

Progress in *x*-dependent partonic distributions from lattice **QCD**

Krzysztof Cichy

Adam Mickiewicz University, Poznań, Poland

NATIONAL SCIENCE CENTRE

Supported by the National Science Center of Poland SONATA BIS grant No 2016/22/E/ST2/00013 (2017-2022)

Outline:

Introduction/motivation Review of results – PDFs/GPDs Theoretical developments Review of results – TMDs Prospects/conclusion Many thanks to my Collaborators:

C. Alexandrou, M. Bhat, S. Bhattacharya, Y. Chai, M. Constantinou

- L. Del Debbio, J. Dodson, X. Feng, T. Giani, J. Green,
- K. Hadjiyiannakou, K. Jansen, G. Koutsou, Y. Li, Ch. Liu,
- F. Manigrasso, A. Metz, A. Scapellato, F. Steffens, S.-C. Xia

Acknowledgment for discussions/material for this talk: M. Constantinou, R. Sufian, Y.-B. Yang, S. Zafeiropoulos, Y. Zhao

Nucleon structure

One of the central aims of hadron physics: to understand better nucleon structure.

- This is one of the crucial expectations from the approved Electron-Ion Collider (EIC).
- In particular, we want to probe the 3D structure.
- Thus, we need to access new kinds of functions: GPDs, TMDs.
- Also higher-twist is of growing importance for the full picture.
- Both theoretical and experimental input needed.

A. Deshpande Thu 9:00, I. Stewart Thu 10:30

Lattice can provide *qualitative* and eventually *quantitative* knowledge of different functions and their moments:

- 1D: form factors
- D. Djukanovic Thu 10:10
- 1D: parton distribution functions (PDFs)
- 3D: generalized parton distributions (GPDs)
- 3D: transverse momentum dependent PDFs (TMDs)
- 5D: Wigner function / generalized TMDs

- Recent years (since ≈ 2013): breakthrough in accessing *x*-dependence.
 X. Ji, *Parton Physics on a Euclidean Lattice*, Phys. Rev. Lett. **110** (2013) 262002
- The common feature of all the approaches is that they rely to some extent on the factorization framework:

$$Q(x,\mu_R) = \int_{-1}^{1} \frac{dy}{y} C\left(\frac{x}{y},\mu_F,\mu_R\right) q(y,\mu_F),$$
 some lattice observable

- Matrix elements: $\langle N | \overline{\psi}(z) \Gamma F(z) \Gamma' \psi(0) | N \rangle$ with different choices of Γ, Γ' Dirac structures and objects F(z).
 - * hadronic tensor K.-F. Liu, S.-J. Dong, 1993
 - * auxiliary scalar quark U. Aglietti et al., 1998
 - * auxiliary heavy quark (HOPE) W. Detmold, C.-J. D. Lin, 2005
 - * auxiliary light quark V. Braun, D. Müller, 2007
 - ★ quasi-distributions X. Ji, 2013
 - * "good lattice cross sections" Y.-Q. Ma, J.-W. Qiu, 2014,2017
 - * pseudo-distributions A. Radyushkin, 2017
 - ★ "OPE without OPE" QCDSF, 2017

Lattice PDFs/GPDs: dynamical progress

Reviews: K. Cichy, M. Constantinou, A guide to light-cone PDFs from Lattice QCD: an overview of approaches, techniques and results, special issue of Adv. High Energy Phys. 2019 (2019) 3036904, 1811.07248 update: M. Constantinou, The x-dependence of hadronic parton distributions: A review on the progress of lattice QCD, (would-be) plenary talk of LATTICE 2020, EPJA 57 (2021) 77, 2010.02445
X. Ji, Y. Liu, Y.-S. Liu, J.-H. Zhang, Y. Zhao, Large-Momentum Effective Theory, 2004.03543
M. Constantinou et al., Parton distributions and LQCD calculations: toward 3D structure, 2006.08636

Some studies already advanced, but still full systematics needs to be investigated Many exploratory directions: GPDs, twist-3 PDFs/GPDs, singlet PDFs, TMDs

Progress of approaches to *x***-dependence**

X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002

X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002

Main idea:

X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002

Correlation along the ξ^- -direction: $q(x) = \frac{1}{2\pi} \int d\xi^- e^{-ixp^+\xi^-} \langle N | \overline{\psi}(\xi^-) \Gamma \mathcal{A}(\xi^-, 0) \psi(0) | N \rangle$ $|N\rangle - \text{nucleon at rest in the light-cone frame}$

X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002

X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002

Main idea: ξ^{-} ξ^{-} ξ^{+} $\xi^{3} \equiv z$

Correlation along the ξ^- -direction: $q(x) = \frac{1}{2\pi} \int d\xi^- e^{-ixp^+\xi^-} \langle N | \overline{\psi}(\xi^-) \Gamma \mathcal{A}(\xi^-, 0) \psi(0) | N \rangle$ $|N \rangle$ – nucleon at rest in the light-cone frame Correlation along the $\xi^3 \equiv z$ -direction: $\tilde{q}(x) = \frac{1}{2\pi} \int dz \, e^{ixP_3z} \langle N | \overline{\psi}(z) \Gamma \mathcal{A}(z, 0) \psi(0) | N \rangle$ $|N \rangle$ – nucleon at rest in the standard frame Correlation along the ξ^3 -direction: $\tilde{q}(x) = \frac{1}{2\pi} \int dz \, e^{ixP_3z} \langle P | \overline{\psi}(z) \Gamma \mathcal{A}(z, 0) \psi(0) | P \rangle$ $|P \rangle$ – boosted nucleon

X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002

Matching (Large Momentum Effective Theory (LaMET) X. Ji, Parton Physics from Large-Momentum Effective Field Theory, Sci.China Phys.Mech.Astron. 57 (2014) 1407 \rightarrow brings quasi-distribution to the light-cone distribution, up to power-suppressed effects:

$$\tilde{q}(x,\mu,P_3) = \int_{-1}^{1} \frac{dy}{|y|} C\left(\frac{x}{y},\frac{\mu}{P_3}\right) q(y,\mu) + \mathcal{O}\left(\Lambda_{\rm QCD}^2/P_3^2, M_N^2/P_3^2\right)$$

X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002

Matching (Large Momentum Effective Theory (LaMET) X. Ji, Parton Physics from Large-Momentum Effective Field Theory, Sci.China Phys.Mech.Astron. 57 (2014) 1407 \rightarrow brings quasi-distribution to the light-cone distribution, up to power-suppressed effects:

$$\begin{split} \tilde{q}(x,\mu,P_3) &= \int_{-1}^1 \frac{dy}{|y|} C\left(\frac{x}{y},\frac{\mu}{P_3}\right) q(y,\mu) + \mathcal{O}\left(\Lambda_{\rm QCD}^2/P_3^2, M_N^2/P_3^2\right) \\ \text{quasi-PDF} \end{split}$$

X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002

Matching (Large Momentum Effective Theory (LaMET) X. Ji, Parton Physics from Large-Momentum Effective Field Theory, Sci.China Phys.Mech.Astron. 57 (2014) 1407 \rightarrow brings quasi-distribution to the light-cone distribution, up to power-suppressed effects:

$$\begin{split} \tilde{q}(x,\mu,P_3) &= \int_{-1}^1 \frac{dy}{|y|} C\left(\frac{x}{y},\frac{\mu}{P_3}\right) q(y,\mu) + \mathcal{O}\left(\Lambda_{\rm QCD}^2/P_3^2, M_N^2/P_3^2\right) \\ \text{quasi-PDF} & \text{PDF} \end{split}$$

X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002

Matching (Large Momentum Effective Theory (LaMET)
X. Ji, Parton Physics from Large-Momentum Effective Field Theory, Sci.China Phys.Mech.Astron. 57 (2014) 1407
→ brings quasi-distribution to the light-cone distribution, up to power-suppressed effects:

$$\begin{split} \tilde{q}(x,\mu,P_3) &= \int_{-1}^1 \frac{dy}{|y|} C\left(\frac{x}{y},\frac{\mu}{P_3}\right) q(y,\mu) + \mathcal{O}\left(\Lambda_{\rm QCD}^2/P_3^2, M_N^2/P_3^2\right) \\ \text{quasi-PDF} & \text{pert.kernel} \quad \text{PDF} \end{split}$$

duasi-PDF

Quasi-distribution approach:

X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002

pert.kernel

Matching (Large Momentum Effective Theory (LaMET) X. Ji, Parton Physics from Large-Momentum Effective Field Theory, Sci.China Phys.Mech.Astron. 57 (2014) 1407 \rightarrow brings quasi-distribution to the light-cone distribution, up to power-suppressed effects: $\tilde{q}(x,\mu,P_3) = \int_{-1}^{1} \frac{dy}{|y|} C\left(\frac{x}{y},\frac{\mu}{P_3}\right) q(y,\mu) + O\left(\Lambda_{\rm QCD}^2/P_3^2, M_N^2/P_3^2\right)$

Krzysztof Cichy Progress in *x*-dependent partonic distributions from LQCD – LATTICE2021 @ MIT – 7 / 41

higher-twist effects

Quasi-PDFs vs. pseudo-PDFs

There is a long-standing debate in the community whether quasi-distributions are "better" than pseudo-distributions or vice versa.

- Large nucleon boost: no doubt both need to give the same answer.
- Practicioner's view for realistically achievable momenta: certainly different systematics, so worthwhile (almost mandatory?) to use both.
- Quasi-distributions:
 - longer on the market and much more explored,
 - \star can utilize all values of z.
- Pseudo-distributions:
 - \star canonical support in x
 - fully utilize all nucleon boost data
 - allow for easier reconstruction with a fitting ansatz,
 - ⋆ however: z-space factorization requires perturbative z.

Current state-of-the-art: unpolarized PDFs @ phys.pt.

Quantitative agreement with phenomenology within stat. + plausible syst. error!

Krzysztof Cichy Progress in x-dependent partonic distributions from LQCD – LATTICE2021 @ MIT – 9 / 41

reconstruction of x-dep.

finite volume effects

Pseudo-PDFs: unpolarized @ phys.pt.

B. Joó et al. (HadStruc) Phys. Rev. Lett. 125 (2020) 232003 SEUDO clover $m_{\pi} = 358$, a = 0.094 fm

M. Bhat et al. (ETMC) Phys. Rev. D103 (2021) 034510

NNPDF reconstruction from lattice data

1. DGLAP evolution

2. inverse matching

3. inverse Fourier

reconstruction:

1. NN fit

2. matching

3. DGLAP evolution

Shows the power

of the convolution (*)

(only 16 lat. points!)

 $2 \rightarrow 1.65 \text{ GeV}$

 $1.65 \rightarrow 2 \text{ GeV}$

- Question: what do we get if we treat lattice observables similarly to cross sections and use the NNPDF framework to reconstruct PDFs?
- Observables: non-singlet distributions V_3 and T_3 (unpolarized): $V_3 = u - \bar{u} - (d - \bar{d}) = u_V - d_V,$ $T_3 = u + \bar{u} - (d + \bar{d}) = u_V - d_V + 2(u_S - d_S)$
- Relation between qPDF matrix elements and PDFs: $\mathcal{O}_{\gamma^0}^{\text{Re/Im}}(z,\mu) = \mathcal{C}_3^{\text{Re/Im}}\left(z,\frac{\mu}{P_z}\right) \circledast V_3/T_3\left(\mu\right)$ implemented using FastKernel tables (matching+DGLAP evolution) + NN parametrization: $V_3/T_3(x,\mu) \propto x^{\alpha_{V/T}} (1-x)^{\beta_{V/T}} NN_{V/T}(x).$
- Closure tests: generate mock data (e.g. 16 "lattice points" (16 real + 15 imaginary)) from a selected NNPDF and run fitting code over them. pseudo data:

Progress in x-dependent partonic distributions from LQCD – LATTICE2021 @ MIT – 11 / 41 Krzysztof Cichy

NNPDF reconstruction from actual lattice data

PDFs/GPDs

Distillation

GPDs

HOPE

Gluon PDFs

Singlet PDFs

Twist-3 PDFs

Hadronic tensor

Pion PDFs/DAs

Nucleon PDFs

PDFs cont. limit

Results

JAM reconstruction from actual lattice data

ETMC quasi-PDF lattice data also analyzed within the JAM framework, combining with experimental DIS data:

J. Bringewatt, N. Sato, W. Melnitchouk, J.-W. Qiu, F. Steffens, M. Constantinou, PRD103(2021)016003

Results TMDs Prospects

developments

Theoretical

unpolarized PDFs significant tension **lat**↔**exp**, precision of **exp** dominates the PDFs much improved precision of **lat** needed for any impact

helicity PDFs
promising agreement lat↔exp
current precision of lat provides significant constraints
lat does not indicate large ∆ū – ∆d asymmetry

PDFs/GPDs

Distillation Gluon PDFs

GPDs

HOPE

Singlet PDFs

Twist-3 PDFs

Hadronic tensor

Pion PDFs/DAs

Theoretical developments

Prospects

Results TMDs

Nucleon PDFs

PDFs cont. limit

Results

Continuum limit

- By now, we basically take $\mathcal{O}(a)$ -improvement of lattice observables for granted.
- However, the non-local matrix elements needed for partonic distributions imply the presence of $\mathcal{O}(a)$ effects:
 - * TM: automatic improvement does not work,
 - even chiral symmetry does not prevent these.
 J. Green, K. Jansen, F. Steffens, PRD101(2020)074509
- Nevertheless, there is a framework to calculate improvement coefficients to eliminate terms linear in a.
- Automatic $\mathcal{O}(a)$ -improvement of TM can remove some of the contributions and reduce the number of improvement coefficients.
- Some improvement coefficients can be obtained from chiral Ward identities, other from lattice perturbation theory and/or numerically.

Continuum limit – unpolarized + helicity with quasi

QUASI | TMF | m_{π} = 370 MeV | a = 0.064, 0.082, 0.093 fm

C. Alexandrou et al. (ETMC), Phys. Rev. D103 (2021) 094512

First continuum limit with pseudo-PDFs

J. Karpie, K. Orginos, A. Radyushkin, S. Zafeiropoulos (HadStruc), 2105.13313

- parametrization of systematic uncertainties using Jacobi polynomials to characterize and remove discretization and higher-twist effects
- fits with Bayesian priors

PSEUDO clover $m_{\pi} \approx 440 \text{ MeV}$ a = 0.048, 0.065, 0.075 fm

Continuum limit – unpolarized with quasi

Combined physical pion mass – continuum limit with quasi-PDFs H.-W. Lin, J.-W. Chen, R. Zhang, 2011.14971 H.-W. Lin Wed 14:45

- nucleon boosts up to 3.1 GeV
- striking feature: tiny statistical errors even at the physical point

How are such small errors possible at the physical point?

Another approach – superfine lattice: unpolarized/helicity PDFs at a = 0.042 fm Z. Fan et al. (BNL+MSULat), Phys. Rev. D102 (2020) 074504

Progress in x-dependent partonic distributions from LQCD – LATTICE2021 @ MIT – 17 / 41 Krzysztof Cichy

Digression: statistical errors

Table 1. Parameters of various lattice calculations and comparison of the noise-to-signal ratio.

Ref.	$m_{\pi}({ m MeV})$	$P_3({ m GeV})$	$\frac{n}{s}\Big _{z=0}$
quasi/pseudo $[54, 90]$	130	1.38	6%
pseudo [87]	172	2.10	8%
current-current [93]	278	1.65	19% *
quasi [67]	300	1.72	6% †
quasi/pseudo [72]	300	2.45	8% †
quasi/pseudo [<mark>65</mark>]	310	1.84	3% †
twist-3 [143]	260	1.67	15%
s-quark quasi [108]	260	1.24	31%
<i>s</i> -quark quasi [107]	310	1.30	43% **
gluon pseudo [129]	310	1.73	39%
quasi-GPDs [163] $-t=0.69 \text{GeV}^2$	260	1.67	23%
quasi-GPDs [162] $-t=0.92 \text{GeV}^2$	310	1.74	59%

† At $T_{\text{sink}} < 1$ fm.

 \star At smallest z value used, z=2.

****** At maximum value of imaginary part, z = 4.

M. Constantinou, EPJA57(2021)77 proceedings of would-be plenary talk of LATTICE 2020

Distillation for PDFs

Very recent work applied distillation first time for PDFs

- C. Egerer et al. (HadStruc), 2107.05199
- distillation combined with momentum smearing
 C. Egerer et al. (HadStruc),
 - PRD103(2021)034502
- other important ingredients: summation method, Jacobi polynomials, Bayesian fits
- found inconsistency with DGLAP unless allowing for discretization effect in fits

Gluon PDFs (pseudo)

a = 0.094 fm

Another brand new work where distillation is crucial

T. Khan et al. (HadStruc), 2107.08960

Key aspects of the calculation:

- distillation combined with momentum smearing
- gradient flow to improve signal (extrapolate to $\tau = 0$)
- summed GEVP to access smaller temp. sep.

T. Khan Tue 21:00

W. Morris Tue 21:30

R. Sufian Tue 14:45

PSEUDO

clover

z = 5a

z = 6a

2-param (Q)

1.0

0.8

0.4

0.2

 $\mathcal{I}_g(
u,\mu^2)$ 9.0 $m_{\pi} = 358 \text{ MeV}$

x

Gluon PDFs (pseudo)

Flavor decomposition

Most studies up to date were for the flavor non-singlet u - d combination. Important direction: flavor decomposition.

C. Alexandrou et al. (ETMC), Phys. Rev. Lett. 126 (2021) 102003; 2106.16065

Krzysztof Cichy Progress in x-dependent partonic distributions from LQCD – LATTICE2021 @ MIT – 22 / 41

F. Manigrasso Tue 14:30

Strange and charm contributions

Another attempt: to determine the contribution of strange and charm quarks

Strange and charm are sea quarks, hence the ignored gluon splitting is hard to justify

First studies also for GPDs

C. Alexandrou et al. (ETMC), Phys. Rev. Lett. 125 (2020) 262001

• nucleon boosts up to 1.67 GeV

Challenges:

- momentum transfer lowers the signal-to-noise ratio
- 2 or 4 GPDs $(H, E, \tilde{H}, \tilde{E})$ contribute to MEs at $Q^2 \neq 0$ \Rightarrow need to disentangle them using different projectors
- standard GPDs need Breit frame: $P^i_{\perp} = -P^f_{\perp}$
- needs optimization of momentum smearing for each $ec{Q}$

A. Scapellato Thu 13:30

QUASI

Important insights from models:

- S. Bhattacharya, C. Cocuzza, A. Metz, Phys. Lett. B788 (2019) 453
- S. Bhattacharya, C. Cocuzza, A. Metz, Phys. Rev. D102 (2020) 054201

Generalized parton distributions (GPDs)

Twist-3 PDFs

Jan Uam

PDFs can be classified according to their twist, which describes the order in 1/Q at which they appear in the factorization of structure functions.

LT: twist-2 – probability densities for finding partons carrying fraction x of the hadron momentum.

Twist-3 PDFs

Since UAM

PDFs can be classified according to their twist, which describes the order in 1/Q at which they appear in the factorization of structure functions.

LT: twist-2 – probability densities for finding partons carrying fraction x of the hadron momentum.

Hadronic tensor & forward Compton amplitude

Another way of approaching partonic distributions: hadronic tensor / Compton amplitude. Unpolarized: can be factorized into F_1/F_2 or $\mathcal{F}_1/\mathcal{F}_2$ (Compton) structure functions (optical theorem: Im of \mathcal{F}_i related to F_i).

- hadronic tensor K.-F. Liu, S.-J. Dong, Phys. Rev. Lett. 72 (1994) 1790
 lattice-computed Euclidean HT ^{inverse Laplace transform}→ Minkowski HT main obstacle: inverse problem J. Liang et al. (χQCD), Phys. Rev. D101 (2020) 114503
- forward Compton amplitude A. J. Chambers et al. (QCDSF), Phys. Rev. Lett. 118 (2017) 242001 spatial component T_{33} can be used to extract Compton SF \mathcal{F}_1 and Mellin moments i.e. Euclidean=Minkowski (as long as $|\omega| < 1$) effective computation: Feynman-Hellmann theorem

Heavy OPE approach

Yet another method: Compton tensor with an auxiliary heavy quark + OPE to relate to Mellin/Gegenbauer moments of PDFs/LCDAs.

W. Detmold, C.-J. D. Lin, Phys. Rev. D73 (2006) 014501

- flavor-changing axial vector current: $J^{\mu}_{A} = \bar{\Psi}\gamma^{\mu}\gamma^{5}\psi + \bar{\psi}\gamma^{\mu}\gamma^{5}\Psi$, $\Psi(\psi)$ – heavy (light) quark
- physics independent of the auxiliary quark mass as long as $\Lambda_{
 m QCD} \ll m_\Psi \sim \sqrt{Q^2}$ (and $m_{\Psi} \ll a^{-1}$ for control of discretization effects)
- all effects of the heavy quark in Wilson coefficients
- no power-divergent mixings, suppressed HTE

Method recently dubbed **HOPE** (heavy OPE) W. Detmold, A. Grebe, I. Kanamori, C.-J. D. Lin,

R. Perry, Y. Zhao (HOPE), 2103.09529

Recent development:

- relation to other approaches
- analytic structure of HOPE amplitudes, convergence radius
- calculation of 1-loop Wilson coefficients for unpolarized/helicity PDFs and LCDA

Progress in x-dependent partonic distributions from LQCD – LATTICE2021 @ MIT – 28 / 41 Krzysztof Cichy

0.0

0.1

0.2

0.3

 τ (fm)

0.4

0.5

0.6

0.02

0.04

a (fm)

0.06

Pion PDFs

PDFs/GPDs

Distillation

GPDs

HOPE

Gluon PDFs Singlet PDFs

Twist-3 PDFs

Hadronic tensor

Pion PDFs/DAs

Theoretical

Prospects

developments

Results TMDs

Nucleon PDFs

PDFs cont. limit

Results

Meson PDFs/DAs

UAM

Pion (pseudo-)PDFs also investigated in QCD_3 with 0,2,4,8 flavors N. Karthik, Phys. Rev. D103 (2021) 074512

Meson distribution amplitudes (DAs) important for many exclusive decays.

DAs represent momentum distribution of quarks/antiquarks in the leading $q\bar{q}$ Fock state of the meson's wave function.

Computed rather early with x-dependent approaches. Recent work:

- K^* and ϕ mesons with quasi (physical point, continuum limit) J. Hua et al. (LPC), 2011.09788
- π and K mesons
- π and K mesons with quasi (continuum limit)
 R. Zhang et al., Phys. Rev. D102 (2020) 094519
- B meson DA formalism with pseudo: S. Zhao, A. Radyushkin, Phys. Rev. D103 (2021) 054022 quasi: W. Wang, Y.-M. Wang, J. Xu, S. Zhao, Phys. Rev. D102 (2020) 011502

Krzysztof Cichy Progress in x-dependent partonic distributions from LQCD – LATTICE2021 @ MIT – 30 / 41

J. Hua Thu 21:30

P. Scior Thu 21:45

N. Juliano Thu 22:00

2-loop matching

One of the important systematics of PDF computations is the truncation effect in the matching.

Recent 2-loop analyses:

• renormalization and VEVs of non-local off-light-cone $\bar{q}q$ or two $F^{\mu\nu}$'s

V. Braun, K. Chetyrkin, B. Kniehl, JHEP 07 (2020) 161 nucleon MEs of these are quasi-PDFs at space-like separations similar, but time-like MEs in HQET

showed that renorm. is the same for space-like and time-like extracted $\overline{\rm MS}$ anom. dimensions and renorm. factors

- perturbative results for QCFs (quark correlation functions), MS renorm. factors and conversion factors to a vacuum scheme Z.-Y. Li, Y.-Q. Ma, J.-W. Qiu, Phys. Rev.Lett. 126 (2021) 072001 FT of QCFs gives either quasi-PDFs or pseudo-PDFs matching coefficients given
- matching coefficients for quasi-PDFs in the modified MS and RI/MOM schemes
 L.-B. Chen, W. Wang, R. Zhu, Phys. Rev. D102 (2020) 011503
 L.-B. Chen, W. Wang, R. Zhu, JHEP 10 (2020) 079
 L.-B. Chen, W. Wang, R. Zhu, Phys. Rev.Lett. 126 (2021) 072002
 (lattice data from Y.-S. Liu et al. (LPC), Phys. Rev. D101 (2020) 034020)

R. Zhu Wed 6:30

Y. Zhao Wed 14:00, J.-H. Zhang Wed 6:15

Hybrid renormalization

The standard procedure of quasi-PDF MEs renormalization:

 $O_{\overline{\mathrm{MS}}}(z,\mu) = Z_{\overline{\mathrm{MS}}}(z,-p^2,\mu) \frac{O(z,a)}{Z(z,-p^2,a)}$

is argued to contain non-perturbative effects at large-z. X. Ji et al., Nucl. Phys. B964 (2021) 115311

Proposed way out: hybrid renormalization.

- short distance $z \le z_S \approx 0.3$ fm - ratio scheme / RI-MOM,
- intermediate distance 0.3 fm $\approx z_S \geq z \leq z_L \approx \Lambda_{\rm QCD}^{-1}$
 - separate renormalization of log and linear divergences:

 $Z(a,\mu)\exp(-\delta m|z|)O(z,a)$,

 δm – Wilson line mass renormalization, e.g. from the static potential or from fitting MEs at large-z

- large distance $(z_L \approx \Lambda_{\text{QCD}}^{-1} \approx z_L \ge z)$ - exponential/algebraic extrapolation (Regge-based),
- matching the different procedures at z_S and z_L .

Krzysztof Cichy Progress in x-dependent partonic distributions from LQCD – LATTICE2021 @ MIT – 32 / 41

a=0.04 fm, P^z=1.94 GeV, z_s=0.24 fm

Residual divergence

clover: 0.039-0.098 fm

HISQ: 0.032-0.121 fm

There is also numerical evidence pointing to the possible contamination of RI/MOM-renormalized MEs with a residual linear divergence. K. Zhang et al. (χ QCD), 2012.05448

OV on HISQ

clover on clover/HISQ

 $m_{\pi} = 310-360 \text{ MeV}$

- investigated several types of MEs
- pion in the rest frame to achieve good statistical precision
- different lattice setups:
 - \star overlap on HISQ, DWF
 - \star clover on HISQ, unitary clover
 - \star TMF on HISQ
 - \star lattice spacings from 0.12 to 0.032 fm

Other developments

- Self-renormalization Y.-K. Huo et al. (LPC), Nucl. Phys. B969 (2021) 115443 disentangle Z-factors directly from MEs at several lattice spacings
- Bayesian determination of OPE Wilson coefficients from lattice and pheno data N. Karthik, R. Sufian, 2106.03875
- Bayes-Gauss-Fourier transform for PDF reconstruction
 C. Alexandrou et al. (ETMC), Phys. Rev. D102 (2020) 094508
- Renormalon effects in quasi- and pseudo-distributions
 V. Braun, A. Vladimirov, J.-H. Zhang, Phys. Rev. D99 (2019) 014013; W.-Y. Liu, J.-W. Chen, 2010.06623
 enhanced power corrections at small- and large-x
- Chiral perturbation theory for LaMET W.-Y. Liu, J.-W. Chen, 2011.13536 FVE for $m_{\pi}L \geq 3$ below 1% (smaller than in rest frame) determined also leading pion mass dependence
- Origin and resummation of threshold logarithms X. Gao et al., Phys. Rev. D103 (2021) 094504
- FVE for non-local current-current operators R. Briceño, J. Guerrero, M. Hansen, C. Monahan, Phys. Rev. D98 (2018) 014511 R. Briceño, C. Monahan, Phys. Rev. D103 (2021) 094521 FVE can depend on $m_{\pi}(L-z)$ and, thus, be enhanced at large separations

Parton distributions in nongauge theories L. Del Debbio, T. Giani, C. Monahan, JHEP 09(2020)021
 formal equivalence of quasi- and pseudo-distributions
 but: different systematics and hence complementary
 insights also for new class of factorizable observables based on gradient flow
 (earlier work: C. Monahan, K. Orginos, JHEP 03 (2017) 116)
 advocating global analyses of lattice data to extract PDFs

Y. Su Wed 21:30

J.-H. Zhang Wed 6:15

Transverse momentum dependent PDFs

 $\lambda n + \vec{b}_{\perp}$

From: X. Ji et al., 2004.03543

PDFs provide information only on the longitudinal momentum distributions, while in many cases important effects also from transverse momentum.

- Important for wide kinematical ranges in Drell-Yan, e^+e^- annihilation, SIDIS
- Example: unpolarized

 $f(x,\vec{k}_{\perp}) = \frac{1}{2P^{+}} \int \frac{d\lambda}{2\pi} \frac{d^{2}\vec{b}_{\perp}}{(2\pi)^{2}} e^{-i\lambda x + i\vec{k}_{p}erp\cdot\vec{b}_{\perp}} \langle P|\bar{\psi}(\lambda n/2 + \vec{b}_{\perp})\gamma^{+}\mathcal{W}_{n}(\lambda n/2 + \vec{b}_{\perp})\psi(-\lambda n/2)|P\rangle$

- Crucial new aspect: rapidity divergences from soft gluon radiation \Rightarrow rapidity regulator δ + UV renormalization scale μ
- Rapidity divergences can be incorporated in the soft function $S(b_{\perp}, \mu, \delta^+, \delta^-)^$ represents soft gluon radiation effects of a fast-moving charged particle
- Physical renormalized TMD: $f^{\text{TMD}} = f/\sqrt{S}$
- Soft function:
 - intrinsic part (rapidity-independent)
 - * rapidity-dependent part defining Collins-Soper kernel $K(b_{\perp}, \mu)$ log-derivative of f^{TMD} .
- $f^{\text{TMD}}(x, b_{\perp}, \mu, \zeta)$ final desired object with evolution in the 2 last arguments governed by:
 - $\star~$ CS kernel for rapidity $\zeta~$
 - \star γ_{μ} anomalous dimension (consisting of cusp and hard anomalous dimension) for renormalization scale μ
- also: single transverse-spin asymmetry & Sivers Function from LaMET X. Ji, Y. Liu, A. Schäfer, F. Yuan, Phys. Rev. D103 (2021) 074005 light-front wave functions from LaMET X. Ji, Y. Liu, 2106.05310

Intrinsic soft function

b _ / fm

Intrinsic soft function

Collins-Soper kernel

Q.-A. Zhang Wed 7:30

The CS kernel governs the rapidity evolution of TMDs Two approaches:

Key prospects for the future

Introduction

Results PDFs/GPDs

Theoretical developments

Results TMDs

Prospects

 Robustness and reliability of the lattice extraction of x-dependent distributions
 ⇒ towards precision studies improvements of lattice techniques study and removal of systematic effects

2. Exploration of new directions *new kinds of distributions* higher-twist, GPDs, TMDs, LFWFs *other hadrons?*

can be phenomenologically relevant, e.g. K^* , ϕ J. Hua et al. (LPC), 2011.09788 J. Hua Thu 21:30 can shed light on the nucleon, e.g. Δ^+ Y. Chai et al. (Beijing+ETMC), PRD102(2020)014508

3. Synergy between lattice and phenomenology
 unpolarized PDFs – benchmark other distributions – potentially crucial impact

PDFs/GPDs

Theoretical

Prospects

developments

Results TMDs

Results

- Lattice-specific systematics:
 - \star isolation of the ground state hadron
 - $\star \quad \text{discretization effects}$
 - \star finite volume effects
 - \star pion mass dependence (if not working at the physical point)

Note: hierarchy of systematics needs to be observed

- Broader systematics of the lattice calculation:
 - \star reconstruction of the *x*-dependence
 - \star non-perturbative renormalization
 - \star truncation effects: conversion, evolution, matching
 - \star higher-twist effects

Key challenges:

- lattice: reliably reach large hadron boosts
- lattice: control all lattice-specific systematics
- pheno: insights into HTE?

PDFs/GPDs

Theoretical

Prospects

developments

Results TMDs

Results

Conclusions

 Message of the talk: enormous progress in lattice calculations of x-dependent distributions with very encouraging results!

- Increasing number of distribution types accessible for lattice.
- However, there are still major challenges related to control of several sources of systematics.
- Expect:
 - slow, but consistent progress,
 - \star complementary role of LQCD and phenomenology.

PDFs/GPDs

Theoretical

Prospects

developments

Results TMDs

Results

Conclusions

 Message of the talk: enormous progress in lattice calculations of x-dependent distributions with very encouraging results!

- Increasing number of distribution types accessible for lattice.
- However, there are still major challenges related to control of several sources of systematics.
- Expect:
 - slow, but consistent progress,
 - * complementary role of LQCD and phenomenology.

Krzysztof Cichy Progress in *x*-dependent pa hank you for your attention!