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ML and Physics
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ML and Physics

IAIFI iaifi.org/

www.physicsmeetsml.org/

HEP Theory papers with ML
arxiv papers per year with cat: (hep-lat | hep-th | hep-ph) & (cs.LG | stat.ML)

NeurIPS Workshop  https://ml4physicalsciences.github.io/2020/

Long history of ML and anomaly 
detection in particle accelerators
e.g.: TMVA - Toolkit for Multivariate Data Analysis, arXiv:0703039



ML and Lattices (non-exhaustive)

Analysis, order 
parameters, insights

Tanaka and Tomiya, Journal of the 
Physical Society of Japan, 86 
(2017)

Wetzel and Scherzer, Phys. Rev. B 
96 (2017)

Li et al., 1703.02369 (2017)

Shanahan et al., 1801.05784 (2018)

S. Bluecher et al., Phys. Rev. D 101 
(2020)

Boyda et al., 2009.10971 (2020)

Chernodub et al., 2006.09113 
(2020)

Bachtis et al., 2004.14341 (2020)

Sign-problem 
avoidance via contour 
deformation of path 
integrals

Mori et al., 1705.05605 (2017)

Alexandru et al., 1709.01971 (2017)

Alexandru et al., Phys Rev. Lett. 121 
(2020)

Detmold et al. 2003.05914 (2020)

Alexandru et al., 2007.05436 
(2020)

Detmold, Kanwar et al., 2101.12668 
(2021)

Lawrence et al., 2101.05755 (2021)

Efficient 
computations of 
correlation functions 
/ observables

Yoon, Bhattacharya, Gupta, Phys. 
Rev. D 100, 014504 (2019)

Zhang et al., 1909.10990 (2019)

Karpie et al., 1901.05408 (2019)

Matsumoto et al., 1909.06238  
(2019)

Zhang et al, Phys. Rev. D 101, 
034516 (2020)

Nicoli et al., 2007.07115 (2020)

Field configuration 
generation

Tanaka and Tomiya, 1712.03893 
(2017)

Zhou et al., Phys. Rev. D 100 (2019)

Li et al., PRX 10 (2020)

Pawlowski and Urban, 1811.03533 
(2020)

Nagai, Tanaka, Tomiya 2010.11900 
(2020)

Luo, Clarkes, Stokes, 2012.05232 
(2020)

Favoni et al., 2012.12901 (2020)

Medvidovic et al., 
2012.01442(2020)

Luo et al., 2101.07243 (2021)

Del Debbio et al., 2105.12481 (2021)

Thanks to Phiala Shanahan and Gurtej Kanwar for providing the above references.



ML and Physics at Lattice 21 - Part I

Akio Tomiya (Tue 13:00): Smearing is a neural network

Neill Warrington (Tue 13:15): Contour Deformations for Lattice Field Theory

Gurtej Kanwar (Tue 13:30): Observifolds: Taming the observable signal-to-noise problem via path integral contour 
deformations

Shuzhe Shi (Tue 13:45): From lattice QCD to heavy-flavor in-medium potential via deep learning

Sunkyu Lee (Tue 22:45): Deep learning study on the Dirac eigenvalue spectrum of staggered quarks

Yukari Yamauchi (Wed 21:00): Normalizing flows for the real-time sign problem

Chen ShiYang (Wed 22:00): Machine learning Hadron Spectral Functions in Lattice QCD

Fu-Jiun Jiang (Wed 22:15): A universal neural network for learning phases and criticalities



ML and Physics at Lattice 21 - Part II

Dimitrios Bachtis (Thur 05:00): Machine learning with quantum field theories

David Muller (Thur 05:15): Lattice Gauge Symmetry in Neural Networks

Matteo Favoni (Thur 05:30): Generalization capabilities of neural networks in lattice applications

Gert Aarts (Thur 05:45): Interpreting machine learning functions as physical observables

Kim Nicoli (Thur 06:00): Machine Learning for Thermodynamic Observables

Marina Marinkovic (Thur 06:15): Machine learning phase transitions in a scalable manner

Michael Albergo (Thur 13:30): Flow-based sampling for fermionic field theories

Xiao-Yong Jin (Thur 13:45): Neural Network Field Transformation and Its Application in HMC

Denis Boyda (Thur 14:00): Sampling lattice gauge theory in four dimensions with normalizing flows

Sam Foreman (Thur 14:45): LeapFrogLayers: A Trainable Framework for Effective Topological Sampling

Boram Yoon (Thur 22:15): Prediction and compression of lattice QCD data using machine learning algorithms on 
quantum annealer



ML and Physics

Quantum-mechanical exploration of the phase diagram 
of water
Reinhardt, A., Cheng, B. Quantum-mechanical exploration of the phase diagram of water. Nat 
Commun 12, 588 (2021). https://doi.org/10.1038/s41467-020-20821-w

Abstract: The set of known stable phases of water may not be complete, and some of the 
phase boundaries between them are fuzzy. Starting from liquid water and a comprehensive set 
of 50 ice structures, we compute the phase diagram at three hybrid density-functional-theory 
levels of approximation, accounting for thermal and nuclear fluctuations as well as proton 
disorder. Such calculations are only made tractable because we combine machine-learning 
methods and advanced free-energy techniques. The computed phase diagram is in 
qualitative agreement with experiment, particularly at pressures ≲ 8000 bar, and the 
discrepancy in chemical potential is comparable with the subtle uncertainties introduced by 
proton disorder and the spread between the three hybrid functionals. None of the hypothetical 
ice phases considered is thermodynamically stable in our calculations, suggesting the 
completeness of the experimental water phase diagram in the region considered. Our work 
demonstrates the feasibility of predicting the phase diagram of a polymorphic system from 
first principles and provides a thermodynamic way of testing the limits of quantum-mechanical 
calculations.

https://doi.org/10.1038/s41467-020-20821-w


ML and Physics

Learning 
Mesh-Based 
Simulation
with Graph 
Networks
Tobias Pfaff∗, Meire 
Fortunato∗, Alvaro 
Sanchez-Gonzalez∗, Peter W. 
Battaglia

Joshua Batson, C. Grace Haaf, Yonatan Kahn, 
Daniel A. Roberts, arXiv:2102.08380



Some DL successes
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Characteristics of DL successes

● Plenty of data

● Well defined objective

● Huge compute power

● End-to-end optimization

● Inductive bias (i.e. 
assumptions built into the 
model)
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Mainstream DL tools

● Data type: 2D images, 3D videos, text, sound
● Symmetries: translations, permutations, SE(3)

Cifar100



Characteristics of DL successes

● Plenty of data

● Well defined objective

● Huge compute power

● End-to-end optimization

● Inductive bias (i.e. 
assumptions built into the 
model)

DeepMind, CASP14 presentation
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Case study (a.k.a. 
stuff I've worked 
on)



Paper trail

● Machine learning action parameters in lattice quantum chromodynamics, arXiv:1801.05784, Phiala E. Shanahan, Amalie 
Trewartha, William Detmold

● Flow-based generative models for Markov chain Monte Carlo in lattice field theory, arXiv:1904.12072, M. S. Albergo, 
G. Kanwar, P. E. Shanahan

● Equivariant flow-based sampling for lattice gauge theory, arXiv:2003.06413, Gurtej Kanwar, Michael S. Albergo, Denis Boyda, 
Kyle Cranmer, Daniel C. Hackett, Sébastien Racanière, Danilo Jimenez Rezende, Phiala E. Shanahan

● Sampling using SU(N) gauge equivariant flows, arXiv:2008.05456, Denis Boyda, Gurtej Kanwar, Sébastien Racanière, Danilo 
Jimenez Rezende, Michael S. Albergo, Kyle Cranmer, Daniel C. Hackett, Phiala E. Shanahan

● Introduction to Normalizing Flows for Lattice Field Theory, arXiv:2101.08176, Michael S. Albergo, Denis Boyda, Daniel C. 
Hackett, Gurtej Kanwar, Kyle Cranmer, Sébastien Racanière, Danilo Jimenez Rezende, Phiala E. Shanahan

● Flow-based sampling for fermionic lattice field theories, arXiv:2106.05934, Michael S. Albergo, Gurtej Kanwar, Sébastien 
Racanière, Danilo J. Rezende, Julian M. Urban, Denis Boyda, Kyle Cranmer, Daniel C. Hackett, Phiala E. Shanahan

● Flow-based sampling for multimodal distributions in lattice field theory, arXiv:2107.00734, Daniel C. Hackett, 
Chung-Chun Hsieh, Michael S. Albergo, Denis Boyda, Jiunn-Wei Chen, Kai-Feng Chen, Kyle Cranmer, Gurtej Kanwar, Phiala E. Shanahan
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Crash course on (normalizing) flows

The problem1:

Learn a target distribution from a simple base distribution and a learnt 
transformation.

● Manifold M with a simple distribution 𝜋
● Target density p on M (for ex: p = e-S)
● Smooth family of invertible maps f𝛉: M → M
● Define q𝛉 density of random variable x = f𝛉(z), z~𝜋

q𝛉(x) = 𝜋(z)|det ∂f𝛉/∂z|-1

● Learn q𝛉 = argmin𝛉 KL(q𝛉||p) = argmin𝛉 Ex~q𝛉 log q𝛉(x) / log p(x)

1 Think "learnt trivialising map". For trivialising maps, see for example "Trivializing maps, the Wilson flow and the HMC algorithm", 
Martin Lüscher, arxiv:0907.5491

𝜋 q𝛉

f𝛉



Flows and symmetry invariance

Assume a group G acts on M

g in G, x in M → g・x

Assume the base density is invariant with respect to G.

Assume f𝛉 is equivariant: f𝛉(g・z) = g・f𝛉(z)

Then q𝛉 is invariant with respect to G

q𝛉(g・x) = q𝛉(x)



Flows for lattices

Generate configurations for Lattice QFT

Provide density of sampled configurations

Provably-exact algorithms



Equivariant flow-based sampling for lattice 
gauge theory

● (1+1)d pure-gauge U(1)
● Gauge-equivariant flows

○ Build flow on untraced plaquettes
○ Gauge equivariance ← Conjugation equivariance

See also Sampling lattice gauge 
theory in four dimensions with 
normalizing flows, Denis Boyda 
29 July, 14.00



Sampling using SU(N) gauge equivariant flows

● (1+1)d pure-gauge SU(3) 
● Conjugation equivariant flows on SU(N)

○ Build flow by transforming eigenvalues



Flow-based sampling for fermionic lattice field 
theories

● (1+1)d Yukawa
● Flows that respect symmetries of pseudo-fermions: periodic & anti-periodic boundary conditions



Challenges

● (3+1)d
● SU(3) with fermions
● Scalability

○ Training with large lattices
○ What models: masked flows, linear flows, convex potential flows…



Related work

Short autocorrelation times are essential for a 
reliable error assessment in Monte Carlo 
simulations of lattice systems. In many interesting 
scenarios, the decay of autocorrelations in the 
Markov chain is prohibitively slow. Generative 
samplers can provide statistically independent 
field configurations, thereby potentially 
ameliorating these issues. In this work, the 
applicability of neural samplers to this problem is 
investigated. Specifically, we work with a 
generative adversarial network (GAN).

We generalize the Hamiltonian Monte Carlo 
algorithm with a stack of neural network layers, and 
evaluate its ability to sample from different 
topologies in a two dimensional lattice gauge 
theory. We demonstrate that our model is able to 
successfully mix between modes of different 
topologies, significantly reducing the 
computational cost required to generate 
independent gauge field configurations. Our 
implementation is available at 
https://github.com/saforem2/l2hmc-qcd.

General-purpose MCMC sampling algorithms 
suffer from a dramatic reduction in efficiency as 
the system being studied is driven towards a 
critical point. Recently, a series of seminal studies 
suggested that normalizing flows -- a class of 
deep generative models -- can form the basis of a 
sampling strategy that does not suffer from this 
'critical slowing down'. [...] We pick up this thread, 
with the aim of quantifying how well we can expect 
this approach to scale as we increase the number 
of degrees of freedom in the system. 

Reducing Autocorrelation 
Times in Lattice Simulations
with Generative Adversarial 
Networks
Jan M. Pawlowski and Julian M. Urban
arXiv:1811.03533

Deep Learning Hamiltonian 
Monte Carlo

Sam Foreman, Xiao-Yong Jin & James C. Osborn
arXiv:2105.03418

Efficient Modelling of 
Trivializing Maps for Lattice ϕ4 
Theory Using Normalizing 
Flows: A First Look at 
Scalability

Luigi Del Debbio, Joe Marsh Rossney, Michael Wilson
arXiv:2105.12481



Conclusion



Conclusion

● ML + Physics: Fast growing field
● Lots of powerful tools in DL
● Need to be adapted to problem: not black-box
● Symmetries are our friends
● Fruitful cross-disciplines interactions


