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• Parameterize response to external currents:
Form Factors

• Form Factor universal:
Enter many processes

• In principle measurable

What are they? Potential Impact of Lattice
• Phenomenology :

• may use Lattice results as input
• need good accuracy

• Resolve „Puzzles“:
• Discprepancies between experiments
• even with less accuracy

Example V-A current:
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Impact of Form Factors
• Proton Radius Puzzle

» Provide ab-initio calculation

• Precision Tests of SM
» Via strangeness FF → Parity Violation Experiments

• Lattice determinations of strange FF very precise

» Via axial FF → Vital input to neutrino-nucleus scattering
• Lattice competitive to z-exp extractions of experiments

» Via Charges → Constraining BSM EFT couplings

28.07.21

Taken from T. Bhattacharya et al., Phys. Rev. D85, 054512 (2012) 

Taken from A. Kronfeld, et al. Eur. Phys. J. A 55, 196 (2019)

lattice QCD lands in the middle, 0.3% precision is needed. In this scenario, we would also
need 1+1+1(+1)-flavor ensembles, since the isospin symmetry would play an important role
at such precision; it would take 5–10 years to account for full systematics.3

The right plot [59], for r2
A, shows significant problems: the analysis with the z expan-

sion [58] debunks the uncertainty estimates of determinations predicated on the dipole form.
The model independent results (red; between the horizontal lines) illustrate the best estimate
of r2

A without such strong assumptions. One should bear in mind that the “experimental”
determinations all make assumptions: without new ⌫d and ⌫̄p experiments [30], it seems
nearly impossible to improve the situation via experiment. On the other hand, lattice gauge
theory can provide an ab initio result from QCD. Indeed, lattice QCD is beginning to play
a role, but another generation of calculations is needed before fully definitive results with
uncertainties small enough to make an impact on cross section calculations are achieved.

For the full energy range of LBNF/DUNE, it will be necessary to trace out the full q2
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FIG. 5. Status of lattice-QCD calculations of gA (left) and r2
A (right), together with non-lattice de-

terminations. Left: Filled green (unfilled red) lattice-QCD results have (in)complete error budgets.
The violet line in the upper panel is the PDG average of the results in the bottom panel, in which
the scale is blown up by a factor of 10. Right: As discussed in the text, the error bars on r2

A from
dipole fits are underestimated and the two small lattice-QCD error bars stem from incomplete
error analyses (critiqued below). The references for r2

A from top to bottom are as follows: “⌫d
and eN ! eN 0⇡ (dipole)” [50], “⌫d (z exp.)” [58], “MuCap this work” [59], LHPC [62] (NB: one
lattice spacing and M⇡ = 317 MeV), ETMC [63] (NB: no strange sea and a small volume such that
M⇡L < 3), CLS [64], PNDME[65]. From Refs. [77] (left) and [59] (right, adapted with permission).

3 Note that the normalization of the matrix element can be blinded with an multiplicative o↵set [82], to

guard against analyst bias. The results in Fig. 5 (left) have not, however, employed this technique.

12

Taken from D.D. et al. Phys.Rev.Lett. 123 (2019) 21, 212001
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Figure 9: Combined 90% C.L. allowed regions in the ✏S-✏T plane based on: (i) existing
limit on b0+ from 0+ ! 0+ nuclear decays; (ii) future neutron decay measurements
with projected sensitivity of 10�3 in b and b⌫ � b. The four curves correspond to four
di↵erent scenarios for the hadronic matrix elements: 0.25 < gS < 1.0, 0.6 < gT < 2.3
as quoted in Ref. [20]; lattice results with current central values from Eq. (38) and
�gS/gS = 50%, 20%, 10% with �gT/gT = 2/3 �gS/gS (this choice assumes that the ratio
of fractional uncertainties in gS and gT will remain approximately constant as these
uncertainties decrease). The e↵ective couplings ✏S,T are defined in the MS scheme at
2 GeV.

7 Collider limits

The contact interactions probed at low energy can also be directly probed at high-energy
colliders. The rate, however, depends on whether the particles that generate the 4-fermi
interaction are kinematically accessible at the collider energies. We begin in Section 7.1
under the assumption that the scalar and tensor interactions remain point-like at TeV
scale energies. Then in Section 7.2 we derive a relation between ✏S and the production
cross-section, Eq. 54 , when the scalar interaction is generated by the exchange of a
resonance that is kinematically accessible at the LHC.

7.1 Model-independent limits

Assuming that the scalar and tensor interactions remain point-like at TeV-scale en-
ergies, we can employ the operator formalism to put bounds on ✏S,T,P from collider
physics. SU(2) gauge invariance implies that ✏S,T,P control not only charged-currrent
processes but also the corresponding neutral-current versions, as the weak-scale e↵ective
Lagrangian includes terms proportional to (✏S � ✏P )ēReLd̄LdR, (✏S + ✏P )ēReLūRuL, and
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Figure 1. Collection of experimental results on the proton charge radius, and a (small) selection of fits by other authors. CODATA
values (dark blue) [3, 46] are global fits, using electron spectroscopy and scattering data as input. Bernauer [2], Zhan [47], Mihovilovič
[44] and Xiong [45] (black) are results from scattering experiments, sometimes including the world data set. Sick [21] and Alarćon
[17] (purple) are refits of existing data, in the latter case based on dispersion relations. Beyer, Fleurbaey and Bezignov [40–42] (green)
are electron spectroscopy results, Pohl and Antognini [1, 5] (orange) are the results from the muon spectroscopy experiment.

measurement, several systematics can be avoided or re-
duced. The main improvement is the new target system,
which will exchange the cryogenic cell with a hydrogen
cluster-jet target [50], which puts no extraneous material
in the main beam trajectory. In combination with an up-
stream collimator and and active veto to suppress electrons
in the beam halo, the experiment aims for a completely
background-free measurement. Additionally, the point-
like intersection of electron and hydrogen beam simplify
track reconstruction, and the comparatively thin target re-
duces external radiation drastically.

With the smaller beam energies of MESA, the exper-
iment will be able to measure not only cross section data
relevant for the proton charge radius, but will also achieve
an order of magnitude better precision on the magnetic
form factor in the region most interesting for the determi-
nation of the magnetic radius (see Fig. 3), and from that,
the Zemach radius, which is another connection point to
atomic physics.

5.2 MUSE

MUSE [51], to take place at the Paul Scherrer Institute,
CH, will measure e

±, µ± and ⇡± scattering using a com-
bined beam. Particle separation will be performed using
Time-Of-Flight. Due to the simultaneous measurement
of all three species, many systematic e↵ects cancel, and
MUSE can probe lepton universality. In combination with
the charge-reversed beam, these data further allow to ex-
tract the two-photon exchange (TPE) contribution in the
radiative corrections for comparison with theory, and to
cancel this e↵ect in the analysis without theory input.

The experiment will measure at three beam momenta
(115, 153 and 210 MeV/c) with statistical uncertainties

on the cross section of better than 1% for most of the data
points, and few per mill systematic uncertainties.

5.3 COMPASS++/AMBER

As one of the planned measurements, COM-
PASS++/AMBER [52] will employ a similar hydrogen
TPC to measure the muon-proton cross section in the
Q

2 range of 0.001 to 0.037 (GeV/c)2. The experiment
aims to measure both outgoing lepton as well as the
recoiling proton, and will use both muon charges. From
the kinematics, it is very similar to PRad, with even more
extreme forward scattering using a multiple tens of GeV/c
beam. The radiative corrections for muons are smaller,
and, similar to MUSE, the measurement of both charges
allows to extract and cancel TPE.

5.4 ULQ2

The ULQ2 project at Tohoku University, Sendai, Japan,
aims to measure the electron proton cross section in the
Q

2 range of 0.0003 to 0.008 (GeV/c)2 using beam en-
ergies between 20 and 60 MeV. The experimenters plan
to use a CH2 target to achieve an absolute measurement
on the 3 per mill level, by measuring relative to the well
known carbon cross section. This unique approach will
produce di↵erent systematic errors than those employed
by the other experiments.

An overview of the Q
2 ranges and projected errors is

given in Fig. 4.

6 Conclusion

After almost a full decade, the proton radius puzzle is
still not resolved, but it has motivated uncounted work
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Taken from Bernauer, EPJ Web Conf. 234 (2020)
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Fit (r2
E)

s [fm2] µs (r2
M )s [fm2] �2/d.o.f.

Standard -0.0046(12) -0.020(5) -0.010(6) 2.04(12)
Prior width -0.0053(15) -0.020(6) -0.012(8) 1.47(12)
Plateau -0.0045(14) -0.022(8) -0.014(8) 1.62(12)
O(a2) -0.0036(16) -0.009(7) -0.003(8) 1.91(9)
O(exp[�mKL]) -0.0049(12) -0.021(5) -0.010(6) 1.12(9)
No cut in Q2 -0.0051(9) -0.017(5) -0.008(5) 3.14(12)

TABLE II. Fit results for the standard fit and variations
thereof.

the variations as an estimate for a (symmetric) system-
atic error. In addition, we perform a fit including lattice
artifacts or a fit including finite-volume dependence to
the standard z-expansion fit. A simultaneous fit of the
lattice spacing and finite-volume dependence amounts to
the determination of four parameters from six data points
for which the AICc value is not defined. Therefore, we
choose to perform separate extrapolations in our analy-
sis. The AICc values, i.e., the Akaike information crite-
rion [38] adjusted for small sample size [39, 40], for the
fits including lattice spacing or finite-volume e↵ects, are
larger by at least 24 in absolute value compared to the
minimum AICc (for the AICc values, we use the maxi-
mum likelihood estimator for the sample variance); i.e.,
the fits omitting O(a2), O(exp[�mKL]) are favored. We
therefore quote the fit without lattice artifacts and finite-
volume e↵ects as our best value, using the di↵erence in
the central value for the respective procedures as a sys-
tematic error from finite lattice spacing and finite-volume
corrections. At the physical point, we find

(r2
E)s

phys = �0.0046(12)(7)(1)(9)(3)(6) fm2, (19)

µs
phys = �0.020(5)(0)(2)(11)(1)(3), (20)

(r2
M )s

phys = �0.010(6)(2)(5)(7)(0)(2) fm2, (21)

as our final estimate, where the first error is statistical
and the remaining errors come from the variations in the
fitting procedure given in Table II.

For the radii, our values are in good agreement with
other lattice determinations [34, 35, 42, 43]. Our value
for the magnetic moment is again in good agreement with
[42, 43]. The magnetic moment from [34, 35] disagrees
with our estimate and with [42, 43] by more than 2 stan-
dard deviations, see Fig. 4. Our best estimate of the radii
and magnetic moment compare favorably to the available
experimental data, as can be seen from Fig. 5.

In summary, we have reported on our calculation of the
strange contribution to the electromagnetic form factors
obtained on six CLS Nf = 2 + 1 O(a)-improved Wilson
fermion ensembles. For the calculation of the discon-
nected contributions, we use the method of hierarchical
probing, which significantly reduces the statistical error.
To deal with excited-state contamination, we employ the
summation method. We find agreement with plateau es-
timates for large enough source-sink separations. The

FIG. 4. Comparison of our final values for the radii and
magnetic moments with LHPC [42], ETMC [43], and �QCD
[34, 35], where the dark and light blue bands describe the
statistical error and the total error, including systematics, re-
spectively.

strange charge radii and the strange magnetic moment
are obtained on each ensemble through model indepen-
dent z-expansion fits and later extrapolated to the phys-
ical point. See the Supplemental Material [28] for a sum-
mary of the extracted form factors and z-expansion fits.
Our results are compatible with other lattice QCD stud-
ies and in good agreement to experimental data. With
the current set of ensembles, the physical values for the
strange charge radii and the strange magnetic moment
still have large relative statistical errors. We aim to im-
prove this by enlarging the number of ensembles.

We thank H. Meyer, T. Harris, and G. von Hippel for
useful discussions and comments. This research is sup-
ported by the Deutsche Forschungsgemeinschat (DFG,
German Research Foundation) through the SFB 1044
“The low-energy frontier of the Standard Model”. K.O.
is supported by the DFG through Grant No. HI 2048/1-
1. Additionally, this work has been supported by the
Cluster of Excellence Precision Physics, Fundamental In-
teractions, and Structure of Matter (PRISMA+ EXC
2118/1) funded by the German Research Foundation
(DFG) within the German Excellence Strategy (Project

0.00 0.25 0.50 0.75

Q2 [GeV2]

0.000

0.025

0.050

0.075

G
s E
(Q

2
)

0.00 0.25 0.50 0.75

Q2 [GeV2]

0.0

0.2

0.4

G
s M

(Q
2
)

FIG. 5. Comparison of our standard fit, based on the z-
expansion up to k = 1, to the analysis of existing experimental
data [7]. The dark and light blue bands describe the statistical
error and the total error, including systematics, respectively.
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Vector FF:

37 % Contributions

Charges and Sigma-Term:

23 % Contributions

Axial FF:

32 % Contributions

Gravitational FF:

8 % Contributions

Hacket, Wed ID: 605
Pefkou, Wed ID: 434
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Taken from arxiv:1802.04759

8 Dominik Becker et al.: The P2 Experiment

In the following it is assumed that the uncertainties
of Gs

E and Gs
M can be reduced by factors of 4 and 12,

respectively, in the Q2 region of relevance to the P2 ex-
periment. This reduction can be achieved by an additional
backward-angle measurement, see Sect. 7.3.

Axial form factor of the proton. The axial form factor of
the proton Gp,Z

A can be determined from results of parity-
violation electron scattering experiments with `H2- and
`D2-targets, which have been carried out at backward
scattering angles at the same values of Q2. Appropriate
measurements have been done by the SAMPLE, G0 and
A4 Collaborations [15,35,37,25].

For the purpose of the error propagation calculations
presented in this section, Gp,Z

A has been parametrized as
suggested by Musolf et al. in Ref. [41]:

Gp,Z
A (Q2) = 0 ·

✓
1 +

Q2

2
1

◆�2

(35)

This parametrization is used together with the parameter
values given in [41] and listed in Tab. 23.

For the error propagation calculations presented in this
section it has been assumed that the global uncertainty
of the parametrization given by Eq. (35) can be reduced
by a factor of 10. This reduction can be achieved by a
backward-angle measurement of Gp,Z

A (see Sect. 7.3).
The requirement of reducing the uncertainties of Gs

E,

Gs
M and Gp,Z

A in order to achieve the envisaged precision in
the determination of sin2 ✓W renders the form factor mea-
surement within the scope of the P2 experiment manda-
tory.

Isospin breaking electromagnetic form factors. The para-
metrizations of the isospin-breaking form factors Gud

E and
Gud

M have been done using the dataset quoted in the bach-
elor thesis of P. Larin [62]. Larin has extracted data from
the predictions for the Q2-dependence of the form factors
given in [63]. In order to parametrize Gud

E and Gud
M , poly-

nomials of degree 4 have been used such that

Gud
E,M =

4X

i=0

E,M
i · Q2i. (36)

The fits of these functions to the data given in Ref. [62]
result in the parameter values collected in Tabs. 24 and
25.

2.2.3 Results of the error propagation calculations

An extensive scan in the mean values of Ebeam, ✓̄f and �✓f
has been performed using the input parameters discussed
in the preceding section in order to determine suitable
values of these variables to carry out the P2 experiment. In
this section, selected results are presented and discussed.
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Fig. 6. Dependence of �s
2

W on the central scattering angle
✓̄f for Ebeam = 155MeV and �✓f = 20�. The total uncertainty
�s

2

W of the electroweak mixing angle is shown in black and
other dominating error contributions in color.

Figure 6 shows the dependence of �s2W on the cen-
tral electron scattering angle ✓̄f for Ebeam = 155MeV and
�✓f = 20�. For 17�  ✓̄f  55�, the total uncertainty is
dominated by the statistical uncertainty of the measured
asymmetry Aexp. For scattering angles ✓̄f � 40� the contri-
butions from Gs

E,M and Gp,Z
A become more significant, be-

cause the form factors’ contribution to the asymmetry in-
creases with Q2. The increase of the form factor contribu-
tions and the decrease of the statistical error and the con-
tribution stemming from Aapp with increasing ✓̄f lead to a
minimum of �s2W at ✓̄f ⇡ 35�, where �s2W ⇡ 3.4 ⇥ 10�4.

Figure 7 shows the dependence of �s2W on ✓̄f for Ebeam =
155 MeV and di↵erent choices of �✓f. In general, a larger
value of �✓f leads to a larger N and therefore to a smaller
statistical uncertainty of Aexp. Since the statistical un-
certainty of Aexp is the dominant contribution to �s2W,
the achievable uncertainty in the electroweak mixing an-
gle decreases with rising �✓f. The larger the acceptance,
the smaller is the e↵ect of increasing �✓f on �s2W, be-
cause contributions by the nucleon form factors become
more significant at larger scattering angles. To keep the
nucleon form factors’ contributions reasonably small, we
have decided to use �✓f  20�.

Figure 8 shows the dependence of �s2W on Ebeam and
✓̄f for �✓f = 20�. Values of �s2W  3.4 ⇥ 10�4 can be
achieved in the region marked by a black curve.

To carry out the P2 experiment within the envisaged
measurement time of T = 10 ⇥ 104 h, we have decided to
use a beam energy of Ebeam = 155MeV, a central scatter-
ing angle of ✓̄f = 35� and a detector acceptance �✓f = 20�.
Table 2 lists the results of an error propagation calcula-
tion for this choice of kinematic parameters along with the
error contributions stemming from the statistical uncer-
tainty of Aexp, the contribution of the beam polarization
as well as the contribution from helicity correlated beam
fluctuations. In order to extract the electroweak mixing
angle from the measured uncertainty, one has to take the

Projected Error Budget for P2:
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2

� a [fm] N3
s ⇥Nt m⇡ [MeV] mK [MeV] mN [MeV] mKL Ncfg Nmeas

H105 3.40 0.08636 323
⇥ 96 278 460 1037 6.44 1020 391680

N401⇤ 3.46 0.07634 483
⇥ 128 289 462 1042 8.59 701 314048

N203 3.55 0.06426 483
⇥ 128 345 441 1111 6.90 772 345856

N200 3.55 0.06426 483
⇥ 128 283 463 1061 7.23 856 383488

D200 3.55 0.06426 643
⇥ 128 200 480 989 10.01 278 124544

N302⇤ 3.70 0.04981 483
⇥ 128 354 458 1120 5.55 1177 527296

TABLE I. Gauge ensembles used in this Letter, where Ncfg denotes the number of gauge configurations and the last column
corresponds to the total number of measurements for the ratio in Eq. (7). The values for the lattice spacing and pion and
kaon masses are taken from [14], while the nucleon masses are estimated using the two-point function in this work. For the
ensembles marked with an asterisk, the pion and kaon masses have been obtained from dedicated runs in connection with [15].

ceeds via the standard nucleon interpolator

N↵(x) = ✏abc

⇣
ua

�(x) (C�5)�� db
�(x)

⌘
uc

↵(x), (2)

and �0 = 1
2 (1 + �0), which ensures the correct parity of

the nucleon at zero momentum. Wuppertal smearing [16]
is applied at the source and the sink for all quark prop-
agators. We increase the statistics of the nucleon two-
point function using the truncated solver method [17, 18].
Traces over the strange quark loops can be stochastically
estimated using four-dimensional noise vectors ⌘. For a
local current

V s = s̄(x)�s(x), (3)

the trace over the strange quark loop then reads

hL
s
�(q, z0)iG = �

X

z2⇤

eiq·z ⌦
tr [Ss(z; z) �]

↵
G

= �

X

z2⇤

eiq·z ⌦
⌘†(z) �  (z)

↵
G,⌘

,
(4)

with

Ds = ⌘, (5)

where Ds denotes the Dirac operator for the strange
quark, and the sum is taken over the spatial volume ⇤.

u
x y

d

u

z
s

~n2
p02

����!
~n2

p6
���!

# ~n2
q  6

FIG. 1. Disconnected three-point function with a vector cur-
rent inserted in the strange loop (red dot). For the range of
momenta at the source and current insertion, we use ~n2

p/q  6,

while at the sink, we restrict the range to ~n2
p0  2 (~n2

p/q/p0 de-
note the units of squared lattice momenta).

Instead of a local current we consider the O(a)-improved
conserved vector current in this Letter

Vµ(z)Imp. =
1

2

⇣
s̄(z + µ̂a)(1 + �µ)Uµ(z)†s(z)

� s̄(z)(1 � �µ)Uµ(z)s(z + µ̂a)
⌘

+ acV @⌫ (s̄(z)�µ⌫s(z)) ,

(6)

with the improvement coe�cient cV taken from [19]. Fur-
thermore, we use hierarchical probing [8], which replaces
the sequence of noise vectors by one noise vector mul-
tiplied with a sequence of Hadamard vectors. We find
that the statistical error of the strange quark loop is re-
duced by a factor of 5 when using 512 Hadamard vectors,
compared to the estimate based on 512 U(1) noise vec-
tors, for nearly the same cost. The quark loops in this
study were obtained by averaging two independent noise
vectors with 512 Hadamard vectors each. To extract the
strange contribution to the electromagnetic form factors
of the nucleon, we consider the ratios (see [20–22])

Rs
Vµ

(z0, q; y0,p
0; �⌫) =

Cs
3,Vµ

(q, z0;p0, y0; �⌫)

C2(p0, y0)

⇥

s
C2(p0, y0)C2(p0, z0)C2(p0-q, y0-z0)

C2(p0-q, y0)C2(p0-q, z0)C2(p0, y0-z0)
. (7)

Performing the spectral decomposition and only taking
the ground state into account, these ratios read
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ator insertion point. The strange quark is the lightest quark with a purely
disconnected contribution.
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Ratio gives access to Form Factors: 0.78
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FIG. 1. E↵ective form factors for ensemble D200 (upper panel) and E250 (lower panel). In each
panel, the first row corresponds to the smallest non-vanishing momentum in the given ensemble,
i.e. Q2 = 0.089, 0.040GeV2 for D200 and E250, respectively, and the second row corresponds to
Q2

⇠ 0.5GeV2. For the four available source-sink separations ts, the e↵ective form factors are
displayed as a function of the current insertion time t, o↵set to the midpoint between nucleon
source and sink. The curves represent the two-state fits in their respective fit intervals. The gray
band and black data point correspond to the estimate for the ground-state matrix element for the
summation and two-state method, respectively. The data points are displaced for better visibility.
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Sources of Uncertainty
o Statistical Accuracy
o Excited State Contamination
o Model Dependence
o Extrapolations
oChiral
oContinuum
oFinite Size
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For convenience we attach the supplemental material to the published Letter in the following sections.

Finite-Volume Dependence

In this section we derive the finite-volume dependence of the strange magnetic moment µs of the nucleon in HBChPT
to order O(q3). We will show that the form of the finite-volume correction is the same as in the SU(2) case for the
isovector magnetic moment [33] after substituting the kaon for the pion mass. To this end we analyze the relevant
diagram in HBChPT [32]. Only one diagram contributes to the magnetic moment at one loop to order O(q3), see
Fig. 6.

FIG. 6. One-loop contribution to the strange magnetic moment.

The relevant meson-baryon Lagrangian is [29]

L = D
⌦
BSµ

{uµ, B}
↵

+ F
⌦
BSµ[uµ, B]

↵
. (22)

Expanding the Lagrangian in terms of the meson fields we obtain

L =
1

2F�
D

⌦
Bc�cS

µi@µ�a{�a, �b}Bb

↵
+

1

2F�
F
⌦
Bc�cS

µi@µ�a[�a, �b]Bb

↵
+ . . .

= 2DdabcBcS
µi@µ�aBb + 2FifabcBcS

µi@µ�aBb + . . . (23)

where we only show the terms necessary for the discussion of the finite-volume e↵ects. The �i are the Gell-Mann
matrices and the d and f are the usual SU(3) structure functions. This leads to the Feynman rule

2ip · S(Ddabc + iFfabc)

F�
, (24)

for the meson-baryon interaction, where p is the incoming momentum of the meson with isospin index a, and b, c are
the isospin indices of the incoming and outgoing baryon, respectively. The baryon propagator is given by

i

v · p
(25)

∼? 𝑒D2# >

a) b) c) d)

e) f) g) h)

i) j) k) l)

Saturday, May 14, 16

Saturday, May 14, 16

Saturday, May 14, 16

Saturday, May 14, 16

m) n) o) p)

FIG. 2: Feynman diagrams for the leading N⇡ contribution in the vector current 3-pt function. Circles
represent a vertex insertion at an intermediate space-time point, and an integration over this point is
implicitly assumed. The dashed lines represent pion propagators.

D
1(~q, ~p) gives the value if the nucleon mass were infinite, Dcorr(~q, ~p) the O(1/MN ) correction.

Both were calculated in Ref. [3] with the following results

D
1(~q, ~p) = 3g2A

p
2

E2
⇡,~p

, (4.4)

D
corr(~q, ~p) = 3gA

gAM
2
⇡(p

2 + 2pq)� E
2
⇡,~p(p

2 + pq)

E4
⇡,~p

, (4.5)

where we used the abbreviations

p
2 = ~p

2
, pq = ~p · ~q . (4.6)

The main new results of this paper are the coe�cients stemming from the vector current 3pt
function. For the index µ = 4 our results for the leading NR limit coe�cients read

B
re,1
4 (~q, ~p) = 4g2A

 
p
2

E2
⇡,~p

� p
2 � pq

E2
⇡,~s

!
, (4.7)

B̃
re,1
4 (~q, ~p) = 4g2A

 
p
2

E2
⇡,~p

� p
2 + pq

E2
⇡,~r

!
, (4.8)

C
re,1
4 (~q, ~p) = �g

2
A

p
2

E2
⇡,~p

, (4.9)

C̃
re,1
4 (~q, ~p) = 2g2A

(E⇡,~p + E⇡,~s)(p
2 � pq)

E⇡,~pE
2
⇡,~s

. (4.10)

Two di↵erent pion energies appear in these results, in particular the energies of a pion carrying
the sum and the di↵erence of ~p and ~q,

~r = ~p+ ~q, ~s = ~p� ~q . (4.11)

12

Aside: Can calculate Excited States directly in ChPT even for FF (reliable for large 𝑡*F$)

Taken from O. Bär, H.Colic, Phys.Rev.D 103 (2021) 11, 114514

O. Bär, Tue ID: 70 
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• Write any correlation function generically as
𝐶(𝑡, 𝑡!"#) = 𝑎 + 𝑏 𝑒$% &'G + 𝑐 𝑒$ %HIJ$% &'G +⋯

• „Just“ do the fit (Multistate method)
• Summation method

– Note that: 𝑡"#$ ≫ 𝑡, (𝑡"#$ − 𝑡)
– a = ground state ME 
– b,'𝑏- and c, �̃� -terms ES

-
%()

%HIJ$)

𝐶 𝑡, 𝑡!"# = 𝑎(𝑡!"# − 1) + 0𝑏𝑒$%HIJ&'G + �̃�𝑒$%HIJ&'G +⋯

Excited States

29.07.21
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FIG. 3. Ground state energy extracted in lattice units from two-state fits to the nucleon two-point
function on ensembles D200 (left) and J303 (right), where the blue line describes the relativistic
dispersion relation (p = 2⇡

L n). The dashed, dashed-dotted lines indicate Q2
 0.6GeV2, Q2



1.0GeV2, respectively.
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FIG. 4. Dependence of the summed ratios for the electric (left) and magnetic (right) e↵ective form
factors on the source-sink separation Eq. (15). Data is shown for the first non-zero momentum on
D200, i.e. Q2 = 0.089GeV2, together with a linear fit using Eq. (16).

value of the momentum q2, the gap �(q2) and the terms proportional to ⇢ are universal,
and we therefore proceed by fitting the electric and magnetic e↵ective form factors simul-
taneously. The fits are performed up to a maximum transfer momentum of about 1GeV2.
The fits to the e↵ective form factors are stabilized using Gaussian priors for � and ⇢ (see
Appendix B), whose central values are set to the results of the fits to the two-point function.
We monitor the impact of our particular choice for the priors on the extracted form factor
values by varying the width of the priors in all fits. To this end we multiply the errors of
� and ⇢ by a factor between 1 and 5. The associated fit results are labeled 1x, 2x, . . . ,
5x to reflect their dependence on the prior width. In order for the prior to be e↵ective,
we constrain the width to maximally half the mean value. The idea is to strike a balance
between the statistical accuracy of our extracted values and any potential bias introduced
by the priors. Therefore we choose the final values for the two-state method to come from
the analysis with the maximum prior width that (a) gives values compatible within errors
with all determinations based on a smaller width, and (b) maintains an acceptable error
increase. We made a rather conservative choice for the latter, allowing the error to increase
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[Jang. et. al., PRL 124, 072002 (2020)]

Y.-C. Jang (Columbia University) Nucleon Form Factors (LATTICE 2021) July 26–30 8 / 18

Taken from Y-C. Jang Talk
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Multistate
• Multistate Fits
– How many states to include? (states become dense)

– Use results from Spectrum?
– Gaps universal (?)
⟹ Do Simultaneous Fits

» Possibly (very) large covariance matrices
• Make this less demanding by taking 2pt-functions spectrum

• as is or
• as priors for 3pt-corr.

» Data might NOT constrain all parameters
⟹ Stabilize via priors

» Assumptions about universality between 2pt- and 3-pt
might not be justified

28.07.21

See e.g. R. Gupta, Mon ID: 527

Taken from J. Green arxiv:1812.10574 
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Multistate
• How do we know if asymptotics is reached?

In general not easy to see
• Axial Form Factors use PCAC as consistency check 

• Gaps might not be universal between 2-pt and 3-pt

28.07.21

Y-C. Jang, R. Gupta, B. Yoon, T. Bhattacharya, Phys. Rev. Lett. 124, 072002 (2020)

4

t − τ/2

τ :∞ 16 14 12
−4

−2

0

2

4

-5 0 5

a09m130W, n2 = 1 χ2/19 = 21.78

t − τ/2

τ :∞ 16 14 12
−4

−2

0

2

4

-5 0 5

a09m130W, n2 = 1 χ2/27 = 0.82

FIG. 2. Comparison of the fits used to remove ESC in the A4 3-point function using the S2pt (left) and SA4 (right) strategies
defined in the text. This data for p = (1, 0, 0)2⇡/La show the largest ESC. The values of ⌧ and �

2/DOF are given in the
legend.
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FIG. 3. Mass and energy gaps �M1 = M1 � M0 and
�E1(n

2) = E
2pt
1 � E0 in units of M⇡ are obtained from the

4-state fit to the 2-point correlator. The values �M
A4
1 and

�E
A4
1 for the a09m130W ensemble are obtained using strat-

egy SA4. The dotted lines show the corresponding values for
non-interacting N(p)⇡(�p) and N(0)⇡(p) states.

the �
2
/DOF of the fits, we cannot distinguish between

the two strategies except for the P channel in spite of
having high statistics data (165K measurements on 1290
configurations) [13]. The key point in each of the four
channels is the convergence–it is from below and includ-
ing the “new” lower excited state (SA4) gives significantly
larger values of the matrix elements and thus the form
factors. This pattern persists for n2 . 5, above which
the di↵erence in the mass gap does not have a significant
e↵ect.

The results for the three form factors GA, eGP and GP

are compared in Fig. 5. The e↵ect of using SA4 is clear
and largest for n = (1, 0, 0). Also, the change in GA(Q2)
is only apparent for n = (1, 0, 0), consequently data at
smaller Q2 are needed to quantify its Q2

! 0 limit.
The pattern, that the e↵ect increases as Q2

! 0, a ! 0
and M⇡ ! M

physical
⇡ , is confirmed by the analysis of the

11 ensembles described in Ref. [13], and these detailed
results will be presented in a separate longer paper [19].

With GA, eGP and GP in hand, we present the test of

the PCAC relation, Eq. (3), in Fig. 6. The figure also
shows data for the pion-pole dominance (PPD) hypoth-

esis that relates eGP to GA as G̃P (Q2) = GA(Q2) 4M2

Q2+M2
⇡
.

It is clear that both relations are satisfied to within 5% at
all Q2 with SA4, whereas the deviation grows to about
40% with S2pt at n = (1, 0, 0) as first pointed out in
Ref. [6]. What is also remarkable is that the PPD rela-
tion with the expected proportionality factor 4M2 pro-
vided by the Goldberger-Treiman relation [20] tracks the
improvement in PCAC. In fact, the data for the two tests
overlap at all Q2.

The last test we perform is the relation @4A4 = (M �

E)A4 that should be satisfied by the ground state matrix
element. The data and fits for @4A4 are shown in Fig. 7.
The values of (M � E)A4 are essentially zero in both
cases; for S2pt because M �E is small. Again, it is clear
that the relation is only satisfied for SA4.

The bottom line is that the two relations, PCAC and
@4A4 = (M � E)A4, and the pion-pole dominance hy-
pothesis are all satisfied using SA4 but not with S2pt.
The data shown in Fig. 3 is consistent with the picture
that the “new” lower energy state is mainly due to the
current Aµ(q) injecting a pion with momentum q. There
are two open questions: (i) how do we extract gA, ie,
what is the analogous lowest excited state at zero mo-
mentum since we cannot determine its parameters from
the A4 correlator, and (ii) why it was not clear from the
data shown in Figs. 2 and 4 that the mass gaps used in
S2pt were too large. These points are addressed below.

Results for gA have been obtained from the A3 corre-
lator at zero-momentum in all previous calculations be-
cause it has the best signal. The states with the low-
est energy that are candidates for the 1

2 (
1
2

+
) excited

state at zero momentum in this correlator are N⇡⇡ and
N(p)⇡(�p). Both of these are lighter than the radial ex-
citations N(1440) and N(1710) and dominate their decay.
Their relativistic non-interacting energies, in a box of size
L/a = 64 used for the a09m130W ensemble, are about
1230 MeV (�M1a ⇡ 0.12). Our previous argument fa-
vorsN⇡⇡: the current A3(p = 0) is more likely to insert a
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FIG. 5. Comparison of GA (left), ( eGP ) (middle) and GP (right) versus Q2, in units of GeV2, obtained using the two stategies

SA4 (red) and S2pt (black). The lines show the dipole and k
3 and k

4
z-expansion fits to GA and PPD ansatz to eGP .
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FIG. 6. Comparison of the tests of the PCAC and the
pion-pole dominance (PPD) hypothesis using the two anal-
ysis strategies SA4 and S2pt defined in the text. We plot the

quantity 2 bm
2M

GP (Q2)
GA(Q2)

+ Q2

4M2
G̃P (Q2)
GA(Q2)

for PCAC (open symbols)

and
Q2+M2

⇡
4M2

G̃P (Q2)
GA(Q2)

(filled symbols) for PPD. These should

both be unity up to O(a) corrections at all Q2 if these rela-
tions hold.

TABLE II. Final results from both strategies, SA4 and S2pt.
gA is obtained in three ways as discussed in the text, and
rA and g

⇤
P from z

4 fits. Note these estimates are at fixed
a ⇡ 0.0871 fm.

gA|3pt gA|z�exp gA|dip rA(fm) g
⇤
P

SA4 1.30(6) 1.30(7) 1.20(6) 0.74(6) 8.06(44)
S2pt 1.25(2) 1.19(5) 1.20(5) 0.45(7) 4.67(24)

2 in Table II). However, fits with priors in the range
0.1 . �M1 . 0.4 are not distinguished on the basis of
�
2/DOF. The output �M1 tracks the input prior, and

the value of gA increases as the prior value is decreased.
Thus, we regard this method as giving gA with uncon-
trolled systematics–the relevant �M1 has to be deter-
mined first. Parenthetically, similar fits to extract the
scalar and tensor charges gS and gT are much more sta-
ble, the value of the output �M1 is far less senstitive to
the prior and the results vary by . 2� as will be shown
in Ref. [19].

Our current best estimate for�M1 on a given ensemble
is to take the lower of the N⇡⇡ or N(n1 = 1)⇡(n2 = 1)
states. Assuming they are roughly degenerate, one can
use the value of �M

A4
1 a ⇡ 0.1 shown in Fig. 3 at n2 = 1

that, as we have argued above, corresponds to the latter
state. Using this �M

A4
1 a, our analysis of the A3 data

gives gA = 1.30(6).
The second way we extract gA is to parameterize the

Q
2 dependence of GA(Q2) using the z-expansion and the

dipole ansatz. The z-expansion fits using the process
defined in Ref. [6, 13] give gA = 1.30(7) for SA4 compared
to gA = 1.19(5) using S2pt. These results are independent
of k for k > 2 in the z

k-expansion. The dipole fit gives
gA = 1.20(6) with a large �2/DOF = 1.97 and the results
are essentially the same for SA4 and S2pt as can be seen
in Fig 5. One can fix the dipole fit to not miss the crucial
low Q

2 points by putting a cut on Q
2, however, for this

study we choose to neglect it.
The root-mean-squared charge radius extracted us-

ing the z-expansion fits gives rA = 0.74(6) fm with
SA4 and rA = 0.45(7) fm with S2pt. Once the lat-
tice data have been extrapolated to the continuum limit,
they can be compared with (i) a weighted world aver-
age of (quasi)elastic neutrino and antineutrino scatter-
ing data [1], (ii) charged pion electroproduction experi-
ments [1], and (iii) a reanalysis of the deuterium target
data [21]:

rA = 0.666(17) fm ⌫, ⌫ � scattering ,

rA = 0.639(10) fm Electroproduction ,

rA = 0.68(16) fm Deuterium , (11)

The induced pseudoscalar charge g
⇤
P , defined as

g
⇤
P ⌘

mµ

2M
G̃P (Q

2 = 0.88m2
µ) , (12)

is obtained by fitting G̃P (Q2) using the small Q2 expan-
sion of the PPD ansatz:

mµ

2M

G̃P (Q2)

gA
=

c1

M2
⇡ +Q2

+ c2 + c3Q
2
, (13)

Our result using SA4 is g⇤P = 8.06(44), while the MuCap
experiment gave g

⇤
P |MuCap = 8.06(55) [22, 23].

Bali et. al (RQCD) JHEP05 (2020) 126
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Axial Vector Form Factors from Lattice QCD that Satisfy the PCAC Relation
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Previous lattice QCD calculations of axial vector and pseudoscalar form factors show significant
deviation from the partially conserved axial current (PCAC) relation between them. Since the
original correlation functions satisfy PCAC, the observed deviations from the operator identity cast
doubt on whether all the systematics in the extraction of form factors from the correlation functions
are under control. We identify the problematic systematic as a missed excited state, whose energy
as a function of the momentum transfer squared, Q

2, is determined from the analysis of the 3-
point functions themselves. Its mass is much smaller than those of the excited states previously
considered and including it impacts the extraction of all the ground state matrix elements. The form
factors extracted using these mass/energy gaps satisfy PCAC and other consistency conditions, and
validate the pion-pole dominance hypothesis. We also show that the extraction of the axial charge
gA is very sensitive to the value of the mass gaps of the excited states used and current lattice data
do not provide an unambigous determination of these, unlike the Q

2 6= 0 case. To highlight the
di↵erences and improvement between the conventional versus the new analysis strategy, we present
a comparison of results obtained on a physical pion mass ensemble at a ⇡ 0.0871 fm. With the new
strategy, we find gA = 1.30(6). A very significant improvement over previous lattice results is found
for the axial charge radius rA = 0.74(6) fm, extracted using the z-expansion to parameterize the Q

2

behavior of GA(Q
2), and g

⇤
P = 8.06(44) obtained using the pion pole-dominance ansatz to fit the

Q
2 behavior of the induced pseudoscalar form factor eGP (Q

2).

The nucleon axial form factor GA(Q2) is an impor-
tant input needed to calculate the cross-section of neu-
trinos o↵ nuclear targets. It is not well-determined ex-
perimentally [1], and the most direct measurements us-
ing liquid hydrogen targets are unlikely to be performed
due to safety concerns. At present, these form factors
are typically extracted from measurements of scattering
o↵ nuclear targets and involves modeling of nuclear ef-
fects [2, 3], which introduces uncertainties [4]. Lattice
QCD provides the best approach to calculate these from
first principles, however, one has to demonstrate that all
systematics are under control.

The axial, GA, and the induced pseudoscalar, eGP ,
form factors are extracted from the matrix elements
of the four components of the isovector axial current
Aµ ⌘ u�5�µd between the ground state of the nucleon:

hN(pf )|Aµ(~q)|N(pi)i =

uN (pf )

 
GA(q

2)�µ + qµ
G̃P (q2)

2M

!
�5uN (pi), (1)

and the pseudoscalar form factor GP from

hN(pf )|P (~q)|N(pi)i = uN (pf )GP (q
2)�5uN (pi) , (2)

where P = u�5d is the pseudoscalar density, N(p) is
the nucleon state with mass M and lattice momentum
p ⌘ 2⇡n/La with n ⌘ (n1, n2, n3). We neglect the in-
duced tensor form factor G̃T in Eq. (1) since we assume
isospin symmetry, mu = md, throughout [5]. All the
form factors will be presented as functions of the space-
like four-momentum transfer Q2

⌘ p2
�(E�M)2 = �q

2.

In our previous work [6], we showed that form factors
with good statistical precision can be obtained from lat-
tice simulations, however, these data do not satisfy the
partially conserved axial current (PCAC) relation:

2bmGP (Q
2) = 2MGA(Q

2)�
Q

2

2M
G̃P (Q

2) , (3)

where bm is the PCAC quark mass. Such a failure has
also been observed in all other lattice calculations [7–12].
Since PCAC is an operator relation, it is important
to find the systematic responsible for the deviation,
and remove it prior to comparing lattice data with
phenomenology.
In this work we show that the problematic system-

atic is a missed lower energy excited state. Using data
from a physical pion mass ensemble, a09m130W [13], we
show how the mass and energy gap of this state can be
determined from the analysis of nucleon 3-point correla-
tion functions. We then demonstrate that form factors
extracted including these parameters satisfy PCAC and
other consistency conditions. With these improvements,
we claim that the combined uncertainty in the lattice
data is reduced to below ten percent level.
All lattice data presented here are from our calcu-

lations using the clover-on-HISQ formulation [6, 13].
The gauge configurations are from the physical-mass
2 + 1 + 1-flavor HISQ ensemble a09m130W generated
by the MILC collaboration [14] with lattice spacing a ⇡

0.0871 fm and M⇡ = 130MeV. The pion mass on these
configurations with the clover valence quark action is
M⇡ ⇡ 138MeV. Further details of the lattice param-
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FIG. 10. Estimates, in lattice units, of �M1 (black filled circle) and �E1 (open black diamonds) from fits to the two-point
function for four ensembles in the order a094m270L, a073m270 , a091m170L and a071m170 in each row. Each panel also
shows the values of �fM1 (open blue squares) and � eE1 (open red triangles) from the {4, 2sim} (top row) and the {4N⇡, 2sim}
(bottom row) fits to the vector three-point functions. The mass gaps of the two non-interacting N(q)2⇡(�q) and N(0)2⇡(�q)
states are shown by the dotted blue and red lines. The horizontal dotted black lines show the masses of 1, 2, . . . pions.

on the identity of the excited states. We find that the
�
2
/dof of even the {4, 3⇤} fits is not unreasonably large

compared to the other strategies even though the values
of �M1 and �E1 are significantly di↵erent. Overall, GVi

E

does not help us decide which excited states give the
dominant contribution.

An important feature in the ESC fits shown in Figs. 27
and 29 in Appendix F is that while the di↵erences in the
mass gaps between the four strategies are large, the varia-
tion in results for GV4

E
and G

Vi
M

is . 5%. The smallness of
the variation is further highlighted in Figs. 12 and 14—all
four estimates of the form factors are consistent within
errors with the Kelly parameterization of the experimen-
tal data.

We base our choice on which strategy to choose for pre-
senting the final results on the trends in the mass gaps
illustrated in Fig. 10. The first is the growing agree-
ment between �fM1 and � eE1 in the {4N⇡

, 2sim} data.
Next, their agreement with the �M1 and �E1 from the
{4N⇡

} fits. Lastly, �fM1 ⇡ 2M⇡ suggests that the low-
est excited state N(0)⇡(0)⇡(0) also contributes. These
trends suggest that the {4N⇡

, 2sim} and {4N⇡
, 3⇤} strate-

gies should give similar results for the form factors, and
we will choose between these when presenting the final
results.

Results for the renormalized form factors from the four
strategies are given in Tables XXII, XXIII, and XXIV.
The �

2
/dof of the fits used to remove the ESC are rea-

sonable in most cases. The errors are the smallest in the
{4, 3⇤} data, and large for many of the large Q

2 points
from the {4, 2sim} and the {4N⇡

, 2sim} fits.
A comparison of the form factors, and the errors in

them, between the four strategies is shown in Fig. 11

for the five large volume ensembles. For each strat-
egy, the full data from the seven ensembles are shown
in Figs. 12, 13 and 14. The G

Vi
E

show significant varia-
tion between the strategies, with the {4, 2sim} data being
closest to the Kelly curve. Part of this observed variation
is a result of poorer statistical signal and part due to less
control over ESC. For these reasons, we do not include
G

Vi
E

in our final analysis, however, this channel influences

the extraction of �fM1 and � eE1 from the simultaneous
{2sim} fits.
For the two cases with the best signal, GE from <V4

and GM from <Vi, we make the following observations
from Fig. 11 using the Kelly curve as a benchmark and
to guide the eye:

• No significant di↵erence is observed between the
data from the two simultaneous fits, {4, 2sim} ver-
sus {4N⇡

, 2sim}. On the four largest Q2 points, the
errors are large in many cases, but the overall shape
of the data is similar for all four strategies.

• Results for G
V4
E

and G
Vi
M

lie close to the Kelly
parameterization for all four strategies, with the
{4N⇡

, 3⇤} data plotted versus Q2
/M

2
N

showing the
best agreement.

• All four strategies give consistent results on the
M⇡ ⇡ 270 MeV ensembles.

• From Fig. 11 one can notice (i) a small spread
between the four strategies in G

V4
E

on the M⇡ ⇡

170 MeV ensembles, (ii) a small upward movement
of data from a091m170L to a071m170, and (iii)
the {4, 3⇤} and both {2sim} data on a ⇡ 0.07 fm
ensembles lie above the Kelly curve.

G. Koutsou, Tue ID: 401

Y-C. Jang, Tue ID:519
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Summation
• Easy to apply but errors usually larger
• Supression of ES paramterically larger

» Use more 𝑡!"#!in Fits (Deviation from linearity)

28.07.21

Introduction Lattice setup Excited states CCF extrapolation & results

Single-state vs simultaneous two-state summation method (twist-2 NMEs)
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‰2/Ndof = 1.127, p = 0.278

Simultaneous two-state summation method fits for twist-2 operator insertions on N451 ensemble (Mfi = 286 MeV, a ¥ 0.076 fm).

Again, data described very well by the two-state fit.

However, the fit quality rapidly deteriorates including the next smaller tsep!

9/13

Taken from K. Ottnad, Mon ID: 229

-
%()

%K$)

𝐶 𝑡, 𝑡* = 𝑎(𝑡!"# − 1) − 0𝑏𝑒$%HIJ&'G − �̃�𝑒$%HIJ&'G +⋯

Taken from A. Walker-Loud, Mon ID: 612 CalLat: arXiv:2104.05226 
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Model Dependence
– Derived Quantities depend on model for 𝑄$dependence

𝐶% 1 −
1
6
𝑟&$ 𝑄$ +⋯

» Dipole is not very flexible!
J. Bernauer et al., Phys.Rev.C 90 (2014) 1, 015206

….

» Use z-expansion, e.g.

R. Hill, G. Paz, Phys. Rev. D 82 (2010), 113005

» Direct methods avoid this altogether!
• Most recently K-I. Ishikawa (PACS) arxiv:2107.07085
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The Bounded z Expansion

I For the proton, QCD constrains the form factors to be analytic in t ⌘ q2
⌘ �Q2 outside of

a time-like cut beginning at tcut = 4m2
⇡ , the two-pion production threshold. Clearly this

presents an issue with convergence for expansions in the variable q2. Hill & Paz (2010)

I Using a conformal map, we obtain a true small-expansion variable z for the physical region:

1 Introduction

The electromagnetic form factors of the nucleon provide basic inputs to precision tests of
the Standard Model. In particular, the root mean square (RMS) proton charge radius as
determined by the form factor slope1 ,

Gp
E(q2) = 1 +

q2

6
�r2

�
p
E + . . . , (1)

is an essential input to hydrogenic bound state calculations [1, 2]. Recent experimental results
suggest a discrepancy between the charge radius inferred from the Lamb shift in muonic
hydrogen [3], rp

E �
�

�r2�
p
E = 0.84184(67) fm, and the CODATA value, rp

E = 0.8768(69) fm,
extracted mainly from (electronic) hydrogen spectroscopy [4]. The charge radius can also be
extracted from elastic electron-proton scattering data. The 2010 edition of the Review of
Particle Physics lists 12 such determinations that span the range of 0.8-0.9 fm [5], most with
quoted uncertainties of 0.01-0.02 fm. These determinations correspond to analyses of di�erent
datasets and di�erent functional forms of Gp

E(q2) that were fit to the data over a period of 50
years.

Extraction of the proton charge radius from scattering data is complicated by the unknown
functional behavior of the form factor. We are faced with the tradeo� between introducing
too many parameters (which limits predictive power) and too few parameters (which biases
the fits). Here we describe a procedure that provides model-independent constraints on the
functional behavior of the form factor. The constraints make use of the known analytic
properties of the form factor, viewed as a function of the complex variable t = q2 = �Q2.

�Q2
max 4m2

�

t z

Figure 1: Conformal mapping of the cut plane to the unit circle.

As illustrated in figure 1, the form factor is analytic outside of a cut at timelike values
of t, [6] beginning at the two-pion production threshold, t � 4m2

�.2 In a restricted region
of physical kinematics accessed experimentally, �Q2

max � t � 0, the distance to singularities
implies the existence of a small expansion parameter. We begin by performing a conformal

1Gp
E is defined in Section 3.1.

2 Here and throughout, m� = 140 MeV denotes the charged pion mass, and mN = 940 MeV is the nucleon
mass.

1

z(t; tcut, t0) =
p

tcut�t�
p

tcut�t0p
tcut�t+

p
tcut�t0

GE =
kmaxX

k=0

ak[z(q2)]k , GM =
kmaxX

k=0

bk[z(q2)]k .

I The physical kinematic region of scattering experiments lies on the negative real line. For a
set of data with a maximum momentum transfer Q2

max, this is represented by the blue line.
I The conformal map has a parameter t0, which is the point in t plane that is mapped to

z(t0) = 0.
I By including other data, such as from ⇡⇡ ! NN̄ or eN scattering, it is possible to move

the tcut to larger values, improving the convergence of the expansion.

Gabriel Lee (Technion) z Expansion and Nucleon Vector Form Factors Sep 1, 2016 4 / 9

4

FIG. 3. Chiral and continuum extrapolation of the electric
and magnetic radius and magnetic moment, using the stan-
dard method of Table II. The vertical line denotes the physical
kaon mass in the isospin limit [41].

contamination, compared to the plateau fits. Neverthe-
less, we include the analysis of the plateau data, for a con-
servative choice of source-sink separation of 1 fm using 5
points around the midpoint, as an estimate for the un-
certainty coming from excited states. In order to further
analyze the kaon mass and lattice spacing dependence, we
use model-independent z-expansion fits [30, 31] to fifth
order to extract the radii and magnetic moment. (We
have explicitly checked that going to a maximum order
of 10 does not change the fit results.) The form factors
can be expanded as

GE/M (Q2) =
5X

k=1/0

aE/M
k z(Q2)k,

z(Q2) =

p
tcut + Q2 �

p
tcutp

tcut + Q2 +
p

tcut

.

(15)

Since the physical ! and � mesons are narrow resonances
and because one cannot easily establish whether or not
they are unstable particles on the analyzed ensembles,
we use 4m2

K for the value of the cut in the z-expansion,
where we use the ensemble kaon mass for mK (see Ta-
ble I). We stabilize the fits using Gaussian priors cen-
tered around zero for all coe�cients with k > 1. To
this end, we first determine the coe�cients a0,1 from a
fit without priors and subsequently use the maximum of
these coe�cients to estimate the width of the priors, i.e.,
ak>1 = 0 ± c ⇥ max{|a0|, |a1|}. We find that for c = 5
the extraction of the radii and the magnetic moment are
stable and lead to consistent results even after applying a
cut of Q2 < 0.5 GeV2. Finally, we estimate the e↵ect of
this choice on the final observables by repeating the anal-
ysis with the prior width doubled. From the z-expansion
fits, we can extract the strange magnetic moment µs, as

well as the electric and magnetic charge radii (r2
E/M )s,

µs = aM
0 , (16)

(r2
E/M )s = �

3

2tcut
aE/M
1 . (17)

We have repeated the analysis in several variations in or-
der to assess systematic errors and subsequently perform
chiral and continuum extrapolations. Since the radii and
magnetic moments are defined at Q2 = 0, we perform the
fits applying a cut of Q2 < 0.5 GeV2 and treat the di↵er-
ence to fitting all of the data as a systematic uncertainty.
This cut also ensures that all ensembles contribute over
the whole range in Q2. In total we thus have four sets
of values for the radii and magnetic moments for every
ensemble, for which we analyze the lattice spacing and
kaon mass dependence.

The analyzed set of ensembles allow for a controlled
chiral and continuum extrapolation of the strange elec-
tromagnetic form factors. In the following, we will inves-
tigate the kaon mass dependence using

(r2
E)s(mK) = c1 + c2 log(mK) + c̃1a

2 + cL
1

p

Le�mKL,

µs(mK) = c3 + c4mK + c̃2a
2 + cL

2

⇣
mK �

2

L

⌘
e�mKL,

(r2
M )s(mK) =

c5

mK
+ c6 + c̃3a

2 + cL
3

p

Le�mKL, (18)

which is derived from SU(3) heavy baryon chiral pertur-
bation theory (HBChPT) [32], supplemented by terms
describing the dependence on the lattice spacing a and
the finite volume. (Note that the CLS ensembles fol-
low the trMq = constant trajectory, and so the kaon
mass and the pion mass are therefore not varied indepen-
dently.) Since the finite-volume dependence originates
exclusively from kaon loops, we substitute the pion mass
in the relevant expression for the magnetic moment [33]
by the mass of the kaon. For a detailed discussion of the
finite-volume dependence, we refer to the Supplemental
Material [28]. For the radii, we use the model-dependent
ansatz of [34, 35], assuming the finite-volume dependence
to be same as for the pion form factor calculated in [36],
again replacing the pion with the kaon mass. Since our
data for the magnetic radius do not show the divergent
behavior expected from HBChPT (see Fig. 3), we amend
the expressions from [32] by the term c6. While this can-
cellation of higher order terms was already found in Ref.
[37], we note that the convergence of HBChPT, the rate
of which strongly depends on the observable, is, in gen-
eral, not easily established.

For each of the variations of the z-expansion fit in the
previous section, we analyze the chiral behavior sepa-
rately. The chirally extrapolated values for the standard
fit procedure and the variations of the z-expansion fits
performed to assess systematic uncertainties are given in
Table II. We treat the di↵erence of the central values for
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FIG. 9. The summation-method data points for the Sachs form factors, and the blue band describ-
ing the corresponding direct covariant BChPT fit with momentum cut Q2

 0.4GeV2, pion mass
cut 0.28 GeV and without lattice artifacts. The data point for GM(0) is obtained from a linear
fit to the ratio of GM and GE and is not used in the direct covariant ChPT fit. The fit depends
linearly on the four LECs d6, c̃6, dx and G⇢ (c.f. [39]).
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FIG. 8. HBChPT fits to the radii and the magnetic moment, extracted via the z-expansion of
the Sachs form factors determined with the summation (left panel) and two-state method (right
panel), with Q2

 0.9GeV2 and M⇡  0.28GeV. Red points correspond to PDG values [96] for µ
and hr2

E
i. For hr2

M
i we show the result of a reanalysis of available world data from Ref. [92], either

based exclusively on the Mainz/A1 measurement [7] (green diamond) or excluding it from world
data (red diamond). The gray bar depicts our final result of the model-averaged covariant BChPT
analysis, where the width indicates statistical error, and the black bar includes systematic e↵ects.

B. Direct BChPT fits

As an alternative to the intermediate determination of the Q2 dependence via z-expansion
or dipole fits, we perform direct fits of the covariant BChPT expressions of [90] to our form
factor data. In this way we obtain a combined description of the Q2 and the M⇡ dependence.
The fit depends linearly on the four LECs d6, c̃6, dx and G⇢ [90]. It turns out that an
important advantage of this approach to extracting the electromagnetic radii compared to
the combined z-expansion and HBChPT analysis is its stability against considerably lowering
the momentum cuts applied.

For the direct fits we obtain results for various momentum cuts between Q2
 0.3GeV2

and Q2
 0.6GeV2 for both the summation method and the two-state method. We perform
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Model Dependence & CCF - Combine

Z-Expansion Fits
o Do the z-exp for each ensemble
o Perform CCF Fits
o Number of 𝑄$ points lost at this stage
o Combine z–exp and CCF (larger errors) 

Y-C. Yang  (PNDME) Phys. Rev. D 101, 014507 (2020)
28.07.21

D.D. et. al, Phys. Rev. D 103, 094522 (2021)

Direct Fits Using Chiral EFT
o Use Chiral EFT 

Less freedom at small 𝑄' vs z-exp (smaller errors)
o Can be more agressive with cuts in 𝑄'
o Results from usual z-expansion consistent

T. Bauer, et al, Phys. Rev. C86, 065206 (2012). 
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Lots of Variations

• In the end still have lots of variations (𝑄!, 𝑀"
!, 𝒪 𝑎! , 𝒪(𝑒#$!%))

• No clear winner
• Perform averages based on AIC weights

• Treat estimates as random variable

29.07.21

the number of fit parameters while it favors including more actual data points [39]. For the
weighting of di↵erent models on the same input data set we use

wAIC

i =
e�

1
2AICi

P
j
e�

1
2AICj

, (28)

i.e. we normalize the AIC obtained for all models for summation and two-state data sep-
arately. Finally, we apply a flat weight function to the estimates from summation and
two-state fits. We adopt the procedure from [101], which we briefly sketch in the following,
for estimating the systematic and statistical error of the model-averaged values. To that end
we treat the model-averaged estimate as a random variable with the following cumulative
distribution function (CDF)

P x(y) =

yZ

�1

nX

i

wiN (y0; xi, �
2

i )dy
0 (29)

i.e. the weighted sum of Gaussian distributions where the mean xi and variance �2

i is given
by the best estimate and fit error of each model, and the weight wi is obtained as explained
above. This e↵ectively smoothens the otherwise rugged distribution of model postdictions
and allows for a more robust estimate of the distribution parameters (see Fig. 11). The final
value and total error are easily read o↵ from the distribution in Eq. (29) as the median,
and the 1-� percentiles, respectively. Under the assumptions that a rescaling of all errors
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FIG. 11. Cumulative distribution function of all fitted models, where dash-dotted and short-
dashed lines indicate median and 68% percentiles, respectively.
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E. Neil, Tue ID: 316 

Strategy from S. Borsanyi et al. (2020), Nature 593, 51–55 (2021)
Weighting applied to isovector electric radius.
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Results for Isovector Strange FF
• Disconnected Diagrams only
• Very precise estimates
• CCF mild

• Consistent picture from Lattice
non-zero radii
(Blue Band PDG-style average)

28.07.21

Taken from C. Alexandrou, et al. arxiv:2106.13468

Taken from PRL 123 (2019) 21, 212001
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Results Isovector Vector FF
• Excited State Contamination:

Summation or Multistate
• 𝑄! -dependence:

via z-Expansion/Dipole/EFT/Pade
• CCF extrapolations performed

28.07.21

Recent ensembles @ Physical pion mass

Current status after CCF Isoscalar FF e.g. M. Salg, Tue ID: 406 
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Results Isovector Axial FF
• Excited State Contamination:

Summation/Multistate (𝜋N)
• 𝑄! -dependence param.

via z-Expansion 
• CCF extrapolations are

performed
• Lattice: ∼10 % statistical error

(Determination with 20 % acc blue shaded area) 
(Purple Band PDG-Style Average)

29.07.21

New analyses e.g. T. Schulz, Tue ID: 86 



www.hi-jena.de
www.hi-mainz.de

Lots of experiments

28.07.21
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