v(N, 10);
   queue q;
```

```
buffer buf(v);
q.submit([&](handler& h) {
    accessor a(buf, h)
    h.parallel_for(N, [=](auto i) {
        a[i] -= 2;
    });
});
```

```
host_accessor b(buf, read_only);
for (int i = 0; i < N; i++)
   std::cout << b[i] << "\n";
return 0;</pre>
```

Buffer takes ownership of the data stored in vector.

Creating host accessor is a blocking call and will only return after all enqueued kernels that modify the same buffer in any queue completes execution and the data is available to the host via this host accessor.

Custom Device Selector

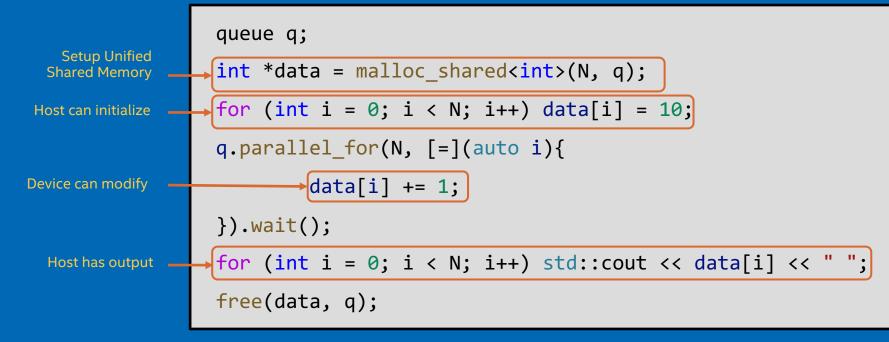
The following code shows derived **device_selector** that employs a device selector heuristic. The selected device prioritizes a GPU device because the integer rating returned is higher than for CPU or other accelerator.

```
#include <CL/sycl.hpp>
using namespace cl::sycl;
class my device selector : public device selector {
public:
  int operator()(const device& dev) const override {
   int rating = 0;
   if (dev.is_gpu() & (dev.get_info<info::device::name>().find("Intel") != std::string::npos))
      rating = 3;
   else if (dev.is gpu()) rating = 2;
   else if (dev.is cpu()) rating = 1;
   return rating;
 };
};
int main() {
 my device selector selector;
 queue q(selector);
  std::cout << "Device: " << q.get device().get info<info::device::name>() << std::endl;</pre>
  return 0;
```

Hands-On: Complex Number Multiplication

- In this lab we provide with the source code that computes multiplication of two complex numbers where Complex class is the definition of a custom type that represents complex numbers
- In this example the student will learn how to create a custom device selector and to target GPU or CPU of a specific vendor. The student will also learn how to pass in a vector of custom Complex class objects in parallel and needs to modify the source code to setup a write accessor and call the Complex class member function as kernel to compute the multiplication

Hands-on Coding on Intel DevCloud


Complex Multiplication with DPC++

New Features in DPC++

- Agenda
 - Unified Shared Memory (USM)
 - Sub-Groups
 - Reductions
- Hands On
 - USM
 - Sub-group collectives and shuffles
 - Reduction kernels

Unified Shared Memory (USM)

USM enables allocations to be identified via pointers, and for the same pointers to be used across the host and device.

Unified Shared Memory (USM)

There are three ways to create USM allocations:

Туре	Description	Accessible on Host?	Accessible on Device?
<pre>sycl::malloc_device</pre>	Allocations in device memory. Programmer must explicitly transfer data between host and device.	No	Yes
<pre>sycl::malloc_host</pre>	Allocations in host memory. Kernels can access these allocations directly.	Yes	Yes
<pre>sycl::malloc_shared</pre>	Allocations can migrate between host and device memory. Different implementations may provide different guarantees regarding whether allocations can be accessed by host and device concurrently.	Yes	Yes

USM – Explicit Data Transfer

malloc_device() allocates
memory on device; host cannot
access directly

Copy memory explicitly from host to device using **q.memcpy()**

Device kernel can use the same (device) pointer

Copy memory explicitly from device to host using **q.memcpy()**

queue q(property::queue::in_order{});

```
int data[N];
for (int i = 0; i < N; i++) data[i] = 10;</pre>
int *data device = malloc device (N, q);
q.memcpy(data_device, data, sizeof(int) * N);
q.parallel_for(N, [=](auto i) { data_device[i] += 1; });
q.memcpy(data, data_device, sizeof(int) * N).wait();
for (int i = 0; i < N; i++) std::cout << data[i] << std::endl;</pre>
free(data device, q);
```

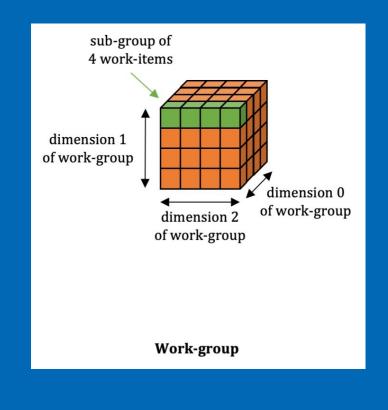
USM – Implicit Data Transfer

<pre>malloc_shared() allocates memory that can migrate between</pre>	queue q;
host and device.	<pre>int *data = malloc_shared<int>(N, q);</int></pre>
	<pre>for (int i = 0; i < N; i++) data[i] = 10;</pre>
Device kernel can use the same pointer	<pre>q.parallel_for(N, [=](auto i) { data[i] += 1; }).wait(); for (int i = 0; i < N; i++) std::cout << data[i] << std::endl; free(data, q);</pre>
Host can directly access memory via the same pointer.	

USM – Data Dependencies

- When using buffers, data dependencies between kernels are tracked by the SYCL runtime based on accessor usage.
- When using unified shared memory, data dependencies must be handled by the programmer:
 - Explicit host/device synchronization via q.wait() before accessing data
 - Use sycl::event objects to specify dependencies between kernels OR Use in-order queues to add implicit dependencies between kernels

Hands-on Coding on Intel DevCloud


USM Implicit and Explicit Data Movement

A subset of work-items within a work-group that execute with additional guarantees and often map to SIMD hardware.

Work-items in a sub-group can communicate directly using shuffle operations.

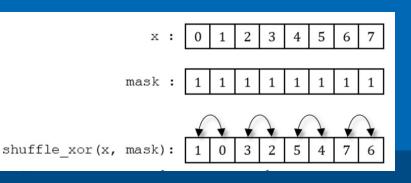
Sub-groups also provide access to sub-group collectives (e.g. reduction, scan, any/all)

sub_group class

A sub-group handle can be obtained from an nd_item using get_sub_group()

It exposes functions to:

- Query more information about the sub-group
- Perform shuffle operations or use collective functions.


```
q.parallel_for(nd_range<1>(N,B), [=](nd_item<1> item) {
    auto sg = item.get_sub_group();
    // KERNEL CODE
});
```

Sub-Group Shuffles

 One of the most useful features of sub-groups is the ability to communicate directly between individual work-items without explicit memory operations. h.parallel_for(nd_range<1>(N,B), [=](nd_item<1> item){
 auto sg = item.get_sub_group();
 size_t i = item.get_global_id(0);

```
/* Shuffles */
//data[i] = sg.shuffle(data[i], 2);
//data[i] = sg.shuffle_up(0, data[i], 1);
//data[i] = sg.shuffle_down(data[i], 0, 1);
data[i] = sg.shuffle_xor(data[i], 1);
```

});

Optimization Notice Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Group Collectives

- The collective functions provide implementations of closely-related common parallel patterns.
- Collectives are available for both work-groups and sub-groups.

```
h.parallel_for(nd_range<1>(N,B), [=](nd_item<1> item){
```

```
auto sg = item.get_sub_group();
```

```
size_t i = item.get_global_id(0);
```

```
/* Collectives */
```

```
data[i] = reduce(sg, data[i], ONEAPI::plus<>());
```

```
//data[i] = reduce(sg, data[i], ONEAPI::maximum<>());
```

```
//data[i] = reduce(sg, data[i], ONEAPI::minimum<>());
```

```
});
```

Specifying the Sub-Group Size

The sub-group size can be configured separately for each kernel. The set of available sub-group sizes is hardware-specific.

```
q.parallel_for(range<1>(N),
        [=](id<1> id) [[intel::reqd_sub_group_size(16)]] {
        // KERNEL CODE
});
```

The sub-group size can be tuned even for kernels that do not use the **sub_group** class (e.g. to tune for SIMD width and register usage).

Hands-on Coding on Intel DevCloud

Sub-Group Shuffles and Collectives

Reductions in a Group

. . .

});

Work-group collectives can be used to compute the sum of all items in each work-group q.parallel_for(nd_range<1>(N, B), [=](nd_item<1> item){
 auto wg = item.get_group();
 size_t i = item.get_global_id(0);

// Adds all elements in work_group using work_group reduce
int sum = reduce(wg, data[i], ONEAPI::plus<>());

// Do something with the reduced value

Optimization Notice Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Reductions Across Groups (aka Reduction Kernels)

});

Work-group collectives can be used to compute the sum of all items in each work-group

Partial results can be combined via additional kernel(s)

q.parallel_for(nd_range<1>(N, B), [=](nd_item<1> item){
 auto wg = item.get_group();
 size_t i = item.get_global_id(0);

// Adds all elements in work_group using work_group reduce
int sum_wg = reduce(wg, data[i], ONEAPI::plus<>());

// Write work_group sum to first location for each work_group
if (item.get_local_id(0) == 0) data[i] = sum_wg;

```
q.single_task([=](){
    int sum = 0;
    for (int i = 0; i < N; i += B) {
        sum += data[i];
    }
    data[0] = sum;
});</pre>
```

Reductions Across Groups (aka Reduction Kernels)

DPC++ introduces a dedicated abstraction for reduction kernels.

A **reduction** object encapsulates:

- 1. The reduction variable
- 2. An optional identity
- 3. The reduction operator

queue q;

```
int *data = malloc_shared<int>(N, q);
for (int i = 0; i < N; i++) data[i] = i;</pre>
```

```
int *sum = malloc_shared<int>(1, q);
```

```
sum[0] = 0;
```

```
q.parallel_for(nd_range<1>{N, B},
```

```
ONEAPI::reduction(sum, ONEAPI::plus<>()),
```

```
[=](nd_item<1> it, auto& sum) {
```

```
int i = it.get_global_id(0);
```

```
sum += data[i];
```

}).wait();

```
std::cout << "Sum = " << sum[0] << std::endl;</pre>
```

Recap

- oneAPI solves the challenges of programming in a heterogeneous world
- Take advantage of oneAPI solutions to enable your workflows
- Use the Intel[®] DevCloud to test-drive oneAPI tools and libraries
- Introduced to DPC++ language and programming model
- Important Classes for DPC++ application
- Device selection and offloading kernel workloads
- DPC++ Buffers, Accessors, Command Group handler, lambda code as kernel
- DPC++ New Features (USM, Sub-Groups, Reductions)
- Hands on activities
 - Introduction to DPC++ Complex-multiplication
 - USM, Sub-Groups and Reductions)

- This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.
- The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata are available on request. No product or component can be absolutely secure. Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.
- Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit <u>www.intel.com/benchmarks</u>.
- INFORMATION IN THIS DOCUMENT IS PROVIDED "AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
- Copyright ©, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and OpenVINO are trademarks of Intel Corporation or its subsidiaries in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804

#