Muon g-2: BMW calculation of the hadronic vacuum polarization contribution

Challenges

Window

Conclusions

Framework

Bálint C. Tóth

Budapest-Marseille-Wuppertal-collaboration

Nature 593 (2021) 7857, 51-55 [arxiv:2002.12347]

Sz. Borsanyi, Z. Fodor, J. N. Guenther, C. Hoelbling, S. D. Katz,
L. Lellouch, T. Lippert, K. Miura, L. Parato, K. K. Szabo,
F. Stokes, B. C. Toth, Cs. Torok, L. Varnhorst

Related parallel talks: [F. Stokes, Mon 1:00pm EDT] [K. Szabo, Mon 1:15pm EDT] [L. Varnhorst, Mon 2:00pm EDT] [L. Parato, Tue 6:15am EDT]

Introduction

Introduction	Framework	Challenges	Window	Conclusions
●oo	00	000000	00	00
Overview				

- 2.1 σ higher than R-ratio value [WP'20]
- Consistent with experiment within 1.5σ

Introduction	Framework	Challenges	Window	Conclusions
000				

Comparison with other determinations of HVP

- $a_{\mu}^{\text{LO-HVP}} = 707.5(2.3)(5.0)[5.5]$ with 0.8% accuracy
- Compatible with other lattice calculations
- First lattice calculation with errors comparable to R-ratio results

Introduction	Framework	Challenges	Window	Conclusions
○○●	00	000000	00	
Key improv	ements			

- Error reduction is essential to confirm or refute the existence of new physics
- Incorporated many improvements and recent developments in lattice techniques
- Reduced uncertainty by factor 3.4 compared to [BMWc '17]

•
$$a_{\mu}^{\text{LO-HVP}} = \alpha^2 \int_0^\infty dt K(t) C(t)$$

$$C(t) = \frac{1}{3}\sum_{i=1}^{3} \langle J_i(t)J_i(0) \rangle$$

• K(t) describes the leptonic part of diagram

$$K(t) = \int_0^{Q_{\text{max}}^2} \frac{dQ^2}{m_{\mu}^2} \omega \left(\frac{Q^2}{m_{\mu}^2}\right) \left[t^2 - \frac{4}{Q^2}\sin^2\left(\frac{Qt}{2}\right)\right]$$
$$\omega(r) = \left[r + 2 - \sqrt{r(r+4)}\right]^2 / \sqrt{r(r+4)}$$

• only integrate up to
$$Q_{max}^2 = 3 \,\text{GeV}^2$$

• $Q^2 > Q_{max}^2$: perturbation theory

Introduction	Framework ○●	Challenges 000000	Window oo	Conclusions
Simulations				

- Simulations
 - Tree-level Symanzyk gauge action
 - $N_f = 2 + 1 + 1$ staggered fermions
 - stout smearing 4 steps, $\rho = 0.125$
 - $L \sim 6 \, \text{fm}$, $T \sim 9 \, \text{fm}$
 - M_{π} and M_{K} are around physical point

β	<i>a</i> [fm]	$L \times T$	#conf
3.7000	0.1315	48×64	904
3.7500	0.1191	56 imes 96	2072
3.7753	0.1116	56×84	1907
3.8400	0.0952	64 imes 96	3139
3.9200	0.0787	80 × 128	4296
4.0126	0.0640	96 imes 144	6980

Ensembles for dynamical QED

β	<i>a</i> [fm]	$L \times T$	#conf
3.7000	0.1315	24 imes 48	716
		48×64	300
3.7753	0.1116	28×56	887
3.8400	0.0952	32×64	4253

Introduction	Framework	Challenges 000000	Window oo	Conclusions 00

Challenges & Improvements

Treat lowest eigenmodes of Dirac operator exactly (LMA)

[Neff et.al. 2001] [Giusti et.al. 2004] [Li et.al. 2010] ...

- $L = 6 \, \text{fm} \approx 1000 \, \text{eigenvectors}$ up to $\approx m_s/2$
- $L = 11 \text{ fm} \approx 6000 \text{ eigenvectors}$
- Truncated solver method (AMA)

[Bali et.al. 2010][Blum et.al. 2013]

Replace C(t) by upper/lower bounds above t_c

[Lehner 2016] [Borsanyi et.al. 2017]

$$0 \leq C(t) \leq C(t_c) e^{-E_{2\pi}(t-t_c)}$$

- → factor 5 gain in precision
- \rightarrow bounding t_c : 3 fm \rightarrow 4 fm
- → few permil accuracy on each ensemble

Introduction	Framework	Challenges	Window	Conclusions
	00	o●oooo	oo	oo
Scale deter	rmination			

Lattice spacing *a* enters into a_{μ} determination:

• physical values of m_{μ}, m_{π}, m_{K}

 $\rightarrow \Delta_{\text{scale}} a_{\mu} \sim 1.8 \cdot \Delta(\text{scale})$ [Della Morte *et.al.* '17]

- For final results: M_{Ω^-} scale setting $\rightarrow a = (aM_{\Omega^-})^{\text{lat}}/M_{\Omega^-}^{\text{exp}}$ Experimentally well known: 1672.45(29) MeV [PDG 2018]
 - 4-state fits + GEVP [Aubin & Orginos 2011] [DeTar & Lee 2015]
 - include all O(e²) QED effects
 - $\approx 0.1\%$ precision on each ensemble

For separation of isospin breaking effects: w₀ scale setting No experimental value [Lüscher 2010] [BMWc 2012]

 \rightarrow Determine value of w_0 from $M_0 \cdot w_0$

 $w_0 = 0.17236(29)(63)[70]$ fm

More details: [L. Varnhorst, Mon 2:00pm EDT]

Introduction	Framework	Challenges	Window	Conclusions
	oo	oo●ooo	00	oo
Finite-size	effects			

• Typical lattice runs use $L \leq 6$ fm, earlier model estimates gave O(2)% FV effect

[Aubin et.al. '16]

 $L_{\rm ref}=6.272\,{\rm fm}$

$$L_{\rm big} = 10.752\,{
m fm}$$

- 1. $a_{\mu}(big) a_{\mu}(ref)$
 - perform numerical simulations in L_{big} = 10.752 fm
 - perform analytical computations to check models

lattice NLO XPT | NNLO XPT | MLLGS HP RHO $18.1(2.0)_{stat}(1.4)_{cont}$ 11.6 15.7 17.8 16.7 15.2 [Gounaris & Sakurai '68][Lellouch & Lüscher '01][Bernecker & Meyer '11] [Hansen & Patella '19, '20] [Chakraborty et.al. '17] 2. $a_{\mu}(\infty) - a_{\mu}(big)$ • NNLO XPT: 0.6(0.3) [Aubin et.al. '20] $a_{\mu}(\infty) - a_{\mu}(\text{ref}) = 18.7(2.0)_{\text{stat}}(1.4)_{\text{cont}}(0.3)_{\text{big}}(0.6)_{I=0}(0.1)_{\text{ged}}[2.5]$ More details: [F. Stokes, Mon 1:00pm EDT]

Introduction	Framework 00	Challenges ooo●oo	Window oo	Conclusions
QCD+QED				

- Reach sub-percent level: include isospin breaking effects for
 - (jj)
 - masses
 - scale
- Rewrite dynamical QED as quenched QED expectation values

- Take isospin symmetric gluon configurations: U
- Compute derivatives

$$m_l \frac{\partial X}{\partial \delta m}$$
 $\frac{\partial X}{\partial e}$ $\frac{1}{2} \frac{\partial^2 X}{\partial e^2}$

- Hybrid approach:
 - sea effects: derivatives
 - valence effects: finite differences

[De Divitiis et.al. 2013] [Eichten et.al. 1997]

More details: [L. Parato, Tue 6:15am EDT]

000	00	000000	00	00		
Continuum limit – Taste improvement						

Controlled $a \rightarrow 0$ extrapolation

30

- 6 lattice spacings: 0.132 fm \rightarrow 0.064 fm
- Leading cutoff effects at large *t* are taste breaking effects → mass effects
- Distortion in spectrum: cured by taste improvement rho-pion-gamma model (SRHO)
 [Sakurai '60][Bijnens et.al. '99][Jegerlehner et.al. '11][Chakraborty et.al. '17]
- Our data confirms: Taste violation according to SRHO describes most of the lattice artefacts in a^{light}_u
 - Central value obtained using SRHO improvement
 - At t > 1.3 fm add and subtract (NNLO SRHO)
 - Error corresponding to this variation → Add to systematic error in quadrature

More details: [K. Szabo, Mon 1:15pm EDT]

^h Jul 2021	B. C. Tóth	Muon g-2: BMW calculation of HVP	

[Aubin et.al. '20]

Introduction	Framework	Challenges	Window	Conclusions
000	00	oooooo●	oo	
A		1.41.		

Continuum limit – Global fit procedure

For full result: physical point is set via

• For IB-decomposition: match QCD+QED and QCD_{iso} via

$$w_0, \quad M_{ss}^2, \quad \Delta M^2 = M_{dd}^2 - M_{uu}^2, \quad M_{\pi_{\chi}}^2 = \frac{1}{2} \left(M_{uu}^2 + M_{dd}^2 \right) \quad \longleftarrow \text{Type-II}$$

Expand observable around physical point

$$Y = A + BX_l + CX_s + DX_{\delta m} + Ee_v^2 + Fe_ve_s + Ge_s^2$$

• Combined χ^2 fit for all components

 Several hundreds of thousands of analyses, combined using histogram method

linear vs. quadratic, a^2 vs $a^2 \alpha_s (1/a)^3$ [Husung *et.al* 2020] cuts in lattice spacing, hadron mass fit ranges, ...

 Uncertainty arising from choice of taste improvement: Added to systematic error in quadrature

More details: [L. Varnhorst, Mon 2:00pm EDT]

Introduction	Framework 00	Challenges	Window oo	Conclusions 00

Window observable

Introduction	Framework	Challenges	Window	Conclusions
000	00	000000	●O	00

Window observable

• Restrict correlator to window between $t_1 = 0.4$ fm and $t_2 = 1.0$ fm

[RBC/UKQCD'18]

- Less challenging than full a_μ
 - signal/noise
 - finite size effects
 - lattice artefacts (short & long)

Introduction	Framework	Challenges	Window	Conclusions
	00	000000	⊙●	00
Overlap crosscheck				

- L = 3 fm
- Valence: overlap fermions, local current
- Sea: 4stout staggered

Continuum limit is consistent with staggered valence

Introduction	Framework	Challenges	Window	Conclusions
	00	000000	oo	00

Conclusions

Summary of contributions to $a_{\mu}^{\text{LO-HVP}}$

Introduction	Framework	Challenges	Window	Conclusions
	00	000000	oo	o●
Conclusion	S			

- Consistent with experiment within 1.5σ
- 2.1 σ higher than R-ratio value [WP'20]
- Important to have crosschecks from other lattice groups
- Important to understand disagreement with R-ratio, in particular in the window

Introduction	Framework	Challenges	Window	Conclusions