An overview of the QCD phase diagram at finite ${\cal T}$ and μ

Jana N. Guenther Wuppertal-Budapest collaboration

July 26th 2021

	Isospin chemical potential μ_I	Conclusion

Fluctuations

The critical endpoint

Many thanks to everyone who sent me material beforehand

- Felipe Attanasio
- Bastian Brandt
- Maxim Chernodub
- Francesca Cuteri
- Tom DeGrand
- Hidenori Fukaya
- Rajiv V. Gavai
- Jishnu Goswami
- Prasad Hegde
- Benjamin Jäger

- Kazuyuki Kanaya
- Frithjof Karsch
- Andrey Kotov
- Aleksi Kurkela
- Sourav Mondal
- Swagato Mukherjee
- Yoshifumi Nakamura
- Jun Nishimura
- Mike Ogilvie
- Marco Panero

- Owe Philipsen
- Christian Schmidt
- Alessandro Sciarra
- Jon-Ivar Skullerud
- Marianna Sorba
- Judah Unmuth-Yockey
- Aleksi Vuorinen
- Felix Ziegler

Many apologies to all the fascinating results (and their authors) that I cannot cover due to time constrains!

Fluctuations

The critical endpoint

Isospin chemical potential μ

Conclusion

The (T, μ_B)-phase diagram of QCD

T

Fluctuations

The critical endpoint

Isospin chemical potential μ

Conclusion

The (T, μ_B) -phase diagram of QCD

 μ_B

′**/** ′

Fluctuations

The critical endpoint

Isospin chemical potential μ

Conclusion

The (T, μ_B) -phase diagram of QCD

 μ_B

Fluctuations

The critical endpoint

Isospin chemical potential μ

Conclusion

The (T, μ_B) -phase diagram of QCD

Fluctuations

The critical endpoint

Isospin chemical potential μ

Conclusion

The (T, μ_B) -phase diagram of QCD

Fluctuations

The critical endpoint

Isospin chemical potential μ

Conclusion

The (T, μ_B) -phase diagram of QCD

Fluctuations

The critical endpoint

Isospin chemical potential μ

Conclusion

The (T, μ_B) -phase diagram of QCD

Fluctuations

The critical endpoint

Isospin chemical potential μ

Conclusion

The (T, μ_B) -phase diagram of QCD

Fluctuations

The critical endpoint

Isospin chemical potential μ

Conclusion

The (T, μ_B) -phase diagram of QCD

Fluctuations

The critical endpoint

Isospin chemical potential μ

Conclusion

The (T, μ_B) -phase diagram of QCD

Fluctuations

The critical endpoint

Isospin chemical potential μ

Conclusion

The (T, μ_B) -phase diagram of QCD

Dealing with the sign problem

- Reweighting techniques
- Canonical ensemble
- Lefshetz Thimble
- Density of state methods
- Dual variables
- Complex Langevin
- . . .

- Attila Pasztor, Tue 5:30.
- Kornél Kapás, Tue 6:00
- Prasad Hegde, Tue 7:15
- Francesco di Renzo, Mon 14:15
- Kevin Zambello, Tue 6:15
- Nobuyuki Matsumoto, Tue 22:45
- Volodymyr Chelnokov, Mon 13:15
- Benjamin Jaeger, Tue 5:15
- Yusuke Namekawa, Wen 21:15
- Shoichiro Tsutusi, Wen 21:45

Dealing with the sign problem

- Reweighting techniques
- Canonical ensemble
- Lefshetz Thimble
- Density of state methods
- Dual variables
- Complex Langevin
- . . .

- (Taylor) expansion
- Imaginary μ

- Attila Pasztor, Tue 5:30.
- Kornél Kapás, Tue 6:00
- Prasad Hegde, Tue 7:15
- Francesco di Renzo, Mon 14:15
- Kevin Zambello, Tue 6:15
- Nobuyuki Matsumoto, Tue 22:45
- Volodymyr Chelnokov, Mon 13:15
- Benjamin Jaeger, Tue 5:15
- Yusuke Namekawa, Wen 21:15
- Shoichiro Tsutusi, Wen 21:45

- Paolo Parotto, 7:00
- David Pesznyak, 7:30

Analytic continuation from imaginary chemical potential

Common technique:

- [deForcrand:2002hgr]
- [Bonati:2015bha]
- [Cea:2015cya]
- [DElia:2016jqh]
- [Bonati:2018nut]
- [Borsanyi:2018grb]
- [Borsanyi:2020fev]
- [Bellwied:2021nrt]

• . . .

		Isospin chemical potential μ_I	Conclusion
Expansion from <i>i</i>	$\iota = 0$		

LHC

Taylor expansion

$$\frac{p}{T^4} = \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{1}{j!k!} \chi_{jk}^{BS} \hat{\mu}_B^j \hat{\mu}_S^k$$

with
$$\hat{\mu}=\frac{\mu}{T}$$

- rapid convergence in Stephan-Boltzmann ($T = \infty$) limit
- expansion coefficients are lattice observables

Expansion from $\mu = 0$

Taylor expansion

 $\frac{p}{T^4} = \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{1}{j!k!} \chi_{jk}^{BS} \hat{\mu}_B^j \hat{\mu}_S^k$

with
$$\hat{\mu} = \frac{\mu}{T}$$

- rapid convergence in Stephan-Boltzmann ($T = \infty$) limit
- expansion coefficients are lattice observables

Fugacity expansion/sector method

$$rac{p}{T^4} = \sum_{j=0}^\infty \sum_{k=0}^\infty P^{BS}_{jk} \cosh(j\hat{\mu}_B - k\hat{\mu}_S)$$

with
$$\hat{\mu}=\frac{\mu}{T}$$

- rapid convergence in hadronic phase
- information about particle content

Fluctuations

The critical endpoint

Isospin chemical potential μ

Conclusion

1 The transition temperature T_c

Fluctuation

The critical endpoint

Isospin chemical potential μ_I

Conclusior

Fluctuations

The critical endpoint

Isospin chemical potential μ

Conclusion

The transition temperature

The transition temperature under different conditions

Many color influences

- [DeGrand:2021zjw]
- rescaled chiral condensate

• $N_c = 3, 4, 5,$ $N_f = 2,$ Wilson-Clover • $(m_c + (m_c)^2 = 0)$

• $(m_{PS}/m_V)^2 \sim 0.63$

- The rescaled condensate temperature dependence is independent of N_c
- Thomas DeGrand, Tue 21:00

Various quark masses

[HotQCD:2018pds], [Ding:2019fzc], [Borsanyi:2020fev], [Aarts:2019hrg], [Aarts:2020vyb]

• Andrey Kotov, Tue 13:15

The chiral limit will be covered in plenary talk by Anirban Lahiri later in this session. On Dirac eigenvalues around T_c : Wei-Ping Huang, Wed 6:00

The transition temperature T_C		lsospin chemical potential μ_l	Conclusion
Columbia plot			

The transition temperature T_C		lsospin chemical potential μ_l	Conclusion
Columbia plot			

- Reinhold Kaiser, Tue 13:30
- Jishnu Goswami, Tue 13:45
- Mugdha Sarkar, Thu 6:00
- Ruben Kara, Thu 6:30.
- Sipaz Sharma, Thu 7:00
- Owe Philipsen, Thu 7:15

The transition temperature $\mathcal{T}_{\mathcal{C}}$		lsospin chemical potential μ_I	Conclusion
Columbia plot			

- Reinhold Kaiser, Tue 13:30
- Jishnu Goswami, Tue 13:45
- Mugdha Sarkar, Thu 6:00
- Ruben Kara, Thu 6:30
- Sipaz Sharma, Thu 7:00
- Owe Philipsen, Thu 7:15

Discussed in the plenary talk by Anirban Lahiri later in this session.

Also in this session: Plenary talk by Johannes Heinrich Weber on Heavy quarks at finite temperature.

Fluctuations

The critical endpoint

Isospin chemical potential μ

Conclusion

Lifting the curtain - Looking at finite μ

Fluctuations

The critical endpoint

Isospin chemical potential μ

Conclusion

Lifting the curtain - Looking at finite μ

Fluctuations

The critical endpoint

Isospin chemical potential μ

Conclusion

LHC

Curvature of the transition temperature

green: from imaginary μ_B , blue: from Taylor expansion method

The critical endpoint

Extrapolation of the transition temperature

[Bazavov:2018mes] Results from the Taylor expansion method HISQ quarks

Continuum limit from $N_t = 6, 8, 12$

[Borsanyi:2020fev] Results from the imaginary potential method staggered quarks

Continuum limit from $N_t = 10, 12, 16$

chemical freezeout: abundancies of hadrons are fixed (frozen-in) kinetic freezeout: momentum distributions are fixed

The critical endpoint

Isospin chemical potential μ_I

Conclusion

The influence of a magnetic field

• [Braguta:2019yci]

Talks on influences of the magnetic field:

- Artem Roenko, Wed 13:00
- Natalia Kolomoyets, Wed 13:15
- Lorenzo Maio, Wed 13:30

Adeilton

Dean Marques Valois, Wed 13:45

- Xiaodan Wang, Wed 22:00
- Shengtai Li, Wed 22:15

Fluctuations

The critical endpoint

Isospin chemical potential μ

Conclusion

The transition temperature T_c

2 Fluctuations

The critical endpoint

Isospin chemical potential μ_I

Conclusior

Fluctuations

The critical endpo

Isospin chemical potential μ

Conclusion

$|\chi^B_4$, χ^B_6 and χ^B_8 on finite lattices

$$\chi_{i,j,k}^{B,Q,S} = \frac{\partial^{i+j+k} (p/T^4)}{(\partial \hat{\mu}_B)^i (\partial \hat{\mu}_Q)^j (\partial \hat{\mu}_S)^k}, \ \hat{\mu}_i = \frac{\mu}{T}$$

2012 up to χ_4^B $N_t = 6, 8$

[Schmidt:2012ka]

2018 up to χ_8^B $N_t = 12$

[Borsanyi:2018grb], see also [Bazavov:2020bjn]

Fluctuations

The critical endpoint

Isospin chemical potential μ

Conclusion

Low order fluctuations with high precision

- [Bellwied:2021nrt]
- continuum estimate from $N_t = 8, 10, 12$
- stout smeared staggered
- contributions vom $N \Lambda$, $N \Sigma$ scattering
- negative contribution in the Fugacity expansion indicate repulsive interaction that cannot be described with more resonances

- [Bollweg:2021vqf]
- HISQ
- New continuum extrapolated results $(N_t = 6, 8, 12, 16)$ allow for detailed comparisons with various models
- Quark model states are needed for HRG

	Fluctuations	Isospin chemical potential μ_I	Conclusion
Observables			

Cumulants of the net baryon number distributions:

The critical endpoint

Isospin chemical potential μ

Conclusion

Calculating observables

$$\chi_{i,j,k}^{\mathcal{B},\mathcal{Q},\mathcal{S}} = \frac{\partial^{i+j+k}(p/T^4)}{(\partial\hat{\mu}_B)^i(\partial\hat{\mu}_Q)^j(\partial\hat{\mu}_S)^k}, \ \hat{\mu}_i = \frac{\mu}{T}$$

$$\frac{M_B}{\sigma_B^2} = \frac{\chi_1^B(T,\hat{\mu}_B)}{\chi_2^B(T,\hat{\mu}_B)} \qquad \frac{S_B\sigma_B^3}{M_B} = \frac{\chi_3^B(T,\hat{\mu}_B)}{\chi_1^B(T,\hat{\mu}_B)}$$
$$\kappa_B\sigma_B^2 = \frac{\chi_4^B(T,\hat{\mu}_B)}{\chi_2^B(T,\hat{\mu}_B)}$$

[Bazavov:2017dus], [Karsch:2017zzw], figs: [STAR, Adamczyk:2013dal]

Fluctuations

The critical endpoint

Isospin chemical potential μ_{1}

Conclusion

Comparison with heavy ion collision experiments

- Bazavov:2020bjn]
- Taylor method
- HISQ

- 2d-extrapolation in μ_B and μ_S
- Fugacity expansion and imaginary chemical potential
- David Pesznyak, Tue 7:30

Fluctuations

The critical endpoin

Isospin chemical potential μ

Conclusion

Trouble with the equation of state

Fluctuations

The critical endpoin

Isospin chemical potential μ

Conclusion

Trouble with the equation of state

 $\begin{array}{l} [\mathsf{Bazavov:2017dus}]\\ \mathsf{Taylor\ method}\\ N_t=6,8,12,(16)\ (\mathsf{2nd\ Order})\\ N_t=6,8\ (\mathsf{4th\ and\ 6th\ Order}) \end{array}$

Fluctuations

The critical endpoint

Isospin chemical potential μ

Conclusion

 $\mu_B/T = 3$

180

T [MeV]

200 220 240

NLO NELO

160

Trouble with the equation of state

Fluctuations

The critical endpoint

Isospin chemical potential μ_1

Conclusion

Trouble with the equation of state

[Bazavov:2017dus] Taylor method $N_t = 6, 8, 12, (16)$ (2nd Order) $N_t = 6, 8$ (4th and 6th Order)

- extrapolation at fixed *T* cross the transition line
- bad convergence with low order Taylor coefficients

The transition temperature T_C	Fluctuations	The critical endpoint	lsospin chemical potential μ_I	Conclusion
Equation of state				

Find a different extrapolation scheme for extrapolating to higher μ_B .

• [Borsanyi:2021sxv] • $N_t = 10, 12, 16$

• Paolo Parotto, Tue 7:00

On a resummation of the Taylor expansion: Prasad Hegde, Tue 7:15

Fluctuations

The critical endpoint

Isospin chemical potential μ

Conclusion

1) The transition temperature T_c

Fluctuation

The critical endpoint

) Isospin chemical potential μ_I

Conclusio

• $N_t = 4.6$

- Kevin Zambello, Tue 6:15
- Simran Singh, Tue 6:30
- Guido Nicotra, Tue 6:45

Lee-Yang edge and Taylor: Gokce Basar, Mon 21:00 Critical endpoint with Wilson-Clover fermions: Hiroshi Ohno, Mon 22:00 Reweighting: Attila Pasztor. Tue 5:30. Sandor Katz. Tue 5:45

The critical endpoint in models

On the scaling region of the Ising universaltiy class: Marianna Sorba, Thu 5:30

- [Schindler:2021otf]
- \mathcal{PT} symmetric model with Z(2) symmetry
- in QCD-inspired heavy quark model patterns around critical endpoint

- Similar patterns as in nuclear pasta but with confined and deconfined quarks instead of protons and neutrons
- Michael Oglivie, Tue 21:30
- Stella Schindler, Tue 21:45

Fluctuations

The critical endpoint

Outlook on higher μ_B with Complex Langevin

Evolution in a fictitious Langevin time generates configurations with a complex measure.

Fluctuations

The critical endpoint

Outlook on higher μ_B with Complex Langevin

Evolution in a fictitious Langevin time generates configurations with a complex measure.

- $N_f = 2$, $m_{\pi} = 550$ MeV, Wilson fermions
- Benjamin Jaeger, Tue 5:15

Fluctuations

The critical endpoint

Outlook on higher μ_B with Complex Langevin

Evolution in a fictitious Langevin time generates configurations with a complex measure.

- $N_f = 2$, $m_{\pi} = 550$ MeV, Wilson fermions
- Benjamin Jaeger, Tue 5:15

- [Ito:2020mys]
- $N_{f}=$ 4, $ilde{\mu}=\mu a$, $a^{-1}pprox$ 4.7 GeV
- plateau might be connected to a Fermi surface and color superconductivity
- Shoichiro Tsutsui, Wed 21:45

	The critical endpoint	Isospin chemical potential μ_I	Conclusion

Fluctuations

The critical endpoint

Isospin chemical potential μ_I

Conclusion

Isospin chemical potential μ_I

Popular systems with more neutrons than protons:

For $\mu_I \neq 0$ and $\mu_B = 0$ there is no sign problem

 $\mu_B = \mu_S = 0$:

[https://cms.cern]

Neutron stars:

[www.ectstar.eu]

Finding phase boundary at large μ_I : Francesca Cuteri, Tue 14:30 Imaginary μ_I (and μ_B): Christopher Winterowed, Tue 14:00, Amine Chabane, Thu 6:15

Ine	transition	temperature	

Fluctuations

The critical endp

Isospin chemical potential μ

Conclusion

Conclusion

