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Atiyah-Singer index theorem [1968]
on a manifold without boundary

o o H . we consider
D¢ =0 D=y (O +idy) U(1) or SU(N) group.

Index theorem
Ind(D)

—n_ = d4xe“Vp“tr(Fvap(,)
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#sol with + chirality  #sol with - chirality

This text-book level theorem is physicist-friendly.



Atiyah-Patodi-Singer (APS) index theorem (1975

IS less known
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(because we were not very interested in manifolds with boundary
until very recently).

Ind(DAps) —




APS index in topological insulator

Witten 2015 : APS index is a key to understand bulk-edge
correspondence in symmetry protected topological insulator:

gapped material in the bulk but conductor on Figure
from
boundary (edge). «,/A A Wikipedia
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2005 predicted by Kane et al.

2007 discovered [Koenig et al.]. Acck_
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[Related works: Metlitski 15, Seiberg-

- Witten 16, Tachik -Yonek 16&18,
T anOmaIy Cance"atK)n Frleeedn-Hopk%Cs;éwvsittggiéri(onekura

16&19, Witten-Yonekura 19...]

The APS index protects the Time reversal (T) symmetry.

fermion Zodge o exp(—imn(iD>")/2) T-anomalous

path integrals 1
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Zhulk X €Xp (m / d4xe,,,ypatr[F“”F""]> T-anomalous
x4>0

Zedge Lbulk X (—1)’J — (—1)"’ w=mp Tis protected !

1 'DSD
J = / d4xeu,,pgtr[F“”Fp"] n )
327T2 24 >0 2
But the LHS | =Ind Daps of massless Dirac with non-local

ooundary condition i1s physicist-unfriendly.



Difficulty with boundary

If we impose local and Lorentz (rotation) invariant boundary
condition, + and — chirality sectors do not decouple any more.

angular momentum is
—— | ' conserved but

chirality is not.

n., n_ and the index do not make sense.



Atiyah-Patodi-Singer boundary condition
[Atiyah, Patodi, Singer 73]
Gives up the locality and rotational symmetry to keep the chirality.
Eg. 4dim x* >0 As=0 gauge
D = Y4<94 +y'D; = }’4(54 T Y4}’iDi)

They impose a non-local b.c. A 4, X
boundary
(A+]ANY |40 = 0
' _ o Mathematically beautitul!
> Index = N+ — But physicist-unfriendly.



Locality >> chirality for physicists

Locality (=causality) 1s essential.

We cannot accept APS condition even If 1t Is beautiful.

0

hit!
non-local Information propagates
boundary faster than speed of light.

iINnformation
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Locality >> chirality for physicists

Locality (=causality) Is essential.
We cannot accept APS condition even if It Is beautiful.

— need to give up chirality and consider L/R mixing

(massive case) | 3D
M 3272 /x4>0 d4xewpatr[FWFP0] " 2 |

Can we still make a fermionic integer (even if it is ugly)?

Our answer Is "Yes, we can’.
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Massive Dirac fermion

Let us consider a Dirac fermion with negative mass
(compared to regulator),

det(D 4+ m)
det(D — M) — Pauli-Villars

with SU(N) gauge fields on an even-dimensional closed
flat Euclidean manifold.




Axial U(1) rotation

In the large mass Iimit, m! M " 0, |let us perform an axial
U(1) rotation with angle m,

M® | MBez'sez!sl ="M 1®

to flip the signh of mass.

det(D + M)  det(D—-M) 19

det(D — M)  det(D — M)




Atiyah-Singer index appears

Taking the axial U(1) anomaly into account,

det(D + M) _ det(D—M) X exp (m : /d4xFF) o

det(D — M)  det(D — M) 327
W
=1

| =Atiyah-Singer index
Our proposal: Why don’t we use massive
Dirac operator to “define” the index?

(We use anomaly rather than symmetry.)



“New” Atiyah-Singer index

| - 7

det(D + M) _ detils(D+ M) _ 1., i"+m & | )
detD! M) ~ detils(D! M) sgri'vm ! sgr'y w

RNV Y

i#%&
2
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= exp #
Y

l . m :elgenvalues of'5(D £ M).

= SICs(D+ M) I(s(D! M)
1
2

—

reg  reg

107 (D + M))es ()= |
110 1<0

Good: chirality i1s not important.
Bad: not written by zero modes only.
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More physical set-up?
In physics,

1. Any boundary has “outside”:

manifold + boundary — domain-wall.

2. Boundary should not preserve helicity but keep angular-mom:
massless — massive (in bulk)

3. Boundary condition should not be put by hand
— put automatically chosen.
4. Edge-localized modes play the key role.



Domain-wall Dirac operator

_ [Jackiw-Rebbi 1976, Callan-Harvery 1985, Kaplan 1992 ...]
Let us consider

Dip + Me(xy), €(xs) = sgnay
on a closed manifold
with sign flipping mass,
without assuming any
ooundary condition

Here our "domain-wall
fermion” I1s In 4D continuum.
(we expect it dynamically given.). (not 5D lattice)



“neW” APS indeX [F-Onogi-Yamaguchi 201 7]

%"7(%(D+M))"“€g = AS index -
. -
21 (5(D + M#x) ™ Q)

1 'DSD
/ d4xewpatr[F“”Fm] e )
x4 >0

~ 3972 9

which can be shown by Fujikawa-method.
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Fujikawa method:

. 1 "s5(D + M #(X4))
é! (Hpow ) = 2TrJ' {"5(D + M #(X4))}?

|. choose regularizlation D M,
. . . —— 1T 5 — 2
Pauli-Villars: =5

2. choose complete set to evaluate trace
elgen set of (15(D™® + M " (X4))}2
3. perturbation

My > M



Complete set in the free case
Solutions to

(15(D™ + M"(xa))}?# = | $5+ M2l 2M | ,%x,) # = &#

are ! (x4)! €P* where

(ezwx4 o e—zw:m) ’

P e(Ta) = ((iw F M)e™!™l 4+ (iw + M)e‘i“"“') ,

s@fie(m): VMe Mlzal Edge mode appears !

Here, ) — \/pz + M2 — )2 and 74S0w,edge _ Spw,edge

+.,e/0 +.,e/0

3D direction = conventional plane waves.



“Automatic” boundary condition

We didn’t put any boundary condition by hand. But

— a - w.e e W
5. T Me(z4) O (4) =0, ¢i,(xa=0)=0.
R _

xr4=0

IS automatically satisfied due to the domain-wall.

This condition is LOCAL and PRESERVES angular-
momentum in X4 direction but DOES NOT keep chirality.



Bulk & edge contributions

By a simple perturbation, we obtain

1 1 1 .

T (H )bulk — = (n bulk) Sgn(H )u bulk _— d4xﬂxx )&I tr .F u! - i (X) + O(l/M )

2 o 2 bulkmodes o 642 4 #

1 edge — 1 edge T edge 1 3D
én(HDW) -5 E - 0" (x) 'sgn(Hpw ) 9™ () = —QU(ZD )|az4=0

edgemodes
1 — 1 4 uv - po
| éU(H py) = = d*x GMVIOJUCF FP7(x)+ O(1/M ).

N

1 1

'DSD
SH("s(D + M#(x4))) "™ = /  aeupotr[F*EP] D)

2

3272
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Just a coincidence?

N

o A W

1 T E
Ind(Daps) = 577(pr‘?;/)

on general even-dimensional manifolds 7

(I

APS

. massless Dirac (even in bulk)

non-local boundary cond.
(depending on gauge fields)

SO(3) rotational sym. on boundary is lost.
Nno edge mode appears.
manifold + boundary

or kA Wi~

Domain-wall fermion

massive Dirac in bulk
local boundary cond.

(massless mode at edge)

SO(3) rotational sym. on boundary is kept.
Edge mode describes eta-invariant.
closed manifold + domain-wall



Mathematician’'s response

In 2018, | gave a talk in a workshop . MoncoRAT
organized by Mikio Furuta (U. Tokyo).
He said “Mathematicians should give a general proof.”
Moreover, only 1 week later,

he proposed a sketch of proof for

1 re
5 (HDVgV) — Ind(DAps)

[F, Furuta, Matsuo, Onoqgi,
Yamaguchi, and Yamashita, arXiv:1910.01987]




Theorem

(F-Furuta-Matsuo-Onogi-Yamaguchi-Yamashita 201 9)

For any APS index of a massless Dirac operator on
a even-dim. curved manitold X+ with boundary,
there exists a massive (domain-wall) Dirac operator
on a closed manifold, sharing its half with X+, and
Its eta invariant Is equal to the original index.



Sketch of the proof

(F-Furuta-Matsuo-Onogi-Yamaguchi-Yamashita 201 9)

We Introduce an extra dimension and consider
a Dirac operator on the higher dim. manitold.

5D _ 0 05 + 75 (D*° + m(z4,x5))
—05 + v5(D* +m(z4,x5)) 0
V] for x> 0& X5> Q
m(x4,x5): 0 forx4 =0& X5 =0
I M> otherwise

With 2 different evaluations, we can show

1 \
Ind(D°P) = Ind(Daps) = 5(Hpw)
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Atiyah-Singer index on a lattice

Overlap fermion action s=  ax)Doax)

s invariant under euberger 1595
1" (11 aD

q! e v)q, @' e s

. [L her 1998]
but fermion measure transforms
as Dgg! exp[ad! Tr("s+ "5(1" aDqy))/ 2]Dqg

which reproduces U(1)A anomaly.
Mloreover, T (1 “2) s AS Index |

[Hasenfratz et al. 1998]




On the lattice, AS Iis O.K. but APS is not.

Atiyah-Singer index can be formulated
by overlap Dirac operator,

1 H
but APS was not known. Dov = (1 T \/]3/2 )

1. Lattice version of APS condition
impossible, as it does not have a form N + B

2. Any boundary condition breaks GW
relation [Luescher 2006 ].

Ctf. Kikukawa, “Suri-kagaku”™ 2020 Jan.



But the lattice AS Index theorem
“knew” the eta invariant!

1 aD,, 1 H
Ind(D,,) = §Try5 (1 5 > Doy = — (1 + s \/[3/2 )
v Hw = !s(Dw ! M)
1 H 1 M =1/a

— —Tr |
2" TRz = —51(s(Dw — M))!

Cft. Itoh-lwasaki-Yoshie 1982, Adams 2001
The lattice index theorem “knew”

I. Index can be given with massive Dirac.
2. chiral symmetry is not important.

Wilson Dirac operator is enough.



Unification of index theorems
INdex theorems with massless Dirac

AS
APS

continuum

lattice

ITy e~ D° /M

Trv°(1 — aDyy/ 2)

Tr75e_D2/M2W/ APS b.c.

not known.

iINndex theorems with massive Dirac

AS
APS

continuum

lattice

1

—5M(5(D = M))

' 21(s(Dw ! M)

—177(%(19 — Me(z)))

2

—177(75(DW — Me(x)))?

2

>

/

YES |




APS Index on a lattice

F, Kawal, Matsuki, Mori, Nakayama, Onogi, Yamaguchi, arXiv:1910.09675

On 4-dimensional Euclidean lattice with
periodic boundaries (14), we have shown

1 1 ' 1 . 1 .

2
327-‘- O<X 4<L 4

+0O(a)
l(Xq) =sgn(xas! a/2)sgn(T ! x4! al?2)

* Bulk part is similar to that of AS index [H.Suzuki 1998].

Note that LHS 1s always an integer.
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Summary

Massive (domain-wall) fermion is physicist-friendly:

APS index can be formulated (even on a lattice).
Moreover, it Is mathematically rich:

The eta inv. of massive Dirac unifies the index theorems.

continuum lattice
AS —%77(%(17—]\4)) | él(HS(DW! M))
1
APS —577(%(1? — Me(x)))—%n(%(l?w — Me(z)))




Backup slides



Spectral flow gives a bigger unification.

F, Furuta, Matsuki, Matsuo, Onogi, Yamaguchi and Yamashita arXiv:i2012.03543.

1 1
——n(H;) - 277(H1) = Spectral flow of H;, t € |0,1

2
continuum lattice

AS St(ys(D — M)) St(vs(Dw — M))

APS St(vs(D —eM)) Sf(vs(Dw — eM))

D—M) DW—M>

mOd'tWO AS Sf,( —(D — M)t SF( —(Dw — M)T

mod-two APS Sf’( —(D — eM)! D_GM)

Dw —eM
Sf,(—(DI/V'—?I]V-’)Jr v )

Sf’ = mod-two spectral flow : counting zero-crossing pairs from PV op.


https://inspirehep.net/literature/1835279

Theorem 1:

APS index = index with infinite cylinder

In original APS paper, they showed

@)

Index w/ APS b.c. = Index with infinite
cylinder attached to the original boundary
(w.r.t. square Integrable modes).

* On cylinder, gauge fields are constant in the extra-direction.



Theorem 2:
Localization (& product formula)

By giving position-dependent "mass”, we can
localize the zero modes to "massless” lower-
dimensional surface and the index Is given by

the product:

face

Ind(vs(D* 4 05 +iysM(s))) =
Ind(D?%) x Ind(ys0s + M(s))



Theorem 3:
In odd-dim, APS index = boundary eta-invariant

exists only in even-dim.

]nd(DgngS_dzm) __ [U(Dboundaryl) o 77(l)boumdauryQ)}

1
2



5-dimensional Dirac operator

we consider

D°P — 0 Os5 + ’Y5(D4D + m(xy4, 5))
—05 + v5(D* +m(z4,x5)) 0
where M  forxs;> 0&Xx5> 0
m(x4,x5): O for Xg=0& X5 =0
: | '
and A,u IS I ' M> otherwise

Independent of xx.

* Application Is straighttorward to
any 2n+1 dimensions.



On X4D x R,

S — Ig5

we compute
Ind(D"®)

INn two different

™4 ways:
1. localization

2. eta-Inv. at

| Ly — +1.



Localization

Theorem 2 tells us

Ind (DSD)‘I\/I,M 5 " Ind (DﬁP Osurface ) | !ndD E,Prmal$
and on the massless surface =t

theorem 1 Indicates
Ind(D%2

) = Ind(DA;§>O)

m—=0surface



Boundary eta

Invariants
Theorem 1 tells us

[s:%

and from theorem 3, we obtain

|
Ind(DAPSbCats +1)_ 1- I(D 1) I(D '1)

Ind(DSD) — Ind(D?A;DPS b.C.ats:—-1>

1 1

~ 5 [77(%(1741) + Me(zy)) — 77(75(D4D — MZ)] — 577pvreg'(75(D4D + Me(xy))

therefore,
1

Ind(D*7) = Ind(Daps) = 577(HDW> Q.E.D.



Revisiting lattice index
theorems with mathematicians

Yamashita, “A lattice version of the Atiyah-
Singer index theorem,” arXiv:2007.06239

F, Furuta, Matsuo, Onogi, Yamaguchi, Yamashita,
"On analytic indices In lattice gauge theory and
their continuum limits,”

IN preparation.



Different explanation why APS
appears [Witten Yonekura 2019]

They rotate the x4 to the "time” direction
and Introduced the APS boundary condition
as Intermediate “states”. The unphysical

property of APS Is canceled between the
bra/ket states.

( In our work, we try to remove It.)



Eta invariant = Chern Simons term +
integer (non-local effect)

1(iD3P) CS
2

+ Integer

1 | 21 )
CS = / d°x tr.. €L po (A”@'OA" | ZA”A'OA") ,
4’7'(' 1% 3 _

= surface term.

1

'DBD
J = / dize,, o tr[Fv poo] 10D )
x4 >0

2
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