CNIS

Lattice field theory and BSM: the beginning of a beautiful friendship

Giacomo Cacciapaglia IP2I Lyon, France

> Lattice 2021 July 27

Louis, I think this is the beginning of a beautiful friendship.

Strong coupling in BSM

- @ Composite Higgs models
- a Composite Dark Matter
- @ SIMP
- o Dark glueballs
- @ Composite axions

Composite Higgs models 101

- · Symmetry broken by a condensate (of TC-fermions)
- Higgs and longitudinal Z/W emerge as mesons
 (pions)

Scales:

f : Higgs decay constant v : EW scale $m_\rho \sim 4\pi f$

EWPTs + Higgs coupl. limit:

 $f \gtrsim 4v \sim 1 \text{ TeV}$

Composite Higgs models 101

	SU(2) _{TC}	$SU(4)_{\psi}$	SU(2) _L	<i>U</i> (1) _Y
$ \left(\begin{array}{c} \psi^1 \\ \psi^2 \end{array}\right) $			2	0
ψ^3			1	-1/2
ψ^4			1	1/2

T.Ryttov, F.Sannino 0809.0713 Galloway, Evans, Luty, Tacchi 1001.1361

The EW symmetry is embedded in the global flavour symmetry SU(4) !

 The global symmetry is broken: SU(4)/Sp(4) Witten, Kosower

o 5 Goldstones (pions) arise:

Composite Higgs models 101

The difficult parts:

- Generate the needed misalignment (via an effective potential)
- Generate couplings for the top (and other
 SM fermions)
- Correct Higgs mass and couplings
- · Conformal window

The partial compositeness paradigm

Kaplan Nucl. Phys. B365 (1991) 259

 $\frac{1}{\Lambda_{q}^{d-1}} \mathcal{O}_{H} q_{L}^{c} q_{R} \qquad \Delta m_{H}^{2} \sim \left(\frac{4\pi f}{\Lambda_{P}}\right)^{d-4} f^{2} \qquad \text{Both irrelevant if}$

we assume:

 $d_H > 1$ $d_{H^2} > 4$

Let's postulate the existence of fermionic operators:

 $\frac{1}{\Lambda_{\rm fl.}^{d_F-5/2}} (\tilde{y}_L \ q_L \mathcal{F}_L + \tilde{y}_R \ q_R \mathcal{F}_R)$

This dimension is not related to the Higgs!

 $f(y_L \; q_L Q_L + y_R \; q_R Q_R)$ with $y_{L/R} f \sim \left(rac{4\pi f}{\Lambda_{
m e}}
ight)^{d_F-5/2} 4\pi f$

Top partners as baryons Gauge-fermion underlying theory

- typically loop-suppressed
- psi need to carry QCD colour and
 flavour quantum numbers: too many!
- too many adjoint fermions!

Top partners as baryons Gauge-fermion underlying theory

- higher dimension, but easier to generate
- More freedom in choosing the fermion representations

Top partners as baryons Gauge-fermion underlying theory

 $\frac{1}{\Lambda_{\rm fl.}^2} \begin{array}{c} q\psi\psi\psi\\ \hline\\ \end{array}$ $d_T^{\rm naive} = 9/2 \end{array}$

- higher dimension, but easier to generate
- More freedom in choosing the fermion representations

- What generated the 4-F interactions?
- We need large anomalous dimensions: strongly coupled conformal phase!

Top partners as baryons

100 GeV $v_{
m SM} \sim f \sin heta$

Top partners as baryons

Gauge-fermion underlying theory

The theory needs to lie just below the conformal window

IR Model zoology

$G_{ m HC}$	ψ	x	Restrictions	$-q_\chi/q_\psi$	Y_{χ}	Non Conformal	Model Name	
Real Real $SU(5)/SO(5) \times SU(6)/SO(6)$								
$SO(N_{ m HC})$	$5 imes \mathbf{S}_2$	$6 imes \mathbf{F}$	$N_{ m HC} \geq 55$	$\tfrac{5(N_{\rm HC}+2)}{6}$	1/3	/		
$SO(N_{ m HC})$	$5 imes \mathbf{Ad}$	$6 imes \mathbf{F}$	$N_{ m HC} \ge 15$	$\frac{5(N_{\rm HC}-2)}{6}$	1/3	/		
$SO(N_{ m HC})$	$5 imes \mathbf{F}$	$6 imes \mathbf{Spin}$	$N_{ m HC}=7,9$	$\frac{5}{6}, \frac{5}{12}$	1/3	$N_{ m HC}=7,9$	M1, M2	
$SO(N_{ m HC})$	$5 imes {f Spin}$	$6 imes \mathbf{F}$	$N_{ m HC}=7,9$	$\frac{5}{6}, \frac{5}{3}$	2/3	$N_{ m HC}=7,9$	M3, M4	
Real Pseudo-Real $SU(5)/SO(5) \times SU(6)/Sp(6)$								
$Sp(2N_{ m HC})$	$5 imes \mathbf{Ad}$	$6 imes \mathbf{F}$	$2N_{ m HC} \ge 12$	$\frac{5(N_{\rm HC}+1)}{3}$	1/3	/		
$Sp(2N_{ m HC})$	$5 imes \mathbf{A}_2$	$6 imes \mathbf{F}$	$2N_{ m HC} \geq 4$	$rac{5(N_{ m HC}-1)}{3}$	1/3	$2N_{ m HC}=4$	M5	
$SO(N_{ m HC})$	$5 imes \mathbf{F}$	$6 imes \mathbf{Spin}$	$N_{ m HC}=11,13$	$\frac{5}{24}, \frac{5}{48}$	1/3	/		
Real Complex $SU(5)/SO(5) \times SU(3)^2/SU(3)$								
$SU(N_{ m HC})$	$5 imes \mathbf{A}_2$	$3 imes ({f F}, {f \overline F})$	$N_{ m HC}=4$	<u>5</u> 3	1/3	$N_{ m HC}=4$	M6	
$SO(N_{ m HC})$	$5 imes \mathbf{F}$	$3 imes (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$N_{ m HC}=10,14$	$\frac{5}{12}, \frac{5}{48}$	1/3	$N_{ m HC} = 10$	M7	
Pseudo-Real Real $SU(4)/Sp(4) \times SU(6)/SO(6)$								
$Sp(2N_{ m HC})$	$4 imes \mathbf{F}$	$6 imes \mathbf{A}_2$	$2N_{ m HC} \leq 36$	$\frac{1}{3(N_{\rm HC}-1)}$	2/3	$2N_{ m HC}=4$	M8	
$SO(N_{ m HC})$	$4 imes \mathbf{Spin}$	$6 imes \mathbf{F}$	$N_{ m HC}=11,13$	$\frac{8}{3}, \frac{16}{3}$	2/3	$N_{ m HC} = 11$	M9	
Complex Real $SU(4)^2/SU(4) \times SU(6)/SO(6)$								
$SO(N_{ m HC})$	$4\times(\mathbf{Spin},\overline{\mathbf{Spin}})$	$6 imes \mathbf{F}$	$N_{ m HC}=10$	<u>8</u> 3	2/3	$N_{ m HC} = 10$	M10	
$SU(N_{ m HC})$	$4 imes (\mathbf{F}, \overline{\mathbf{F}})$	$6 imes \mathbf{A}_2$	$N_{ m HC}=4$	$\frac{2}{3}$	2/3	$N_{ m HC}=4$	M11	
Complex Complex $SU(4)^2/SU(4) \times SU(3)^2/SU(3)$								
$SU(N_{ m HC})$	$4 imes (\mathbf{F}, \overline{\mathbf{F}})$	$3 imes ({f A}_2, \overline{f A}_2)$	$N_{ m HC} \geq 5$	$\frac{4}{3(N_{\rm HC}-2)}$	2/3	$N_{ m HC}=5$	M12	
$SU(N_{ m HC})$	$4 imes (\mathbf{F}, \overline{\mathbf{F}})$	$3 imes ({f S}_2, \overline{f S}_2)$	$N_{ m HC} \geq 5$	$\frac{4}{3(N_{\rm HC}+2)}$	2/3	/		
$SU(N_{ m HC})$	$4 imes (\mathbf{A}_2, \overline{\mathbf{A}}_2)$	$3 imes ({f F}, {f \overline F})$	$N_{ m HC}=5$	4	2/3	/		

Ferretti 1604.06467

	Real Pseudo-Real $SU(5)/SO(5) \times SU(6)/Sp(6)$						
$Sp(2N_{ m HC})$	$5 imes \mathbf{Ad}$	$6 imes \mathbf{F}$	$2N_{\rm HC} \geq 12$	$rac{5(N_{ m HC}+1)}{3}$	1/3	/	
$Sp(2N_{ m HC})$	$5 imes \mathbf{A}_2$	$6 imes \mathbf{F}$	$2N_{ m HC} \geq 4$	$rac{5(N_{ m HC}-1)}{3}$	1/3	$2N_{ m HC}=4$	M5
$SO(N_{ m HC})$	$5 imes {f F}$	$6 imes \mathbf{Spin}$	$N_{ m HC}=11,13$	$\frac{5}{24}, \frac{5}{48}$	1/3	/	
	Real	Complex	SU(5)/SO(5)	\times SU(3) ²	/SU(3)		
$SU(N_{ m HC})$	$5 imes \mathbf{A}_2$	$3 imes ({f F}, \overline{f F})$	$N_{ m HC} = 4$	<u>5</u> 3	1/3	$N_{ m HC}=4$	M6
$SO(N_{ m HC})$	$5 imes \mathbf{F}$	$3 imes (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$N_{ m HC}=10,14$	$\frac{5}{12}, \frac{5}{48}$	1/3	$N_{ m HC}=10$	M7
in Suna Tunia di Indinasa di Angola da Suna di Angola da Suna di Angola da Suna di Angola da Suna di Angola da Mangola di Suna	Pseudo-Real	Real	SU(4)/Sp(4)	\times SU(6)/	SO(6)		an an tha an
$Sp(2N_{ m HC})$	$4 imes \mathbf{F}$	$6 imes \mathbf{A}_2$	$2N_{ m HC} \leq 36$	$\frac{1}{3(N_{\rm HC}-1)}$	2/3	$2N_{ m HC}=4$	M8
$SO(N_{ m HC})$	$4 imes \mathbf{Spin}$	$6 imes \mathbf{F}$	$N_{ m HC}=11,13$	$\frac{8}{3}, \frac{16}{3}$	2/3	$N_{ m HC}=11$	M9
Complex Real $SU(4)^2/SU(4) \times SU(6)/SO(6)$							
$SO(N_{ m HC})$	$4 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$6 imes \mathbf{F}$	$N_{ m HC} = 10$	8	2/3	$N_{ m HC}=10$	M10
$SU(N_{ m HC})$	$4 imes (\mathbf{F}, \overline{\mathbf{F}})$	$6 imes \mathbf{A}_2$	$N_{ m HC} = 4$	$\frac{2}{3}$	2/3	$N_{ m HC}=4$	M11
Complex Complex $SU(4)^2/SU(4) \times SU(3)^2/SU(3)$							
$SU(N_{ m HC})$	$4 imes (\mathbf{F}, \overline{\mathbf{F}})$	$3 imes (\mathbf{A}_2, \overline{\mathbf{A}}_2)$	$N_{\rm HC} \geq 5$	$\frac{4}{3(N_{ m HC}-2)}$	2/3	$N_{ m HC}=5$	M12
$SU(N_{ m HC})$	$4 imes (\mathbf{F}, \overline{\mathbf{F}})$	$3 imes ({f S}_2, \overline{f S}_2)$	$N_{ m HC} \geq 5$	$\frac{4}{3(N_{\rm HC}+2)}$	2/3	/	
$SU(N_{\rm HC})$	$4 imes (\mathbf{A}_2, \overline{\mathbf{A}}_2)$	$3 imes ({f F}, {f \overline F})$	$N_{ m HC} = 5$	4	2/3	/	11

	Real	Pseudo-Real	SU(5)/SO(5)	$) \times SU(6)$	/Sp(6)		
$Sp(2N_{ m HC})$	$5 imes \mathbf{Ad}$	$6 imes \mathbf{F}$	$2N_{ m HC} \ge 12$	$rac{5(N_{ m HC}+1)}{3}$	1/3	/	
$Sp(2N_{ m HC})$	$5 imes \mathbf{A}_2$	$6 imes {f F}$	$2N_{ m HC} \geq 4$	$rac{5(N_{ m HC}-1)}{3}$	1/3	$2N_{ m HC}=4$	M5
$SO(N_{ m HC})$	$5 imes \mathbf{F}$	$6 imes \mathbf{Spin}$	$N_{ m HC}=11,13$	$\frac{5}{24}, \frac{5}{48}$	1/3	/	
	Real	Complex	SU(5)/SO(5)	\times SU(3) ²	/SU(3)		
$SU(N_{ m HC})$	$5 imes \mathbf{A}_2$					$N_{ m HC}=4$	M6
$SO(N_{ m HC})$	$5 imes \mathbf{F}$	3		0	-	$N_{ m HC} = 10$	M7
	Pseudo-Real						
$Sp(2N_{ m HC})$	$4 imes \mathbf{F}$					$2N_{ m HC}=4$	M8
$SO(N_{ m HC})$	$4 imes \mathbf{Spin}$			•	• 1 4	$N_{ m HC} = 11$	M9
	Complex	Cori 1	rest nas u	ne cici	violet		
$SO(N_{ m HC})$	$4 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	· · · ·		3		$N_{ m HC} = 10$	M10
$SU(N_{ m HC})$	$4 imes (\mathbf{F}, \overline{\mathbf{F}})$	$6 imes \mathbf{A}_2$	$N_{ m HC}=4$	$\frac{2}{3}$	2/3	$N_{ m HC} = 4$	M11
	Complex	Complex	$SU(4)^{2}/SU(4)$	\times SU(3) ²	$^{2}/\mathrm{SU}(3)$		
$SU(N_{ m HC})$	$4 imes (\mathbf{F}, \overline{\mathbf{F}})$	$3 imes ({f A}_2, \overline{f A}_2)$	$N_{ m HC} \geq 5$	$\frac{4}{3(N_{ m HC}-2)}$	2/3	$N_{ m HC}=5$	M12
$SU(N_{ m HC})$	$4 imes (\mathbf{F}, \overline{\mathbf{F}})$	$3 imes ({f S}_2, \overline{f S}_2)$	$N_{ m HC} \geq 5$	$\frac{4}{3(N_{\rm HC}+2)}$	2/3	/	
$SU(N_{\rm HC})$	$4 imes (\mathbf{A}_2, \overline{\mathbf{A}}_2)$	$3 imes ({f F}, {f ar F})$	$N_{ m HC} = 5$	4	2/3	/	11

Partially Unified Partial Compositeness (PUPC)

G.C., S.Vatani, C.Zhang

1911.05454, 2005.12302

· Condensation scale

(

Planck scale

Usual low energy description of composite Higgs models

standard Model

One of Ferretti models

Partially Unified Partial Compositeness (PUPC)

Planck scale

G.C., S.Vatani, C.Zhang 1911.05454, 2005.12302

Conformal window (large scaling dimensions) One of Ferretti models + additional fermions

· Condensation scale

Usual low energy description of composite Higgs models

standard Model

One of Ferretti models

Partially Unified Partial Compositeness (PUPC)

Planck scale

HC and SM gauge groups partially unified

symmetry breaking by scalars

Conformal window (large scaling dimensions) G.C., S.Vatani, C.Zhang 1911.05454, 2005.12302

> 4-fermion Ops generated!

One of Ferretti models + additional fermions

· Condensation scale

Usual low energy description of composite Higgs models

standard Model

One of Ferretti models

Techni-Paki-Salam

0

Parallel talk: Friday

 $\Omega = \begin{pmatrix} \psi_d \\ q \\ l \end{pmatrix}$

Simplest model embeds an Sp(4) TC with SU(4) Pati-Salam in SU(8)

Techni-Paki-Salam

0

Parallel talk: Thursday

 $\Omega = \begin{pmatrix} \psi_d \\ q \\ \eta \end{pmatrix}$

Simplest model embeds an Sp(4) TC with SU(4) Pati-Salam in SU(8)

0

0

Sp(4) strong interactions emerge

- Is this theory conformal?
- What are the anomalous dimensions?

sp(4) on the lattice

E.Bennet et al 1911.00437, 1912.06505

- This slide: 2F + 3A with quenched fermions (M8)
- Thursday parallel talks will give more updates
- Biagio Lucini, Jong-Wan Lee,
 Ho Hsiao, Jack Holligan

Other theories

● SU(4) w. 2A + 2F (rel. for models <u>M6</u> and <u>M11</u>)

Thursday: Yigal Shamir Friday: Alessandro Lupo

First computation of baryon masses!

Tension reduced for M11

Other theories

● SU(4) w. 2A + 2F (rel. for models M5 and M11)

Thursday: Yigal Shamir Friday: Alessandro Lupo

@ SU(3) w. 8F or 4+6F

Thursday: Oliver Witzel, James Ingolby

SU(2) w. 2F (minimal template without PC)

Friday: Vincent Drach

Other theories

⊙ SU(2) w. 2F (minimal template without PC) [see slide 4]

Friday: Vincent Drach

Scalar channel (0++):

- Determination of the flavour singlet coupling: the 0++ mixes with the would be Higgs boson altering its physical properties (see 1809,09146) and can be produced at the LHC.
- -Results strongly suggest that in the explored region of fermion masses the sigma is a bound state, however more phenomenologically relevant regions (non stable sigma) will be soon investigated

Phase-shift in the flavour singlet channel - from 2107.09974

A closer look at the top and Higgs masses

- At the EFT level, the computation can be done in two ways:
 - 1) Integrating out the massive Baryons that mix with the top quark.
 - 2) Introducing EFT operators in terms of the spurion couplings of the top to the composite operators (that generate Baryons)
- Are they equivalent?

A closer look at the top and Higgs masses

Are they equivalent? No!

Consider a generic Ferretti model, with a light ALP coming from the spontaneous breaking of a global U(1) symmetry.

Baryon mixing, Q and S

 $-\mathcal{L}_{PC} = y_L f e^{i\xi_Q \frac{a}{f_a}} \bar{Q} P_L q + y_R f e^{i\xi_S \frac{a}{f_a}} \bar{t} P_L S$ $-y'_L H e^{-i\xi_S \frac{a}{f_a}} \bar{S} P_L q - y'_R H e^{-i\xi_Q \frac{a}{f_a}} \bar{t} P_L Q$

Top mass operator

 $-\mathcal{L}_{m_t} = y_L y_R H e^{i(\xi_Q + \xi_S) \frac{a}{f_a}} \bar{t} P_L q$

 $-i\frac{m_t}{f_a}\left(\xi_Q + \xi_S\right) \sim \mathcal{O}(y^2)$

 $-i\frac{m_t}{f_a}\left(\xi_Q\frac{y_L^2f^2}{M_Q^2} + \xi_S\frac{y_R^2f^2}{M_S^2}\right) \sim \mathcal{O}(y^4)$

The results are parametrically different. What is the impact on the Higgs mass calculation? Heavy Baryons may not be disfavoured!

There's something about Muons Technicolor strikes back?

0

G.Cacciapaglia, C.Cot, F.Sannino 2104.08818

g-2 fixes the scale of new physics
 natural values for TC-like theories!
 $\Delta a_{\mu}|_{BSM} \approx \frac{m_{\mu}^2}{\Lambda^2}$

$\Lambda \approx 2 \text{ TeV} \approx 4\pi v$

RK requires large muon couplings (attainable in strong dynamics) 21

There's something about Muons Technicolor strikes back?

- If this scenario is confirmed by the anomalies, the
 Higgs must be a dilaton-like light scalar.
- a Lattice crucial in computing its mass and couplings!
- · Which theory? [Back to slide 10]

Thursday parallel session: Maarten Golterman, Chih Him Wong

Outlook

- Composite (Higgs or Dark Matter or...) models
 are a feasible route for New Physics
- Lattice input is dearly needed to establish the feasibility of these scenarios
- Intriguing hint: muon g-2 and Rk explainable via
 TC-like theories!
- Lots of useful results already available, and much more to come (stay tuned to the parallel sessions)