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ML and Physics

Long history of ML and anomaly
detection in particle accelerators

e.g.: TMVA - Toolkit for Multivariate Data Analysis, arXiv:0703039
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ML and Lattices (non-exhaustive)

Efficient
computations of
correlation functions
| observables

Yoon, Bhattacharya, Gupta, Phys.
Rev. D 100, 014504 (2019)

Zhang et al, 1909.10990 (2019)
Karpie et al, 190105408 (2019)

Matsumoto et al.,, 1909.06238
(2019)

Zhang et al, Phys. Rev. D 101,
034516 (2020)

Nicoli et al, 2007.07115 (2020)

Sign-problem
avoidance via contour
deformation of path
integrals

Mori et al., 1705.05605 (2017)
Alexandru et al,, 1709.01971 (2017)

Alexandru et al,, Phys Rev. Lett. 121
(2020)

Detmold et al. 2003.05914 (2020)

Alexandru et al,, 2007.05436
(2020)

Detmold, Kanwar et al., 210112668
(2021)

Lawrence et al., 210105755 (2021)

Thanks to Phiala Shanahan and Gurtej Kanwar for providing the above references.

Analysis, order
parameters, insights

Tanaka and Tomiya, Journal of the
Physical Society of Japan, 86
(2017)

Wetzel and Scherzer, Phys. Rev. B
96 (2017)

Li et al, 1703.02369 (2017)
Shanahan et al, 1801.05784 (2018)

S. Bluecher et al, Phys. Rev. D 101
(2020)

Boyda et al, 2009.10971 (2020)

Chernodub et al,, 2006.09113
(2020)

Bachtis et al,, 2004.14341(2020)

Field configuration
generation

Tanaka and Tomiya, 171203893
(2017)

Zhou et al., Phys. Rev. D 100 (2019)
Li et al, PRX 10 (2020)

Pawlowski and Urban, 1811.03533
(2020)

Nagai, Tanaka, Tomiya 2010.11900
(2020)

Luo, Clarkes, Stokes, 2012.05232
(2020)

Favoni et al., 201212901 (2020)

Medvidovic et al,,
2012.01442(2020)

Luo et al, 210107243 (2021)

Del Debbio et al.,, 2105.12481 (2021)
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ML and Physics at Lattice 21 - Part I

Akio Tomiya (Tue 13:00): Smearing is a neural network
Neill Warrington (Tue 13:15): Contour Deformations for Lattice Field Theory

Gurtej Kanwar (Tue 13:30): Observifolds: Taming the observable signal-to-noise problem via path integral contour
deformations

Shuzhe Shi (Tue 13:45): From lattice QCD to heavy-flavor in-medium potential via deep learning
Sunkyu Lee (Tue 22:45): Deep learning study on the Dirac eigenvalue spectrum of staggered quarks
Yukari Yamauchi (Wed 21:00): Normalizing flows for the real-time sign problem

Chen ShiYang (Wed 22:00): Machine learning Hadron Spectral Functions in Lattice QCD

Fu-Jiun Jiang (Wed 22:15): A universal neural network for learning phases and criticalities
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ML and Physics at Lattice 21 - Part II

Dimitrios Bachtis (Thur 05:00): Machine learning with quantum field theories

David Muller (Thur 05:15): Lattice Gauge Symmetry in Neural Networks

Matteo Favoni (Thur 05:30): Generalization capabilities of neural networks in lattice applications
Gert Aarts (Thur 05:45): Interpreting machine learning functions as physical observables

Kim Nicoli (Thur 06:00): Machine Learning for Thermodynamic Observables

Marina Marinkovic (Thur 06:15): Machine learning phase transitions in a scalable manner

Michael Albergo (Thur 13:30): Flow-based sampling for fermionic field theories

Xiao-Yong Jin (Thur 13:45): Neural Network Field Transformation and Its Application in HMC

Denis Boyda (Thur 14:00): Sampling lattice gauge theory in four dimensions with normalizing flows
Sam Foreman (Thur 14:45): LeapFroglLayers: A Trainable Framework for Effective Topological Sampling

Boram Yoon (Thur 22:15): Prediction and compression of lattice QCD data using machine learning algorithms on
quantum annealer
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ML and Physics

Designing self-assembling kinetics with differentiable

statistical physics models

Carl P. Goodrich®'2(3, Ella M. King“'(», Samuel S. Schoenholz®(, Ekin D. Cubuk?, and Michael P. Brenner*<¢

*School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; ®Institute of Science and Technology Austria, A-3400
Klosterneuburg, Austria; Physics Department, Harvard University, Cambridge, MA 02138; and “Brain Team, Google Research, Mountain View, CA 94043

Edited by Steve Granick, Institute for Basic Science, Ulju-gun, Ulsan, South Korea, and approved January 25, 2021 (received for review November 20, 2020)

The inverse problem of designing (omponent mteramons to tar-
get structure is
in biotechnology, materials science, and statlstl(al physics. Equally
important is the inverse problem of designing emergent kinet-
ics, but this has re(elved (onslderalﬂy less attention. Using recent
in we show how kinetic path-
ways can be precisely designed by directly differentiating through
statistical physics models, namely free energy calculations and
molecular dynamics slmulauons We consider two systems that
are crucial to our of structural self- bulk
i and small In each case, we are able
to assemble precise dynamical features. Using gradient informa-
tion, we manipulate interactions among constituent particles to
tune the rate at which these systems yield specific structures of

for solving nonlinear partial differential equations (19), the dis-
covery of molecules for drug development (20), and greatly
improved predictions of protein structure (21).

Here, we begin to explore a class of complex inverse design
problems that traditionally has been hard to access. Using AD to
train well-established s tical physics-based models, we design
materials for dynamic, rather than structural, features. We also
use AD to gain theoretical insights into this design space, allow-
ing us to predict the extent of designability of different proper-
ties. AD is an essential component of this approach (22) because
we rely on gradients to connect physical parameters to com-
plex emergent behavior. While there are other approaches for
obtaining gra { ite difference approxima-
tions), AD calcula nd more importantly, can

interest. we use this to learn ivial fea-

tures about the high-dimensional design space, allowing us to

accurately predl(t when multiple kinetic features can be simul-
and i These results provide

a concrete and for studying

tural self-assembly, including kinetic properties as well as other

complex emergent properties, in a vast array of systems.

ameters. Furthermore,

the theoretical insights we develop r¢
of the Hessian matrix of second derivatives, for which finite
difference approaches are insufficient.

We start in Tuning Assembly Rates of Honeycomb Crystals by
considering the bulk crystallization of identical part i
holh hom.vmmh and m(mg,ular lattices. By dx(k nti;

Quantum-mechanical exploration of the phase diagram
of water

Reinhardt, A, Cheng, B. Quantum-mechanical exploration of the phase diagram of water. Nat
Commun 12, 588 (2021). https://doi.org/101038/s41467-020-20821-w

Abstract: The set of known stable phases of water may not be complete, and some of the
phase boundaries between them are fuzzy. Starting from liquid water and a comprehensive set
of 50 ice structures, we compute the phase diagram at three hybrid density-functional-theory
levels of approximation, accounting for thermal and nuclear fluctuations as well as proton
disorder. Such calculations are only made tractable because we combine machine-learning
methods and advanced free-energy techniques. The computed phase diagram is in
qualitative agreement with experiment, particularly at pressures < 8000 bar, and the
discrepancy in chemical potential is comparable with the subtle uncertainties introduced by
proton disorder and the spread between the three hybrid functionals. None of the hypothetical
ice phases considered is thermodynamically stable in our calculations, suggesting the
completeness of the experimental water phase diagram in the region considered. Our work
demonstrates the feasibility of predicting the phase diagram of a polymorphic system from
first principles and provides a thermodynamic way of testing the limits of quantum-mechanical

calculations.
¢ MLP + DFT + NQEs
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ML and Physics

Topological Obstructions to Autoencoding

Joshua Batson, C. Grace Haaf, Yonatan Kahn,
Daniel A. Roberts, arXiv:2102.08380

ABSTRACT: Autoencoders have been proposed as a powerful tool for model-independent
anomaly detection in high-energy physics. The operating principle is that events which do
not belong to the space of training data will be reconstructed poorly, thus flagging them as
anomalies. We point out that in a variety of examples of interest, the connection between
large reconstruction error and anomalies

is not so clear. In particular, for data sets with
nontrivial topology, there will always be points that erroneously seem anomalous due to
global issues. Conversely, neural networks typically have an inductive bias or prior to locally
interpolate such that undersampled or r:

re events may be reconstructed with small error,
despite actually being the desired anomalies. Taken together, these facts are in tension with
the simple picture of the autoencoder as an anomaly detector. Using a series of illustrative
low-dimensional examples, we show explicitly how the intrinsic and extrinsic topology of the
dataset affects the behavior of an autoencoder and how this topology is manifested in the

latent space representation during training. We ground this analysis in the discussion of

a mock “bump hunt” in which the autoencoder fails to identify an anomalous “signal” for

reasons tied to the intrinsic topology of n-particle phase space.

E(n) Equivariant Normalizing Flows

Victor Garcia Satorras'*, Emiel Hoogeboom'*, Fabian B. Fuchs?,
Ingmar Posner’, Max Welling'

Abstract

This paper introduces a generative model equivariant to Euclidean symmetries:
E(n) Equivariant Normalizing Flows (E-NFs). To construct E-NFs, we take the
discriminative E(n) graph neural networks and integrate them as a differential
equation to obtain an invertible equivariant function: a continuous-time normalizing
flow. We demonstrate that E-NFs considerably outperform baselines and existing
methods from the literature on particle systems such as DW4 and LJ13, and on
molecules from QM9 in terms of log-likelihood. To the best of our knowledge, this
is the first flow that jointly generates molecule features and positions in 3D.
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DeepMind

Some DL successes
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Characteristics of DL successes

° Plenty of data

° Well defined objective

° Huge compute power

° End-to-end optimization

° Inductive bias (i.e.
assumptions built into the
model)
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Characteristics of DL successes

° Plenty of data

° Well defined objective

° Huge compute power

° End-to-end optimization

° Inductive bias (i.e.
assumptions built into the
model)

Putting our protein knowledge into the model

—  Physical insights are built into the network structure, not just a process around it
=  End-to-end system directly producing a structure instead of inter-residue distances

=> Inductive biases reflect our knowledge of protein physics and geometry
o  The positions of residues in the sequence are de-emphasized
o Instead residues that are close in the folded protein need to communicate
o  The network iteratively learns a graph of which residues are close, while reasoning
over this implicit graph as it is being built

residues
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Mainstream DL tools

e Data type: 2D images, 3D videos, text, sound
e Symmetries: translations, permutations, SE(3)
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Characteristics of DL successes

° Plenty of data

° Well defined objective

° Huge compute power

° End-to-end optimization

° Inductive bias (i.e.
assumptions built into the
model)
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—  Physical insights are built into the network structure, not just a process around it
=  End-to-end system directly producing a structure instead of inter-residue distances

=> Inductive biases reflect our knowledge of protein physics and geometry
o  The positions of residues in the sequence are de-emphasized
o Instead residues that are close in the folded protein need to communicate
o  The network iteratively learns a graph of which residues are close, while reasoning
over this implicit graph as it is being built
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Paper trail

e Machine learning action parameters in lattice quantum chromodynamics, arxiv:1801.05784, Phiala E. Shanahan, Amalie
Trewartha, William Detmold

e Flow-based generative models for Markov chain Monte Carlo in lattice field theory, arxiv:1904.12072, M. S. Albergo,
G. Kanwar, P. E. Shanahan

) Equivariant flow-based sampling for lattice gauge theory, arXiv:2003.06413, Gurtej Kanwar, Michael S. Albergo, Denis Boyda,
Kyle Cranmer, Daniel C. Hackett, Sébastien Racaniere, Danilo Jimenez Rezende, Phiala E. Shanahan

® Sampling using SU(N) gauge equivariant flows, arxiv:2008.05456, Denis Boyda, Gurtej Kanwar, Sébastien Racanigre, Danilo
Jimenez Rezende, Michael S. Albergo, Kyle Cranmer, Daniel C. Hackett, Phiala E. Shanahan

e Introduction to Normalizing Flows for Lattice Field Theory, arXiv:2101.08176, Michael S. Albergo, Denis Boyda, Daniel C.
Hackett, Gurtej Kanwar, Kyle Cranmer, Sébastien Racaniére, Danilo Jimenez Rezende, Phiala E. Shanahan

e Flow-based sampling for fermionic lattice field theories, arXiv:2106.05934, Michael S. Albergo, Gurtej Kanwar, Sébastien
Racaniére, Danilo J. Rezende, Julian M. Urban, Denis Boyda, Kyle Cranmer, Daniel C. Hackett, Phiala E. Shanahan

e Flow-based sampling for multimodal distributions in lattice field theory, arXiv:2107.00734, Daniel C. Hackett,
Chung-Chun Hsieh, Michael S. Albergo, Denis Boyda, Jiunn-Wei Chen, Kai-Feng Chen, Kyle Cranmer, Gurtej Kanwar, Phiala E. Shanahan ‘G



Paper trail

) Equivariant flow-based sampling for lattice gauge theory, arXiv:2003.06413, Gurtej Kanwar, Michael S. Albergo, Denis Boyda,
Kyle Cranmer, Daniel C. Hackett, Sébastien Racaniere, Danilo Jimenez Rezende, Phiala E. Shanahan

® Sampling using SU(N) gauge equivariant flows, arxiv:2008.05456, Denis Boyda, Gurtej Kanwar, Sébastien Racanigre, Danilo
Jimenez Rezende, Michael S. Albergo, Kyle Cranmer, Daniel C. Hackett, Phiala E. Shanahan

e Flow-based sampling for fermionic lattice field theories, arXiv:2106.05934, Michael S. Albergo, Gurtej Kanwar, Sébastien
Racaniére, Danilo J. Rezende, Julian M. Urban, Denis Boyda, Kyle Cranmer, Daniel C. Hackett, Phiala E. Shanahan
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Crash course on (normalizing) flows

The problem?:

Learn a target distribution from a simple base distribution and a learnt
transformation.

f
e Manifold M with a simple distribution /
e Target density p on M (forex: p = ™)
e Smooth family of invertible maps f,: M — M
e Define g, density of random variable x = f (z), z~7 ”/\ - Ne
q,(x) = 7(z)lIdet Of [0z

e Learn g, = argmin, KL(q,llp) = argmin, E,q0 108 q,(x) / log p(x)

O

'Think "learnt trivialising map". For trivialising maps, see for example "Trivializing maps, the Wilson flow and the HMC algorithm",
Martin Luscher, arxiv:0907.5491



Flows and symmetry invariance

Assume a group G acts on M

ginG, xinM — g-x

Assume the base density is invariant with respect to G.

Assume f, is equivariant: f (g-z) = g-f,(2)
Then g, is invariant with respect to G

q,(g°x) = g,(x)




Flows for lattices

Generate configurations for Lattice QFT
Provide density of sampled configurations

Provably-exact algorithms

O



Equivariant flow-based sampling for lattice
gauge theory

e (1+1)d pure-gauge U(1)
e  Gauge-equivariant flows
o  Build flow on untraced plaquettes
o  Gauge equivariance < Conjugation equivariance

P, (z) = h(P,,(z)|I(z))
| 1 1 A . 1
| | | | |
| | | | * |
S A L ] [ T Lo
T: i 1 s
| I : : :
P, (2)=P. (2, | P (s P (z)| Ii(x | Io(zx . i
oo wa' iy i la 1(2) 11 2() ,i» See also Sampling lattice gauge
| | Passive update|| i frozen |} frozen || theory in four dimensions with
| i o i i i normalizing flows, Denis Boyda
- B St A w == RERaa [ 29 July, 14.00
- l 1 [ 1
2 I | | I

P, (£)=P,, (‘.i‘)U,L(;Ir)U;,"'(.’1:) U (z)=P,. (#) P}, (2)U(z) n



Sampling using SU(N) gauge equivariant flows

(1+1)d pure-gauge SU(3)
Conjugation equivariant flows on SU(N)
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Flow-based sampling for fermionic lattice field
theories

(1+1)d Yukawa
Flows that respect symmetries of pseudo-fermions: periodic & anti-periodic boundary conditions

® ..
@ . o accept /reject
&7/ { accept/reject A= 09)
Au(¢— ¢)
(@} a(4le)
é
(a) ¢-Marginal (Section IITA) p(gl9) i
(b) Gibbs (Section II1B)
D
= i accept/reject P N

&y H {" accept/reject

A9 = .7)
¢

(d) Joint (Section IITD)

(c) Autoregressive (Section III1C)

FIG. 1. Diagrams illustrating the four types of sampling schemes described in Section III. Blue circles/ellipses depict the
current state of the Markov chain. Yellow boxes depict exactly sampleable densities either produced from generative models or
by Equation (16). Green boxes correspond to Metropolis accept/reject steps using the acceptance probabilities defined in the
text. Dotted lines indicate the Markov chain, whereas solid lines correspond to the internal operations of each Markov chain
step.
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o (3+1)d
e  SU(3) with fermions
e Scalability
o  Training with large lattices
o  What models: masked flows, linear flows, convex potential flows...

o



Related work

Reducing Autocorrelation
Times in Lattice Simulations
with Generative Adversarial
Networks

Jan M. Pawlowski and Julian M. Urban
arXiv:1811.03533

Short autocorrelation times are essential for a
reliable error assessment in Monte Carlo
simulations of lattice systems. In many interesting
scenarios, the decay of autocorrelations in the
Markov chain is prohibitively slow. Generative
samplers can provide statistically independent
field configurations, thereby potentially
ameliorating these issues. In this work, the
applicability of neural samplers to this problem is
investigated. Specifically, we work with a
generative adversarial network (GAN).

Deep Learning Hamiltonian
Monte Carlo

Sam Foreman, Xiao-Yong Jin & James C. Osborn
arXiv:2105.03418

We generalize the Hamiltonian Monte Carlo
algorithm with a stack of neural network layers, and
evaluate its ability to sample from different
topologies in a two dimensional lattice gauge
theory. We demonstrate that our model is able to
successfully mix between modes of different
topologies, significantly reducing the
computational cost required to generate
independent gauge field configurations. Our
implementation is available at
https://github.com/saforem2/12hmc-qgcd.

Efficient Modelling of
Trivializing Maps for Lattice ¢*
Theory Using Normalizing
Flows: A First Look at
Scalability

Luigi Del Debbio, Joe Marsh Rossney, Michael Wilson
arXiv:2105.12481

General-purpose MCMC sampling algorithms
suffer from a dramatic reduction in efficiency as
the system being studied is driven towards a
critical point. Recently, a series of seminal studies
suggested that normalizing flows -- a class of
deep generative models -- can form the basis of a
sampling strategy that does not suffer from this
‘critical slowing down'. [...] We pick up this thread,
with the aim of quantifying how well we can expect
this approach to scale as we increase the number
of degrees of freedom in the system.

O
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Conclusion

ML + Physics: Fast growing field

Lots of powerful tools in DL

Need to be adapted to problem: not black-box
Symmetries are our friends

Fruitful cross-disciplines interactions

O



