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PDFs

ubiquitous in 
description of 
collider physics 
processes

TMDs

staple shaped 
Wilson lines 

Quark TMDs

�[�+]
q h(x, b) = f1(x, b) + i✏µ⌫T bµs⌫Mf?1 (x, b)
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• There are eight TMD 
distributions in leading twist 

• TMD distributions provide a 
more detailed picture of the 
many body parton structure of 
the hadron 

• Interplay with the transverse 
momentum

longitudinal & Transverse

fq/P (x, µ)

fq/P (x, kT , µ, �)

longitudinal

key information about the 
structure of hadrons

light-cone sensitive operators
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TMD Factorization

Semi-Inclusive DIS

electron 
p

h 

Drell-Yan Dihadron in e+e-
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TMDs with Polarization

Quark TMDs

�[�+]
q h(x, b) = f1(x, b) + i✏µ⌫T bµs⌫Mf?1 (x, b)
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• There are eight TMD 
distributions in leading twist 

• TMD distributions provide a 
more detailed picture of the 
many body parton structure of 
the hadron 

• Interplay with the transverse 
momentum
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• There are eight TMD 
distributions in leading twist 

• TMD distributions provide a 
more detailed picture of the 
many body parton structure of 
the hadron 

• Interplay with the transverse 
momentum

Nucleon  
Polarization

Quark  
Polarization

Analogous tables for Frag. functions, gluons, etc.

Helicity

Boer-Mulders

Long-Transversity

Trans-Helicity
Sivers

Transversity

Pretzelosity

T

Have flavor indices, like longitudinal PDFs.

Can explore the 3D Structure of Hadrons using all these distributions! 

T-odd sign flip: f?
1T

SIDIS = �f?
1T

DY h?
1
SIDIS = �h?

1
DY,
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Observables

TMD handbook 77
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Figure 2.10: The DY process in the Collins-Soper frame where the pion and the proton come in with
different momenta P⇡, Pp , but each carries the same transverse momentum 1

2 qT , and the produced
lepton pair is at rest. The angle � describes the inclination of the leptonic frame with respect to the
hadronic plane, and �S is the azimuthal angle of the transverse-spin vector of the proton. TM: This
caption doesnot explain what ✓ is.The figure is from Ref. [174].

where Jµem is the electromagnetic current. By decomposing the Lorentz tensors Lµ⌫ and Wµ⌫

into all independent angular and spin structures, one can derive the most general decompo-
sition of the Drell-Yan cross section. In the most general case with two arbitrarily polarized
hadrons, there are a total of 48 independent structures [175], out of which 24 are suppressed
at small qT .

For brevity of our discussion, we only focus on the case of unpolarized pions TM: do we
really need to say unpolarized here? scattering off polarized protons, ⇡p ! �⇤ ! `+`�, as
measured by the COMPASS Collaboration [176], and refer to [175] for the fully generic result.
We also neglect contributions from Z exchange, which are suppressed at low energies. At
small qT , this process is described by only six independent structures, and can be written
as [175]

d�
d4qd⌦

⇤
↵2

em
F Q2

nh
(1 + cos2 ✓)F1

UU + sin2 ✓ cos(2�)Fcos 2�
UU

i

+ SL sin2 ✓ sin(2�)Fsin 2�
UL

+ ST(1 � cos2 ✓) sin�SFsin�S
UT

+ ST sin2 ✓
h
sin(2� + �S)Fsin(2�+�S)

UT + sin(2� � �S)Fsin(2���S)
UT

io
, (2.154)

where ⌦ is the solid angle of the dilepton system in the Collins-Soper frame, with the angles
�, ✓ and �S defined accordingly, see Fig. 2.10. The first subscript on the structure functions
F indicates that the pion is unpolarized (U), while the second subscript corresponds to the
proton polarization, which can be unpolarized (U), longitudinally (L) or transversely (T)
polarized. It is also common to measure the individual structure functions normalized to the
unpolarized case, i.e.,

Aweight
XY (x⇡ , xp , qT ,Q2) ⇤

Fweight
XY (x⇡ , xp , qT ,Q2)
F1

UU(x⇡ , xp , qT ,Q2)
. (2.155)
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where Jµem is the electromagnetic current. By decomposing the Lorentz tensors Lµ⌫ and Wµ⌫

into all independent angular and spin structures, one can derive the most general decompo-
sition of the Drell-Yan cross section. In the most general case with two arbitrarily polarized
hadrons, there are a total of 48 independent structures [175], out of which 24 are suppressed
at small qT .

For brevity of our discussion, we only focus on the case of unpolarized pions TM: do we
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measured by the COMPASS Collaboration [176], and refer to [175] for the fully generic result.
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, (2.154)

where ⌦ is the solid angle of the dilepton system in the Collins-Soper frame, with the angles
�, ✓ and �S defined accordingly, see Fig. 2.10. The first subscript on the structure functions
F indicates that the pion is unpolarized (U), while the second subscript corresponds to the
proton polarization, which can be unpolarized (U), longitudinally (L) or transversely (T)
polarized. It is also common to measure the individual structure functions normalized to the
unpolarized case, i.e.,

Aweight
XY (x⇡ , xp , qT ,Q2) ⇤

Fweight
XY (x⇡ , xp , qT ,Q2)
F1

UU(x⇡ , xp , qT ,Q2)
. (2.155)

Drell-Yan with pol. proton:

SIDIS with polarized electron & proton: e�p
�⇤

! e�hX

⇡p
�⇤

! `+`�X
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Figure 2.12: Semi Inclusive Deep Inelastic Scattering process (SIDIS) in �⇤P center of mass frame. The
plot is from Ref. [189]. IS: [replace S? ! ST in figure to match Sec.2.6 or vs.vs.??]

SIDIS cross section can be written as [114, 190]

d6�

dxB dy dzh d�S d�h dP2
hT

⇤
↵2

em
xB y Q2

✓
1 � y +

1
2 y2

◆ 
FUU,T + cos(2�h) p1 Fcos(2�h)

UU

+ SL sin(2�h) p1 Fsin(2�h)
UL + SL �p2 FLL

+ ST sin(�h � �S) Fsin(�h��S)
UT,T

+ ST sin(�h + �S) p1 Fsin(�h+�S)
UT + � ST cos(�h � �S) p2 Fcos(�h��S)

LT

+ ST sin(3�h � �S) p1 Fsin(3�h��S)
UT

�
, (2.169)

Up to corrections suppressed as 1/Q2, the kinematic prefactors pi in Eq. (2.169) are given
by [190]

p1 ⇤
1 � y

1 � y + 1
2 y2
, p2 ⇤

y(1 � 1
2 y)

1 � y + 1
2 y2
, p3 ⇤

(2 � y)
p

1 � y

1 � y + 1
2 y2

, p4 ⇤
y
p

1 � y

1 � y + 1
2 y2
. (2.170)

The structure functions Fweight
XY in Eq. (2.169) implicitly depend on xB, zh, P2

hT and Q2 '
xB yS. Their superscripts indicate the azimuthal dependence, while the subscripts encode
the beam and target polarizations. The first subscript U (L) denotes the unpolarized beam
(longitudinally polarized beam with twice helicity � ). The second subscript U(L or T) refers
to the target, which can be unpolarized (longitudinally (SL) or transversely (ST) polarized
with respect to virtual photon). FUU,T is the structure function due to transverse polarization
of the virtual photon (indicated by the third sub-index T), FUU,L arises from the longitudinal
polarization of the virtual photon. The subleading terms in the SIDIS cross section can be
found in Ch. 10 in Eq. (10.1).

The structure functions in Eq. (2.169) are described in terms of convolutions of TMDs and
FFs, similar to the case of polarized Drell-Yan, see Eqs. (2.154) and (2.156). They are given at
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TMD Factorization

rigorous QFT based derivation of cross sections 
based on analysis of momentum regions

CSS (Collins, Soper, Sterman)
SCET (Soft Collinear Effective Theory)

eg. Drell-Yan

Hard virtual  
corrections

FT

fq(xa,�kT , µ, �a)

µ = renormalization scale

� = Collins-Soper parameter

�a�b = Q4

Review of TMD factorization

Rapidity (light-cone) divergences

�(~qT ) = Hqq̄!Z(mZ)

Z
d2~bT e

i~qT ·~bT Bq(x1,
~bT )Bq̄(x2,

~bT )S
q(bT )

Hard function H: Describes hard process qq̄ ! Z

Beam functions Bq,q̄: collinear radiation

Soft function S
q: soft radiation

Beam and soft modes have virtuality p
2
⇠ q

2

T

I Induces rapidity (light-cone) singularities
(not regulated by dimension regularization)

Rapidity divergences arise from integrals of type
Z

dk+dk� f(k+
k
�)

(k+k�)1+✏
=

Z
d(k+

/k
�)

2 k+/k�

Z
d(k+

k
�)

f(k+
k
�)

(k+k�)1+✏

Unphysical rapidity divergences cancel in physical TMDPDF:
f
TMD

q (x,~bT ) = Bq(x,~bT )
p

Sq(bT ) = Bq(x,~bT )�
q
S(bT )

p
+

p
�

QqTq
2
T
/Q

Q

qT

q
2
T

Q
p
2 = q

2
T

p
2 = Q

2

Markus Ebert (MIT) Quasi (TMD)PDFs from Lattice QCD 02/05/19 17 / 30

H

fq

fq

�a = (xaP�a )2 = (2xaP z)2

�(qT , Q) = H(Q,µ)
�

d2�bT ei�qT ·�bT fq(xa,�bT , µ, �a) fq(xb,�bT , µ, �b) +O
� q2

T

Q2

�

think: � � Q2

µ

⇣a
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TMD Factorization

rigorous QFT based derivation of cross sections 
based on analysis of momentum regions

CSS (Collins, Soper, Sterman)
SCET (Soft Collinear Effective Theory)

eg. Drell-Yan

nonperturbative

fq(x,�kT , µ, �)
perturbative PDF

�(qT )

qT

kT � b�1
T � �QCD

kT � b�1
T � �QCD

fq(x,�kT , µ, �)

perturbative

�(qT , Q) = H(Q,µ)
�

d2�bT ei�qT ·�bT fq(xa,�bT , µ, �a) fq(xb,�bT , µ, �b) +O
� q2

T

Q2

�

=
�

i

�
dy

y
Cqi

�x

y
,�kT , µ, �

�
fi(y, µ)

now known to  
for unpolarized case

𝒪(α3
s )

Ebert, Mistlberger, Vita ‘20
Luo, Yang, Zhu, Zhu ‘20
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TMD Evolution:

µ
d

dµ
ln fq(x,�bT , µ, �) = �q

µ(µ, �)

�
d

d�
ln fq(x,�bT , µ, �) = �q

� (µ, bT )

�Must solve both equations  
to sum large logarithms:

Collins-Soper  
Equation

Useful: Connect Lattice calculation or model with 
to scales needed in factorization theorem:

Solution: fq(x,�bT , µ, �) = exp
�� µ

µ0

dµ�

µ� �q
µ(µ�, �0)

�
exp

�1
2
�q

� (µ, bT ) ln
�

�0

�

� fq(x,�bT , µ0, �0)

L = ln(Q2b2
T ) � ln

Q2

q2
T

µ0 ⇠
p
⇣0 ⇠ few GeV

µ ⇠
p

⇣ ⇠ Q
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TMD Evolution:

µ
d

dµ
ln fq(x,�bT , µ, �) = �q

µ(µ, �)

�
d

d�
ln fq(x,�bT , µ, �) = �q

� (µ, bT )

�Must solve both equations  
to sum large logarithms:

Collins-Soper  
Equation

For                      the CS kernel                becomes nonperturbativeb�1
T � �QCD �q

� (µ, bT )

Perturbative at short distance µ, b�1
T � �QCD

LL, NLL, NNLL, N3LL, … results

µ
d

dµ
�q

� (µ, bT ) = 2�
d

d�
�q

µ(µ, �) = �2�q
cusp[�s(µ)]

All Orders form:

�q
� (µ, bT ) = �2

� µ

1/bT

dµ�

µ� �q
cusp[�s(µ�)] + �q

� [�s(1/bT )]

�q
µ(µ, �) = �q

cusp[�s(µ)] ln
µ2

�
+ �q

µ[�s(µ)]

�q
� [�s] = �s �q(1)

� + �2
s �q(2)

� + �3
s �q(3)

� + . . . 3-loop result:  Li, Zhu 2016

L = ln(Q2b2
T ) � ln

Q2

q2
T

path independent

(even if the evolution variables  are perturbative)μ, ζ
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TMD Evolution:

µ
d

dµ
ln fq(x,�bT , µ, �) = �q

µ(µ, �)

�
d

d�
ln fq(x,�bT , µ, �) = �q

� (µ, bT )

�Must solve both equations  
to sum large logarithms:

Collins-Soper  
Equation

Much more complicated than longitudinal PDFs.  


Have non-perturbative contributions for CS kernel

   and boundary condition 

Solution:

L = ln(Q2b2
T ) � ln

Q2

q2
T

�q
⇣

fq(x,~bT , µ, ⇣) = exp
hZ µ

µ0

dµ0

µ0 �
q
µ(µ

0, ⇣0)
i
exp

h1
2
�q
⇣ (µ, bT ) ln

⇣

⇣0

i

⇥ fq(x,~bT , µ0, ⇣0)

fq(x,~bT , µ0, ⇣0)
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Drell-Yan Cross Section:
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Motivation

Precision TMD measurements

Drell-Yan process:

Measured to . 1% accuracy
I Crucial input for PDF determination

Standard candle of Standard Model:
I Important test of QCD

Can we disentangle possible BSM physics
from PDF fitting?

I Can easily absorb small BSM
signals into PDFs ...

W -mass measurement:
Dominant uncertainty from PDFs:

I Particularly important:
correlations between quark flavors

Direct calculation of PDFs could alleviate such uncertainties

 [GeV]ll
T

p
1 10 210

]
σ

Pu
ll 

[

2−
0
2 1 10 210

C
om

bi
ne

d
C

ha
nn

el

0.99

1

1.01

/NDF=43/432χ

1 10 210
]-1

  [
G

eV
ll T

/d
p

σ
 d

σ
1/

8−10

7−10

6−10

5−10

4−10

3−10

2−10

1−10
1
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Global Fits

Perturbative accuracy:   N3LL resummation + NNLO matching to PDF

Common  dependence for all flavors: bT

(similar for TMDFF )D1

Unpolarized Data with constraint:     (4-6% power corrections)qT /Q < 0.2 − 0.25

Longitudinal PDFs input from PDF sets 
   (MMHT, NNPDF, etc)

f1,i/h(x, bT , µ, ⇣) = fpert
1,i/h(x, bT , µ, ⇣) f

NP
1 (x, bT )

fpert
1,i/h(x, bT , µ, ⇣) =

X

j

Z
dy

y
Cij(x/y, bT , µ, ⇣)fj(y, µ)

SV19 = Scimemi, Vladimirov  (1912.06532)
Pavia19 = Bachetta, Bertone, Bissolotti, Bozzi, Delcarro, 
                  Piacenza, Radici  (1912.07550)

Common features:

Neglect small contributions from Boer-Mulders terms (higher twist for pert.  ) bT

•
•

•

•

•
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Global Fits SV19 = Scimemi, Vladimirov  (1912.06532)
Pavia19 = Bachetta, Bertone, Bissolotti, Bozzi, Delcarro, 
                  Piacenza, Radici  (1912.07550)

Common features:
Good Perturbative convergence:

Figure 3. The cross-section at different orders of TMD factorization and for different boson energies.
The legend of the perturbative orders means that NkLO (NkLL) incorporates ak

s -order (ak�1
s -order) of the

coefficient function, ak
s -order of anomalous dimensions with ak+1

s -order of �cusp. The TMD distributions
and the NP part of the evolution are the same for all cases.

energies. In the plot the TMD distributions and the NP part of the evolution are held fixed while
the perturbative orders are changed. The perturbative series converges very well, and the difference
between NNLO and N3LO factorization is of order of percents. This is an additional positive aspect
of the ⇣-prescription, which is due to fact that all perturbative series are evaluated at µ = Q.

2.4.1 Matching of TMD distribution to collinear distributions

The TMD are generic non-perturbative functions that depend on the parton fraction x and the
impact parameter b. A fit of a two-variable function is a hopeless task due to the enormous
parametric freedom. This freedom can be essentially reduced by the matching of a b ! 0 boundary
of a TMD distribution to the corresponding collinear distribution. In the asymptotic limit of small-b
one has

lim
b!0

f1,f h(x, b) =
X

f 0

Z 1

x

dy

y
Cf f 0

✓
x

y
,LµOPE

, as(µOPE)

◆
f1,f 0 h(y, µOPE), (2.76)

lim
b!0

D1,f!h(z, b) =
X

f 0

Z 1

z

dy

y
Cf!f 0

✓
z

y
,LµOPE

, as(µOPE)

◆
d1,f 0!h(y, µOPE)

y2
, (2.77)

where f1(x, µ) and d1(x, µ) are collinear PDF and FF, the label f 0 runs over all active quarks,
anti-quarks and a gluon, and

Lµ = ln

✓
b2µ2

4 exp�2�E

◆
, as(µ) =

g2(µ)

(4⇡)2
, (2.78)

with �E being the Euler constant and g being QCD coupling constant. The extra factor y�2

in eq. (2.77) is present due to the normalization difference of the TMD operator in eq. (2.21)
and the collinear operator, see e.g. [5, 25]. The coefficient functions C and C can be calculated
with operator product expansion methods (for a general review see ref. [58]) and in the case of
unpolarized distributions the coefficient functions are known up to NNLO [23, 25, 26, 29]. The
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Figure 6. Graphical representation of Tab. 6.
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Figure 7. Comparison between experimental data for the ATLAS 8 TeV measurements in the bin
66 GeV < Q < 116 GeV and 1.6 < |y| < 2 and the theoretical predictions obtained from the fits
to all perturbative orders considered in this analysis, i.e. NLL0, NNLL, NNLL0, and N3LL (see
Sec. 2.4). The layout of the plot is the same as in Fig. 4.

In order to quantify the numerical impact of higher-order corrections, in Fig. 7 we
compare the predictions for all the available perturbative orders to the ATLAS 8 TeV data
in the bin 66 GeV < Q < 116 GeV and 1.6 < |y| < 2. This plot shows how the inclusion
of higher-order corrections improves the shape of the predictions, particularly around the
peak region.

4.4 Reduced dataset and x dependence

The non-perturbative function fNP, Eq. (2.36), accounts for the large-bT behaviour of
TMDs. It is in general a function of bT , ⇣, and x. While the asymptotic dependence

– 25 –
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Global Fits SV19 = Scimemi, Vladimirov  (1912.06532)
Pavia19 = Bachetta, Bertone, Bissolotti, Bozzi, Delcarro, 
                  Piacenza, Radici  (1912.07550)

Differences:

Datasets used
SV19 Pavia19

Drell-Yan (457 bins) 
SIDIS (582 bins)

Drell-Yan (353 bins)

PHENIX

E288
E605
E772

LHCb
CDF, D0

ATLAS
CMS

ATLAS(116<Q<150)

ATLAS(46<Q<66)

HERMES

COMPASS

Total:
457 DY points
582 SIDIS points
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Figure 5. Density of data in the plane (Q, x) (a darker color corresponds to a higher density).

TMDPDF that simulates the nuclear-target effects. For example, we replace u-, and d-quark
distributions by

f1,u A(x, b) =
Z

A
f1,u p(x, b) +

A� Z

A
f1,d p(x, b), (4.1)

f1,d A(x, b) =
Z

A
f1,d p(x, b) +

A� Z

A
f1,u p(x, b), (4.2)

where A(Z) is atomic number(charge) of a nuclear target. In principle, for E288, E605 data extracted
from very heavy targets one should also incorporate the nuclear modification factor that depends
on x. In the given kinematics the nuclear modification factor produces effects of order 5-10% in the
normalization of the cross-section. The shape of cross-section is changed in much smaller amount,
about 1% in a point, as it is shown in f.i. [21, 84]. Simultaneously, the systematic (correlated)
errors of these experiments are large 25% and 20%, correspondingly, as well as the uncorrelated
error (typically 2-5%). Therefore, we are not sensitive to nuclear modification effect.

The measurements of SIDIS are made in a number of different channels. The HERMES data
include ⇡± and K±, and COMPASS data are for charged hadrons, h±. Pions and kaons are
described by an individual TMDFFs. However, charged hadrons are a composition of different
TMDFFs. According eq. (2.21) the TMDFF for charged hadrons is a direct sum of TMDFFs for
individual hadrons:

D1,f!h±(x, b) =
X

h2h±

D1,f!h(x, b) = D1,f!⇡±(x, b) +D1,f!K±(x, b) + ... , (4.3)

where dots denote the higher-mass hadron states. At COMPASS energies, this sum is dominated
by the pion (65� 75%), and the kaon (15� 20%) contributions. The residual term is lead by pro-
ton/antiproton contribution (2� 5%). The contribution of other particles is smaller (for discussion
and references see [85, 86]). Thus, in our study we use the first two terms of eq. (4.3) to simulate
the charged hadron fragmentation.
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Figure 3. Kinematic coverage on the x1 vs. x2 plane of the dataset included in the present analysis.

As evident from the “Observable” column of Tab. 2, experimental cross sections are
released in different forms. In addition, some of them are normalised to the total (fiducial)
cross section while others are not. In our analysis, we expressed all the absolute cross
sections in terms of the observable given in Eq. (2.10) (details on the transformations
between different observables can be found in Ref. [21]). When necessary, the total cross
section � required to normalise the differential cross sections is computed using DYNNLO [94,
95] with the MMHT2014 collinear PDF sets [54], taking into account the selection cuts and
consistently with the perturbative order of the differential cross section. More precisely,
the total cross section is computed at LO for NLL accuracy, at NLO for NLL’ and NNLL,
and at NNLO for NNLL’ and N3LL. The values of the total cross sections at different
orders are reported in Tab. 3. We stress that in this analysis no additional normalisations
have been applied, with the consequence that both the shape and the normalisation of the
experimental distributions have an impact on the fit.

Most of the considered experimental datasets are released with a set of uncorrelated
and correlated uncertainties. As already pointed out in Ref. [16], a proper treatment of
the experimental uncertainties is crucial to achieve a reliable extraction of TMDs. In
other words, the �2, which quantifies the agreement between data and predictions and
is minimised during the fit, has to be computed taking into account the nature of the
various uncertainties. Particular care has to be taken with the (correlated) normalisation
uncertainties. As is well known, an inappropriate description of normalisation uncertainties
may lead to underestimate the predictions: that is the so-called D’Agostini bias [96, 97].
Different prescriptions have been devised to avoid this problem [98]: in this analysis we
adopt the so-called iterative t0-prescription [99].
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Some differences in solution of evolution equations (not discussed here)
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Global Fits SV19 = Scimemi, Vladimirov  (1912.06532)
Pavia19 = Bachetta, Bertone, Bissolotti, Bozzi, Delcarro, 
                  Piacenza, Radici  (1912.07550)

Differences:
Non-perturbative Models

SV19 Pavia19

2.4.2 Ansatzes for NP functions

In this work we deal with three independent non-perturbative functions in total. These are the
unpolarized (optimal) TMDPDF, f1(x, b), the unpolarized (optimal) TMDFF, D1(x, b), and the
RAD, D(b, µ). The amount of perturbative and non-perturbative contributions to each function
depends on the value of the impact parameter b. Namely, at small values of b the perturbative
approximation is good and the TMD distributions can be matched onto collinear functions as in
eq. (2.76, 2.77). In the case of the RAD the small-b limit is given in appendix B. The small-
b perturbative expressions gains power corrections in even powers b2n [61]. Therefore, with the
increase of b the perturbative approximation becomes less and less correct, and must be replaced
by some generic function.

The phenomenological ansatzes for TMD distributions that satisfy this picture, can be written
as following:

f1,f h(x, b) =

Z 1

x

dy

y

X

f 0

Cf f 0 (y,LµOPE
, as(µOPE)) f1,f 0 h

✓
x

y
, µOPE

◆
fNP(x, b), (2.84)

D1,f!h(z, b) =
1

z2

Z 1

z

dy

y

X

f 0

y2Cf!f 0 (y,LµOPE
, as(µOPE)) d1,f 0!h

✓
z

y
, µOPE

◆
DNP(z, b), (2.85)

where functions fNP and DNP are non-perturbative functions. Note, that in our ansatz we do not
modify the value of b within the coefficient function. Therefore, at large-b the logarithm part of
the coefficient function grows unrestrictedly. This growth is suppressed by the non-perturbative
functions.

Generally, the functions fNP and DNP depend also on parton flavor f and hadron type h.
However, in the present work we use the approximation that fNP and DNP are flavor and hadron-

type independent. All hadron- and flavor dependence is driven by the collinear PDFs and FFs (see
also sec. 4.1). Given such an ansatz the only requirement for NP functions is that they are even-
functions of b that turn to unity for b ! 0 (see ref. [61] for an analysis of these processes using
renormalons). We use the following parameterizations

fNP (x, b) = exp

 
��1(1� x) + �2x+ x(1� x)�5p

1 + �3x�4b2
b2
!
, (2.86)

DNP (x, b) = exp

 
�⌘1z + ⌘2(1� z)p

1 + ⌘3(b/z)2
b2

z2

!✓
1 + ⌘4

b2

z2

◆
, (2.87)

and we extract �i and ⌘i from our fit. The functional form of fNP has been already used in [20]. It
has five free parameters which grant a sufficient flexibility in x-space as needed for the description of
the precise LHC data. The form of DNP has been suggested in [18] (albeit there are more parameters
in [18]). In both cases the function has exponential or Gaussian form depending on the relative
size of �1,2,5/�3, and ⌘1,2/⌘3. There are natural restrictions on the parameter space �1,2,3 > 0,
⌘1,2,3 > 0, �5 & �2(�1 + �2), due to the request that TMD distribution is null for b ! 1.

We use the following ansatz for the NP RAD,

D(µ, b) = Dresum(µ, b⇤(b)) + c0bb
⇤(b), (2.88)

where

b⇤(b) =
bp

1 + b2/B2
NP

. (2.89)

The the term c0bb⇤(b) dictates the large-b behavior of the RAD and its form is suggested in [20].
At large-b the NP expression for RAD is linear in b, D ⇠ c0BNPb. The linear behavior is suggested
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and we extract �i and ⌘i from our fit. The functional form of fNP has been already used in [20]. It
has five free parameters which grant a sufficient flexibility in x-space as needed for the description of
the precise LHC data. The form of DNP has been suggested in [18] (albeit there are more parameters
in [18]). In both cases the function has exponential or Gaussian form depending on the relative
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We use the following ansatz for the NP RAD,
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⇤(b), (2.88)

where
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bp
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The the term c0bb⇤(b) dictates the large-b behavior of the RAD and its form is suggested in [20].
At large-b the NP expression for RAD is linear in b, D ⇠ c0BNPb. The linear behavior is suggested
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and we extract �i and ⌘i from our fit. The functional form of fNP has been already used in [20]. It
has five free parameters which grant a sufficient flexibility in x-space as needed for the description of
the precise LHC data. The form of DNP has been suggested in [18] (albeit there are more parameters
in [18]). In both cases the function has exponential or Gaussian form depending on the relative
size of �1,2,5/�3, and ⌘1,2/⌘3. There are natural restrictions on the parameter space �1,2,3 > 0,
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The the term c0bb⇤(b) dictates the large-b behavior of the RAD and its form is suggested in [20].
At large-b the NP expression for RAD is linear in b, D ⇠ c0BNPb. The linear behavior is suggested
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2.5 Non-perturbative content and its parameterisation

In the previous section, we noticed that in the MS scheme the rapidity evolution kernel K

and the matching functions C can be made free of logarithms of the scales by introducing
the natural scale µb defined in Eq. (2.19). Consistently, in the perturbative expansion of
K (see first line of Eq. (2.22)) and C (see Eq. (2.21)) the strong coupling ↵s must be
computed at µb. For large values of bT , µb becomes small such that ↵s(µb) may potentially
become very large and eventually diverge when µb reaches the Landau pole at ⇤QCD. As a
matter of fact, the integral in Eq. (2.10) does require accessing large values of bT . It is then
necessary to regularise this divergence by introducing a prescription that avoids integrating
over the Landau pole. Different possibilities are available (see, e.g., Refs. [53, 56]). In
this paper, we adopt the prescription originally proposed in Ref. [57]: we introduces the
arbitrary parameter bmax that denotes the maximum value of bT at which perturbation
theory is considered reliable. Hence, bmax must be such that

↵s

✓
2e��E

bmax

◆
⌧ 1 . (2.32)

Moreover, we also want to prevent µb from becoming much larger than the hard scale Q

(µb � Q). Despite not strictly mandatory (especially when considering only small values
of qT ), this feature makes it possible to expand the cross section integrated in qT , with the
lowest-order term reproducing the lowest-order collinear result [58]. To this end, we define

bmin =
2e��E

Q
, (2.33)

and introduce a monotonic function b⇤(bT ) with the following asymptotic behaviours

b⇤(bT ) ! bmin for bT ! 0 ,

b⇤(bT ) ! bmax for bT ! 1 .
(2.34)

In this analysis, we adopt for b⇤(bT ) the same functional form chosen in Ref. [21] that
guarantees a smooth and rapid convergence towards the asymptotic limits:

b⇤(bT ) = bmax

0

@
1 � exp

⇣
� b4T

b4max

⌘

1 � exp
⇣
� b4T

b4min

⌘

1

A

1
4

. (2.35)

Now, we simply writes the TMD f̂1 as

f̂1(x, bT ; µ, ⇣) =

"
f̂1(x, bT ; µ, ⇣)

f̂1(x, b⇤(bT ); µ, ⇣)

#
f̂1(x, b⇤(bT ); µ, ⇣)

⌘ fNP(x, bT , ⇣)f̂1(x, b⇤(bT ); µ, ⇣) .

(2.36)

This separation effectively defines fNP. The advantage is that, due to the behaviour of
b⇤(bT ) for large values of bT , f̂1(x, b⇤(bT ), µ, ⇣) remains in the perturbative region. The
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non-perturbative contributions are instead confined into fNP, that has to be determined
through a fit to experimental data. However, using Eq. (2.36), we can work out some
general properties of fNP. First, fNP does not depend on the renormalisation scale µ. To
see this, using Eqs. (2.15) and (2.16) with µ0 =

p
⇣0 = µb, we find

fNP(x, bT , ⇣) =
f̂1(x, bT ; µ, ⇣)

f̂1(x, b⇤(bT ); µ, ⇣)
= exp

(
K(µb) ln

p
⇣

µb
� K(µb⇤) ln

p
⇣

µb⇤

+

Z µb⇤

µb

dµ0

µ0


�F (↵s(µ

0)) � �K(↵s(µ
0)) ln

p
⇣

µ0

�)
f̂1(x, bT ; µb, µ2

b)

f̂1(x, b⇤(bT ); µb⇤ , µ
2
b⇤

)
,

(2.37)
with µb⇤ ⌘ µb(b⇤(bT )). The dependence on µ evidently cancels in the ratio. In addition,
for large values of bT µb⇤ saturates to some minimal value while µb becomes increasingly
small. As a consequence of this departure between µb⇤ and µb, as well as between

p
⇣ and

µb, the exponential in Eq. (2.37) tends to be suppressed, and so does fNP. Conversely, as
bT becomes small b⇤ approaches bmin. Using the definition in Eq. (2.33), it follows that µb⇤

saturates to Q while µb becomes larger and larger. In this limit, we have [58]

fNP �!
bT!0

1 + O
✓

1

Qp

◆
, (2.38)

where p is some positive number. Since TMD factorisation applies to leading-power in
qT /Q, we can neglect the power suppressed contribution such that fNP ! 1 for bT ! 0.
It is important to stress that the separation between perturbative and non-perturbative
components of a TMD is arbitrary and depends on the particular choice of b⇤ (or in general
on the prescription used to regularise the Landau pole). For any given choice, only the
combination in Eq. (2.36) is meaningful, and it is misleading to refer to fNP as to the
non-perturbative part of TMDs in a universal sense.
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with Q0 = 1 GeV and with the g1(x) and g1B(x) functions given by

g1(x) =
N1

x�
exp


� 1

2�2
ln2

⇣x

↵

⌘�
,

g1B(x) =
N1B

x�B
exp


� 1

2�2
B

ln2

✓
x

↵B

◆�
.

(2.40)

There are a total of 9 free parameters (�, g2, g2B, N1, �, ↵, N1B, �B, ↵B) to be determined
from data.
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Global Fits SV19 = Scimemi, Vladimirov  (1912.06532)
Pavia19 = Bachetta, Bertone, Bissolotti, Bozzi, Delcarro, 
                  Piacenza, Radici  (1912.07550)

Fit Results:

Parameter Value
g2 0.036 ± 0.009
N1 0.625 ± 0.282
↵ 0.205 ± 0.010
� 0.370 ± 0.063
� 0.580 ± 0.092

N1B 0.044 ± 0.012
↵B 0.069 ± 0.009
�B 0.356 ± 0.075
g2B 0.012 ± 0.003

Table 5. Average and standard deviation over the Monte Carlo replicas of the free parameters
fitted to the data and graphical representation of the correlation matrix.

some uncertainties, such as those due to luminosity and collinear PDFs.

4.2 TMD distributions

We discuss now the TMD distributions extracted from our reference N3LL fit. We stress
once again that only the combination in the r.h.s. of Eq. (2.36) is meaningful.

In order to assess the sensitivity of the experimental dataset to fNP, it is interesting
to look at the values of the free parameters obtained from the fit. In Tab. 5 the average of
each parameter over the Monte Carlo replicas, along with the respective standard deviation,
is reported. All parameters are well constrained.9 It is interesting to observe that the
parameter �, that measures the relative weight of Gaussian and q-Gaussian in Eq. (2.39), is
close to 0.5 indicating that these contributions weigh approximately the same. Concerning
the values of the parameters g2 and g2B associated to the non-perturbative contribution to
TMD evolution, we find that the coefficient g2B of the quartic term is small but significantly
different from zero. This seems to suggest that higher-power corrections to the commonly
assumed quadratic term g2 may be required by the data.

Further insight concerning the appropriateness of the functional form in Eqs. (2.39)-
(2.40) can be gathered by looking at the statistical correlations between parameters. In
the right panel of Tab. 5, we show a graphical representation of the correlation matrix of
the fitted parameters. The first observation is that (off-diagonal) correlations are generally
not very large. There is however one exception, i.e. the parameters � and � seem to
be strongly anti-correlated. This may indicate that the interplay between q-Gaussian and
Gaussian may be significantly x dependent. We leave a deeper study of this feature to a
future publication.

To conclude this section, in Fig. 5 we show the down-quark TMD at µ =
p

⇣ = Q =

2 GeV (left plot) and 10 GeV (right plot) as a function of the partonic transverse momentum

9We stress that the parameters reported in Tab. 5 are not meant to be used in the parameterisation in
Eqs. (2.39)-(2.40) as they are not a direct result of any of our fits.
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Figure 16. Differential cross-section of DY process (d�/dqT [fb/GeV] vs. qT [GeV]) measured by E605 and
E772 at different values of s and Q. The solid (dashed) lines are the theory prediction at NNLO (N3LO)
shifted by the average systematic shift (see table 8). Filled (empty) point were (not) included in the fit of
NP parameters. For clarity the data of E772 is multiplied by the factors indicated in the plot.

8 Comments on the extracted TMD distributions

The non-perturbative distributions extracted in this work show several features that are interesting
for theory investigations. For instance, the RAD that measures the properties of the soft gluon
exchanges and that is inclusively sensitive to the QCD vacuum structure. The factorization theorem
ensures that the values of BNP and c0 are totally uncorrelated from the rest of TMD parameters,
because they are of complete different origin. As we have an extraction of these parameters from
data we can expect that a certain correlation is re-introduced in the fitting process. In fig. 22
(see also appendix D) we check this statement in the present global fit and we find that it is
qualitatively verified in our DY+SIDIS fit. In the figure the only non-perturbative parameters

�2/Npt NP-parameters

0.95 (NNLO)

RAD BNP = 1.93± 0.17 c0 = (3.91± 0.63)⇥ 10�2

TMDPDF �1 = 0.198± 0.019 �2 = 9.30± 0.55 �3 = 431.± 96.
�4 = 2.12± 0.09 �5 = �4.44± 1.05

TMDFF ⌘1 = 0.260± 0.015 ⌘2 = 0.476± 0.009
⌘3 = 0.478± 0.018 ⌘4 = 0.483± 0.030

1.06 (N3LO)

RAD BNP = 1.93± 0.22 c0 = (4.27± 1.05)⇥ 10�2

TMDPDF �1 = 0.224± 0.029 �2 = 9.24± 0.46 �3 = 375.± 89.
�4 = 2.15± 0.19 �5 = �4.97± 1.37

TMDFF
⌘1 = 0.233± 0.018 ⌘2 = 0.479± 0.025
⌘3 = 0.472± 0.041 ⌘4 = 0.511± 0.040

Table 9. Values of �2 and NP parameters obtained obtained in the global fit of DY and SIDIS data. The
collinear distributions are NNPDF31 and DSS.
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RAD parameters are less sensitive to input PDF set

Universality of RAD satisfied by DY vs. SIDIS data

�2/Npt = 1.02
�2/Npt = 1.06

Low and High energy data are well described
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Global Fits SV19 = Scimemi, Vladimirov  (1912.06532)
Pavia19 = Bachetta, Bertone, Bissolotti, Bozzi, Delcarro, 
                  Piacenza, Radici  (1912.07550)

Comparison of results for CS Kernel in non-perturbative regime:
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FIG. 1: Comparison of extracted values of RAD. The lines

labeled as SV19, SV17, Pavia19 and Pavia17 correspond to

Refs.[19],[17],[20], and [16].

NP function, although it still inherits some properties of
an anomalous dimension, such as additive structure of
renormalization group equation, see Eq.(3).

Equation (2) essentially mixes the definitions of two
NP functions: a TMD distribution and RAD. For that
reason, the separation of these functions with the data is
a nontrivial phenomenological task. Nonetheless, it could
be done observing that RAD governs the Q behavior of
the cross section, whereas F ’s govern the x behavior.
Therefore, analyzing a global set of data with a large span
in x and Q, it is possible to decorrelate these functions.
Such global studies were made recently [16–20]. The val-
ues of RAD obtained in these works are shown in Fig.1.
Clearly, there is no agreement between these extractions
for b > 2GeV�1. Another observation is that extrac-
tion based on the joined data of Drell-Yan and SIDIS
cross sections [16, 19] provide a higher value of RAD at
b ⇠ 1GeV�1 in comparison to extraction based only on
the Drell-Yan data [17, 20]. These contradictions could
be resolved by adding more low-qT data in the analysis,
or by some alternative approaches to access RAD. One of
promising approaches is the recently proposed methods
to compute RAD with lattice QCD [21–23].

Definition of RAD. To derive the self-contained ex-
pression for RAD, I take a step backward in the deriva-
tion of Eq.(1) and recall the origin of scale ⇣. At an
intermediate stage, the expression for the cross section
has the form d� ⇠ F̃1⇥S⇥ F̃2 [3, 5], where F̃ are unsub-
tracted TMD distributions, and S is the TMD soft factor.
Each of these terms contains the rapidity divergence(s)
that cancel in the product. To obtain (1), the soft factor
is factorized into parts with only rapidity divergences re-
lated to a particular lightlike direction. Afterwards, they
are combined with F̃ into physical TMD distributions
[6, 24, 25]. The scale ⇣ in the definition of a physical
TMD distribution (2) is the scale of rapidity divergence
factorization. Thus, the soft factor is the primary object

to define RAD.
The TMD soft factor is defined as

SC(b, µ) =
Tr

Nc
h0|WC |0iZ

2
S(µ), (4)

where WC = P exp(ig
R
C dxµAµ(x)) is a gauge link along

the contour C (see fig.2), ZS is the renormalization factor
for lightlike cusps. In Ref.[6] it has been proven that the
TMD soft factor with a properly designed regularization
has the general form

SC(b, µ) = exp (2D(b, µ) ln(%) +B(b, µ) + ...) , (5)

where % is the Lorenz-invariant combination of param-
eters of rapidity divergence regularization(% ! 0). The
function B is the finite part of the soft factor, and the
dots denote terms vanishing at % ! 0. Consequently,
RAD can be obtained from the TMD soft factor as

D(b, µ) =
1

2
lim
%!0

d lnSC(b, µ)

d ln %
. (6)

The expression (5) is a general one, but it is di�cult to
use outside of the perturbation theory. The main com-
plication is the definition of an appropriate rapidity di-
vergence regulator. To guarantee (Eq.5) and make use of
Eq.(6), the regulator must be given on the level of the op-
erator, preserve the gauge invariance, and fully regularize
rapidity divergences without generation of extra infrared
divergences. None of the commonly used regulators
in perturbative calculations regulators (see e.g.Refs.[3–
5, 26–28]) fulfill these requirements entirely. The discus-
sion of the drawbacks in common regularizations can be
found in Refs.[6, 26, 29]. All these requirements can be
fulfilled by a deformation of the contour C such that it
does not touch lightlike infinities [6]. The most straight-
forward deformation is the contour C⇤ shown in Fig.2.
In this case, the parameters ⇤± regularize rapidity diver-
gences at both infinities and % = (⇤+⇤�)�1.
The regularized soft factor SC⇤ is a function of % and

b2 (and µ2), because these are the only nonzero scalar
products in the task. The regularization is removed by
limits ⇤+ ! 1 and ⇤� ! 1, but since the dependence
on ⇤’s is given by a single variable %, one of these limits
is obsolete. For definiteness, I fix ⇤� = ��. The deriva-
tive with respect to % = (⇤+��)�1 can be replaced by
derivative over ��, and Eq.(6) turns into

D(b, µ) =
1

2
lim

⇤+!1

d lnSC⇤(b, µ)

d ln��
. (7)

The action of the derivative is

D(b, µ) = ZD(µ) + (8)

lim
⇤+!1

��
ig

2

Tr
R 1
0 d�h0|Fb+(���n+ b�)WC⇤ |0i

Trh0|WC⇤ |0i
,

where Fb+(x) = bµn⌫Fµ⌫(x), with Fµ⌫ being a gluon-
field strength tensor, and ZD(µ) = d lnZS/d ln��. The

�1

2
�q
⇣ (µ = 4GeV, bT )

(from Vladimirov, 2003.02288)

Fit Results:
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Figure 5. The TMD of the down quark at µ =
p

⇣ = Q = 2 GeV (left plot) and 10 GeV (right
plot) as a function of the partonic transverse momentum k? for three different values of x. The
bands give the 1-� uncertainty.

k? for x = 0.001, 0.1, 0.3. The 1-� uncertainty bands are also shown. As expected, TMDs
are suppressed as k? grows and the suppression becomes relatively stronger as Q increases.

4.3 Perturbative convergence

In the previous section we discussed the quality of our fit at N3LL, which is the best accuracy
presently available. In this section we show how the inclusion of perturbative corrections is
crucial to achieve a better description of the experimental data. To this end, we performed
fits at NLL0, NNLL, and NNLL0 (see Sec. 2.4), and compared them to the N3LL fit. We
did not consider LL and NLL accuracies because in both cases the description of the data
is very poor (�2 & 20).

NLL0 NNLL NNLL0 N3LL

Global �2 1126 571 379 360

Table 6. Values of the global �2 of the fits at NLL0, NNLL, NNLL0, and N3LL accuracy.

Tab. 6 reports the values of the global �2 for each of the four accuracies considered.
In order to appreciate the significance of the differences,10 we have reported the absolute
values of the �2 without dividing by the number of data points Ndat. Fig. 6 shows a
graphical representation of Tab. 6. The global quality of the fit improves significantly as
the perturbative accuracy increases. In addition, Fig. 6 shows that the convergence rate
decreases when going to larger perturbative orders. On the one hand, we conclude that it
is necessary to include higher perturbative corrections to obtain a good description of the
data and that N3LL corrections are still significant. On the other hand, it appears that the
perturbative series is nicely converging and N3LL accuracy seems appropriate within the
current experimental uncertainties.

10Note that a difference of n units at the level of the global �2 roughly means a separation of around
p
n

standard deviations.
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Figure 23. (left) Comparison of NNLO RAD extracted in DY fit (NNPDF31), and global fit of DY
and SIDIS (NNPDF31& DSS). Shaded area shows the 1�-uncertainty band. The dashed lines show the
extraction made in refs.[18] and [19] at LO and NNLO of RAD correspondingly. (right) Distribution of
replica points in different fits of RAD. Dashed lines show the mean values of RAD extracted in the global
fit of DY and SIDIS.

Figure 24. Example of extracted (optimal) unpolarized TMD distributions. The color indicates the
relative size of the uncertainty band

variation of BNP up to b4-corrections. The replicas of the global fit (orange points) are scattered in
a much smaller area and this provides a ⇠ 40% smaller error-bands on parameters. Generally, the
inclusion of the SIDIS data drastically constraints the values of BNP, and for that reason they are
very important for the determination of RAD. We conclude that the RAD extracted in the global
fit is more reliable, in comparison to the one done using DY data only.

The RAD that we have extracted is valid for all distributions and it has been used also to
describe the pion-induced DY [21]. For further reduction of the uncertainty of the RAD one should
consider more precise low- and intermediate-energy processes, such as up-coming JLab12 measure-
ments, and the future EIC.
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Quite precise determinations if we assume a given fit form.
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FIG. 1. Examples of data description of SIDIS+DY N3LO
fit for HERMES SIDIS [60], COMPASS pion-induced DY [48]
and STAR W±/Z data [49]. Open symbols: data not used in
the fit. Orange line is the CF and the blue box is 68%CI.

scriptions [52], but is not consistent in the resummation-
like schemes e.g. used in Refs [30, 33, 34].

Fit of the data. The TMD factorization theorems
are derived in the limit of large-Q and a small relative
transverse momentum �, defined as � = |PhT |/(zQ) in
SIDIS, � = |qT |/Q in DY. We apply the following selec-
tion criteria [37, 38] onto the experimental data

hQi > 2 GeV and � < 0.3. (12)

The Sivers asymmetry has been measured in SIDIS and
DY [48, 49, 60–64]. In total, after data selection cuts (12),
we use 76 experimental points. We have 63 points from
SIDIS measurements collected in ⇡± and K± production
off polarized proton target at HERMES [60], off deu-
terium target from COMPASS [62], and 3He target from
JLab [64, 65], h± data on the proton target from COM-
PASS [66]. We use 13 points from DY measurements
of W±/Z production from STAR [49] and pion-induced
DY from COMPASS [48]. Let us emphasize that the re-
cent 3D binned data [60] from HERMES allowed us to
select sufficient number of data (46 points) from SIDIS
measurements. COMPASS and JLab measurements in
SIDIS are done by projecting the same data onto x, z,
and PhT . In order not to use the same data multiple
times and for better adjustment to TMD factorization
limit, we use only PhT -projections.

The evaluation of the theory prediction for a given set
of model parameters is made by artemide [67]. The es-
timation of uncertainties utilizes the replica method [68],
which consists of the fits of data replicas generated in
accordance with experimental uncertainties. From the
obtained distribution of 500 replicas, we determine the
values and the errors on parameters and observables, in-
cluding, for the first time, propagation of the errors due

(a)

(b)

FIG. 2. The three-dimensional (b, x)-landscape of the op-
timal Sivers function f?1T ;q p(x, b) for u-quark (a) and d-
quark (b). The grid shows the CF value, whereas the shaded
(blue and brown) regions on the boundaries demonstrate the
68%CI.

to the unpolarized TMDs. We use the mean value of
the resulting distributions due to SV19 uncertainty as the
central fit value (CF value), which is our best estimate of
the true values for the free parameters. The uncertainty
is given by a 68% confidence interval (68%CI) is com-
puted by the bootstrap method. The resulting replicas
are available as a part of artemide [69].

We performed several fits with different setups. In par-
ticular, we distinguish the fits with and without the in-
clusion of DY data. We found that the Sivers function
extracted in SIDIS-only fit nicely describes the DY data
without extra tuning. Indeed, N3LO SIDIS-only fit has
�2/Npt = 0.87 and without any adjustment describes also
DY data with �2/Npt = 1.23.

The combined SIDIS+DY fit reaches a very good over-
all �2/Npt = 0.88 for all 76 DY and SIDIS data points,
with �2/Npt = 0.88 for SIDIS and �2/Npt = 0.90 for DY.
Parameters of Sivers function resulting from SIDIS-only
and SIDIS+DY fits are compatible with each other [70].
The quality of data description in SIDIS+DY N3LO fit
can be seen in Fig. 1.

We have performed a fit without the sign change of
Sivers function from Eq. (1) in order to estimate the
significance of the sign change from the data. The re-
sulting fit does exhibit tensions between DY and SIDIS
data sets, however, the fit has �2/Npt = 1.0 and can-
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fit for HERMES SIDIS [60], COMPASS pion-induced DY [48]
and STAR W±/Z data [49]. Open symbols: data not used in
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we use 76 experimental points. We have 63 points from
SIDIS measurements collected in ⇡± and K± production
off polarized proton target at HERMES [60], off deu-
terium target from COMPASS [62], and 3He target from
JLab [64, 65], h± data on the proton target from COM-
PASS [66]. We use 13 points from DY measurements
of W±/Z production from STAR [49] and pion-induced
DY from COMPASS [48]. Let us emphasize that the re-
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select sufficient number of data (46 points) from SIDIS
measurements. COMPASS and JLab measurements in
SIDIS are done by projecting the same data onto x, z,
and PhT . In order not to use the same data multiple
times and for better adjustment to TMD factorization
limit, we use only PhT -projections.

The evaluation of the theory prediction for a given set
of model parameters is made by artemide [67]. The es-
timation of uncertainties utilizes the replica method [68],
which consists of the fits of data replicas generated in
accordance with experimental uncertainties. From the
obtained distribution of 500 replicas, we determine the
values and the errors on parameters and observables, in-
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to the unpolarized TMDs. We use the mean value of
the resulting distributions due to SV19 uncertainty as the
central fit value (CF value), which is our best estimate of
the true values for the free parameters. The uncertainty
is given by a 68% confidence interval (68%CI) is com-
puted by the bootstrap method. The resulting replicas
are available as a part of artemide [69].

We performed several fits with different setups. In par-
ticular, we distinguish the fits with and without the in-
clusion of DY data. We found that the Sivers function
extracted in SIDIS-only fit nicely describes the DY data
without extra tuning. Indeed, N3LO SIDIS-only fit has
�2/Npt = 0.87 and without any adjustment describes also
DY data with �2/Npt = 1.23.

The combined SIDIS+DY fit reaches a very good over-
all �2/Npt = 0.88 for all 76 DY and SIDIS data points,
with �2/Npt = 0.88 for SIDIS and �2/Npt = 0.90 for DY.
Parameters of Sivers function resulting from SIDIS-only
and SIDIS+DY fits are compatible with each other [70].
The quality of data description in SIDIS+DY N3LO fit
can be seen in Fig. 1.

We have performed a fit without the sign change of
Sivers function from Eq. (1) in order to estimate the
significance of the sign change from the data. The re-
sulting fit does exhibit tensions between DY and SIDIS
data sets, however, the fit has �2/Npt = 1.0 and can-
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(µ, ⇣) of a TMD distribution is dictated by the pair of
TMD evolution equations [1, 36], which, in turn, relate
measurements made at different energies. In this work
we use the ⇣-prescription [36] which consists in selecting
the reference scale (µ, ⇣) = (µ, ⇣µ(b)) on the equipotential
line of the field anomalous dimension that passes through
the saddle point. In this case, the reference TMD distri-
bution is independent on µ (by definition) and perturba-
tively finite in the whole range of µ and b. The solution
of the evolution equations can be written [36, 45] in the
following simple form

f?1T,q h(x, b; µ, ⇣) =

✓
⇣

⇣µ(b)

◆�D(b,µ)

f?1T,q h(x, b), (5)

and similar for other TMDs. The function
f?1T,q h(x, b) = f?1T,q h(x, b; µ, ⇣µ(b)) on the right-
hand side of Eq. (5) is the optimal Sivers function [45].
The function ⇣µ(b) is a calculable function of the univer-
sal non-perturbative Collins-Soper kernel D(b, µ) [46].
The N3LO expression used in this work is given in
Ref. [37].

Drell-Yan process. The relevant part of the differen-
tial cross-section for DY reaction (h1(P1, S) + h2(P2) !

l+(l) + l�(l0) + X) is [47]

d�

dPS
= �[DY ]

0

�
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UU + |ST | sin(' � �S)F 1

TU

 
, (6)

where dPS = dQ2 dy d' dq2T , �[DY ]
0 = ↵2

em(Q)/(9sQ2).
The variables ' and qT are the angle and the transverse
momentum of the electro-weak boson measured in the
center-of-mass frame and y is its rapidity. The experi-
mentally measured transverse spin asymmetry is

ATU ⌘
F 1
TU
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UU

= �M
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1 [f?1T f1]

BDY
0 [f1 f1]

, (7)

where M is the mass of the polarised hadron h1, and

B
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n [f1 f2] ⌘

X
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e2q
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0

bdb

2⇡
bnJn (b|qT |)

⇥ f1;q h1(x1, b; µ, ⇣1)f2;q̄ h2(x2, b; µ, ⇣2) (8)

where f1 and f2 are TMD PDFs for hadrons h1 and h2.
Often, the experiment provides measurements re-

lated to ATU (7). In particular, the process h1(P1) +
h2(P2, S) ! l+l� + X (i.e. with the polarized hadron
h2) measured by COMPASS [48] is described by AUT =
�ATU (f?1T $ f1), where the exchange of Sivers and un-
polarized TMD PDFs takes place in the numerator of (7)
and M refers to h2. Another important case is the asym-
metry AN [49] measured by STAR Collaboration and
defined such that AN = �ATU [50]. The STAR mea-
surements are made for W±/Z-boson production, and
thus B

DY
n (8) should be updated replacing

P
q e2q by an

appropriates structure, which can be found e.g. in Ref.
[37].

Non-perturbative input. In addition to the Sivers
function, SSAs (3,7) contain non-perturbative unpolar-
ized TMDs and the Collins-Soper kernel. We use these
functions from Ref. [37] (SV19). SV19 was made by the
global analysis of a large set of DY and SIDIS data, in-
cluding precise measurements made by the LHC, per-
formed with N3LO TMD evolution and NNLO match-
ing to the collinear distributions. The unpolarized TMD
PDFs for the pion were extracted in the same framework
in Ref. [38]. In these extractions the Collins-Soper kernel
is parameterized as

D(b, µ) = Dresum(b⇤, µ) + c0bb
⇤, (9)

where b⇤ = b/
q

1 +
�
b/(2 GeV�1)

�2, Dresum is the re-
summed N3LO expression for the perturbative part [51],
and c0 is a free parameter. The linear behavior at large-b
of Eq. (9) is in agreement with the predicted non pertur-
bative behavior [52, 53] and coefficient c0 can be related
to the gluon-condensate [53].

It is customary in the TMD phenomenology to match
TMDs to collinear distributions at small-b [1, 54–56]. In
the present work, we do not use the matching of the
Sivers to QS function [29, 56, 57], since it is not benefi-
cial in the Sivers case. The reason is that QS function is
not an autonomous function, but mixes with other twist-
3 distributions [58]. Therefore, a consistent implemen-
tation of the matching requires introduction of several
unknown functions – subjects of fitting. Instead, we use
the reversed procedure. We consider the optimal Sivers
function as a generic non-perturbative function that is
extracted directly from the data. QS function is then
obtained from the small-b limit of the extracted Sivers
function. For the Sivers function, we use the following
ansatz

f?1T ;q h(x, b) = Nq
(1�x)x�q (1+✏qx)

n(�q,✏q)

⇥ exp
⇣
�

r0+xr1p
1+r2x2b2

b2
⌘

, (10)

where n(�, ✏) = (3 + � + ✏ + ✏�)�(� + 1)/�(� + 4), such
that

Z 1

0
dxf?1T ;q h(x, 0) = Nq. (11)

We will distinguish separate functions for u, d, s quarks,
and a single sea Sivers function for ū, d̄ and s̄ quarks.
The Sivers function does not have the probabilistic inter-
pretation and can have nodes [59], which is realized by
the parameter ✏. We set �s = �sea and ✏s = ✏sea = 0,
since they are not restricted by the current experimental
data. In total, we have 12 free parameters in our fit.

Notice that the absence of the small-b matching is ad-
vantageous for our analysis as it allows both to circum-
vent the difficulties of evolution of QS functions and to
reach N3LO precision. Such a strategy is allowed in the ⇣-
prescription, and would also work in other fixed scale pre-
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FIG. 1. Examples of data description of SIDIS+DY N3LO
fit for HERMES SIDIS [60], COMPASS pion-induced DY [48]
and STAR W±/Z data [49]. Open symbols: data not used in
the fit. Orange line is the CF and the blue box is 68%CI.

scriptions [52], but is not consistent in the resummation-
like schemes e.g. used in Refs [30, 33, 34].

Fit of the data. The TMD factorization theorems
are derived in the limit of large-Q and a small relative
transverse momentum �, defined as � = |PhT |/(zQ) in
SIDIS, � = |qT |/Q in DY. We apply the following selec-
tion criteria [37, 38] onto the experimental data

hQi > 2 GeV and � < 0.3. (12)

The Sivers asymmetry has been measured in SIDIS and
DY [48, 49, 60–64]. In total, after data selection cuts (12),
we use 76 experimental points. We have 63 points from
SIDIS measurements collected in ⇡± and K± production
off polarized proton target at HERMES [60], off deu-
terium target from COMPASS [62], and 3He target from
JLab [64, 65], h± data on the proton target from COM-
PASS [66]. We use 13 points from DY measurements
of W±/Z production from STAR [49] and pion-induced
DY from COMPASS [48]. Let us emphasize that the re-
cent 3D binned data [60] from HERMES allowed us to
select sufficient number of data (46 points) from SIDIS
measurements. COMPASS and JLab measurements in
SIDIS are done by projecting the same data onto x, z,
and PhT . In order not to use the same data multiple
times and for better adjustment to TMD factorization
limit, we use only PhT -projections.

The evaluation of the theory prediction for a given set
of model parameters is made by artemide [67]. The es-
timation of uncertainties utilizes the replica method [68],
which consists of the fits of data replicas generated in
accordance with experimental uncertainties. From the
obtained distribution of 500 replicas, we determine the
values and the errors on parameters and observables, in-
cluding, for the first time, propagation of the errors due
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FIG. 2. The three-dimensional (b, x)-landscape of the op-
timal Sivers function f?1T ;q p(x, b) for u-quark (a) and d-
quark (b). The grid shows the CF value, whereas the shaded
(blue and brown) regions on the boundaries demonstrate the
68%CI.

to the unpolarized TMDs. We use the mean value of
the resulting distributions due to SV19 uncertainty as the
central fit value (CF value), which is our best estimate of
the true values for the free parameters. The uncertainty
is given by a 68% confidence interval (68%CI) is com-
puted by the bootstrap method. The resulting replicas
are available as a part of artemide [69].

We performed several fits with different setups. In par-
ticular, we distinguish the fits with and without the in-
clusion of DY data. We found that the Sivers function
extracted in SIDIS-only fit nicely describes the DY data
without extra tuning. Indeed, N3LO SIDIS-only fit has
�2/Npt = 0.87 and without any adjustment describes also
DY data with �2/Npt = 1.23.

The combined SIDIS+DY fit reaches a very good over-
all �2/Npt = 0.88 for all 76 DY and SIDIS data points,
with �2/Npt = 0.88 for SIDIS and �2/Npt = 0.90 for DY.
Parameters of Sivers function resulting from SIDIS-only
and SIDIS+DY fits are compatible with each other [70].
The quality of data description in SIDIS+DY N3LO fit
can be seen in Fig. 1.

We have performed a fit without the sign change of
Sivers function from Eq. (1) in order to estimate the
significance of the sign change from the data. The re-
sulting fit does exhibit tensions between DY and SIDIS
data sets, however, the fit has �2/Npt = 1.0 and can-
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FIG. 1. Examples of data description of SIDIS+DY N3LO
fit for HERMES SIDIS [60], COMPASS pion-induced DY [48]
and STAR W±/Z data [49]. Open symbols: data not used in
the fit. Orange line is the CF and the blue box is 68%CI.
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like schemes e.g. used in Refs [30, 33, 34].
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transverse momentum �, defined as � = |PhT |/(zQ) in
SIDIS, � = |qT |/Q in DY. We apply the following selec-
tion criteria [37, 38] onto the experimental data

hQi > 2 GeV and � < 0.3. (12)

The Sivers asymmetry has been measured in SIDIS and
DY [48, 49, 60–64]. In total, after data selection cuts (12),
we use 76 experimental points. We have 63 points from
SIDIS measurements collected in ⇡± and K± production
off polarized proton target at HERMES [60], off deu-
terium target from COMPASS [62], and 3He target from
JLab [64, 65], h± data on the proton target from COM-
PASS [66]. We use 13 points from DY measurements
of W±/Z production from STAR [49] and pion-induced
DY from COMPASS [48]. Let us emphasize that the re-
cent 3D binned data [60] from HERMES allowed us to
select sufficient number of data (46 points) from SIDIS
measurements. COMPASS and JLab measurements in
SIDIS are done by projecting the same data onto x, z,
and PhT . In order not to use the same data multiple
times and for better adjustment to TMD factorization
limit, we use only PhT -projections.

The evaluation of the theory prediction for a given set
of model parameters is made by artemide [67]. The es-
timation of uncertainties utilizes the replica method [68],
which consists of the fits of data replicas generated in
accordance with experimental uncertainties. From the
obtained distribution of 500 replicas, we determine the
values and the errors on parameters and observables, in-
cluding, for the first time, propagation of the errors due

(a)

(b)

FIG. 2. The three-dimensional (b, x)-landscape of the op-
timal Sivers function f?1T ;q p(x, b) for u-quark (a) and d-
quark (b). The grid shows the CF value, whereas the shaded
(blue and brown) regions on the boundaries demonstrate the
68%CI.

to the unpolarized TMDs. We use the mean value of
the resulting distributions due to SV19 uncertainty as the
central fit value (CF value), which is our best estimate of
the true values for the free parameters. The uncertainty
is given by a 68% confidence interval (68%CI) is com-
puted by the bootstrap method. The resulting replicas
are available as a part of artemide [69].

We performed several fits with different setups. In par-
ticular, we distinguish the fits with and without the in-
clusion of DY data. We found that the Sivers function
extracted in SIDIS-only fit nicely describes the DY data
without extra tuning. Indeed, N3LO SIDIS-only fit has
�2/Npt = 0.87 and without any adjustment describes also
DY data with �2/Npt = 1.23.

The combined SIDIS+DY fit reaches a very good over-
all �2/Npt = 0.88 for all 76 DY and SIDIS data points,
with �2/Npt = 0.88 for SIDIS and �2/Npt = 0.90 for DY.
Parameters of Sivers function resulting from SIDIS-only
and SIDIS+DY fits are compatible with each other [70].
The quality of data description in SIDIS+DY N3LO fit
can be seen in Fig. 1.

We have performed a fit without the sign change of
Sivers function from Eq. (1) in order to estimate the
significance of the sign change from the data. The re-
sulting fit does exhibit tensions between DY and SIDIS
data sets, however, the fit has �2/Npt = 1.0 and can-

Results:
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Targets for Lattice QCD:

• Non-perturbative CS Kernel

• Info on Spin-dependent TMDPDFs (in ratios)

• Info about 3D structure,  and   (in ratios)x bT

• proton vs. pion TMDPDFs (in ratios)

• TMDPDF with  and  (normalization) x bT

• flavor dependence of TMDPDFs (in ratios)

• Gluon TMDPDFs  [repeat items above]
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TMD Definitions Beam  
Function

Soft  
factor

Reminder (& notation) of TMDPDFs

Definition of TMDPDFs

Motivation: TMD factorization theorem (example: pp ! Z ! l
+
l
�)

�(~qT ) = H(Q,µ)

Z
d2~bT e

i~qT ·~bT f
TMD
q/a (xa,

~bT , µ, ⇣a) f
TMD
q/b (xb,

~bT , µ, ⇣b) + O

⇣
qT

Q

⌘2

I H(Q ⇠ mZ , µ): Hard function (virtual corrections)

Quark TMDPDF: [Collins ’11; Echevarria, Idilbi, Scimemi ’11; Chiu, Jain, Neill, Rothstein ’12, ...]

f
TMD
q (x,~bT , µ, ⇣) = Zuv(µ, ⇣, ✏) lim

⌘!0
Bq(x,~bT , ✏, ⌘, ⇣)

p
Sq(bT , ✏, ⌘)

S0
q(bT , ✏, ⌘)

I Bq: Beam function (collinear matrix element)
I Sq, S

0
q : Soft contributions

I ⌘: Regulates rapidity divergences
I ⇣: Collins-Soper scale [Collins, Soper’81]

Definitions of ⌘ and hence of Bq and Sq

are scheme dependent,
but fTMD

q is scheme independent
l

p p

l

+

-

Soft

Beam
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Towards quasi-TMDPDFs from Lattice QCD

Constructing the quasi beam function

Beam function: (light-cone correlator)

Bq(x,~bT , . . . ) =

Z
db+

4⇡
e
� i

2b
+
(xP�

)

D
p(P )

���q̄(bµ)W (0,~0T )

(b+,~bT )

�
�

2
q(0)

���p(P )
E

Quasi beam function: (equal-time correlator)

B̃q(x,~bT , . . . ) =

Z
dbz

2⇡
e
ibz

(xP z
)

D
p(P )

���q̄(bµ)W (0,~0T )

(bz,~bT )

�
3

2
q(0)

���p(P )
E

Wilson line path:
I Finite lattice size requires to truncate at length L

I Bare operators related by Lorentz boost

b?

t
z

q

q

b+

?

z

t

nn̄

b
z�b

z

�
�
b z
n̄

�
b z
n̄

b
µ =

b
+

2
(1, 0, 0, 1) + b

µ
T
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Towards quasi-TMDPDFs from Lattice QCD

Constructing the quasi soft function

Soft function: (light-cone correlator)

S
q(bT ) = h0

��[S†
nSTSn̄](~bT )[S

†
n̄S

†
TSn](~0T )

��0i

Quasi soft function: (equal-time correlator)

S̃
q(bT ) = h0

��[S†
ẑSTS�ẑ](~bT )[S

†
�ẑSTSẑ](~0T )

��0i

Wilson line path:
I Finite lattice size requires to truncate at length L

I Bare operators not related by Lorentz boost (more on this later)

b?

t
z

?

z

t

nn̄

b
z�b

z

�
b z
n̄

�
b
z n

v < 0v > 0

n
µ = (1, 0, 0, 1) , n̄µ = (1, 0, 0,�1)
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OB :

staple shaped 
Wilson lines 

Sq = �0|OS |0�

OS :

Review of TMD factorization

Rapidity (light-cone) divergences

�(~qT ) = Hqq̄!Z(mZ)

Z
d2~bT e

i~qT ·~bT Bq(x1,
~bT )Bq̄(x2,

~bT )S
q(bT )

Hard function H: Describes hard process qq̄ ! Z

Beam functions Bq,q̄: collinear radiation

Soft function S
q: soft radiation

Beam and soft modes have virtuality p
2
⇠ q

2

T

I Induces rapidity (light-cone) singularities
(not regulated by dimension regularization)

Rapidity divergences arise from integrals of type
Z

dk+dk� f(k+
k
�)

(k+k�)1+✏
=

Z
d(k+

/k
�)

2 k+/k�

Z
d(k+

k
�)

f(k+
k
�)

(k+k�)1+✏

Unphysical rapidity divergences cancel in physical TMDPDF:
f
TMD

q (x,~bT ) = Bq(x,~bT )
p

Sq(bT ) = Bq(x,~bT )�
q
S(bT )

p
+

p
�

QqTq
2
T
/Q

Q

qT

q
2
T

Q
p
2 = q

2
T

p
2 = Q

2
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Sq

Bq

Bq

two light-cone directions
depends on color rep. (q or g)

fq(x,�bT , µ, �) = lim
��0,��0

Zuv(�, µ, �)Bq(x,�bT , �, �, �)
�

Sq(bT , �, �)� �q(bT , �, �)

contains
Sq = �0|OS |0�& subtractions

Bq = FTb+ �p|OB |p�

�

�q = 1/
�

Sq

Lattice calculations must overcome light-cone nature of objects.
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Quasi-PDFs
Consider a purely spatial operator  

(Xiangdong Ji 2013) 

quasi-PDF

Relate to light-cone operator for PDF by a boost

f̃q(x, P z, �) =
�

dbz

4�
eibzxP z �

p(P )
��q̄(bz)Wz(bz, 0)�0q(0)

��p(P )
�

(a)

z

t
nn̄

bz�bz

�
�b z

n̄

�b z
n̄

(b)

Figure 5: Illustration of the Wilson line structure of the quasi beam function (a), and the
behavior of the longitudinal separation under a Lorentz boost along the z direction (b).

3.4 Construction of the quasi soft function

Recall the definition Eq. (2.9) of the bare TMD soft function,

S
q(bT , ✏, ⌧) =

1

Nc

⌦
0
��Tr

⇥
S
†

n(~bT )Sn̄(~bT )ST (�1n̄;~bT ,~0T )S
†

n̄(~0T )Sn(~0T )S
†

T

�
�1n;~bT ,~0T

�⇤
⌧

��0
↵
.

(3.22)

Note that this vacuum matrix element has no explicit time dependence, in contrast to
the collinear matrix element Eq. (3.18). Time dependence only enters indirectly through
the lightlike directions of the Wilson lines Sn and Sn̄, which on its own prohibits a direct
computation on lattice. To obtain a lattice-computable quasi soft function, it thus seems
reasonable to follow the same logic as above and replace

n
µ = (1, 0, 0, 1) ! ẑ

µ
, n̄

µ = (1, 0, 0,�1) ! �ẑ
µ
. (3.23)

As before, the lattice computation also requires to truncate the Wilson lines at a length L,
where they are joined by transverse gauge links. The most naive attempt of constructing a
quasi version of the soft function Eq. (2.9) thus takes the form

S̃
q(bT , a, L) =

1

Nc

⌦
0
��Tr

�
S
†

ẑ(
~bT ;L)S�ẑ(~bT ;L)ST (Lẑ;~bT ,~0T )

⇥ S
†

�ẑ(
~0T ;L)Sẑ(~0T ;L)S

†

T

�
�Lẑ;~bT ,~0T

� ��0
↵
, (3.24)

where the soft Wilson lines of finite length are given by

S±ẑ(x
µ;L) = P exp


±ig

Z 0

�L
dsAz(xµ ± sẑ

µ)

�
. (3.25)

The resulting Wilson line path is illustrated in Fig. 6a.
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boost to O � boost to proton state

quasi-PDF and PDF must have same IR physics

Differences in UV accounted for by perturbative matching

�QCD � P ztake “LaMET”(finite large P z)

f̃i(x, P z, µ̃) =
� 1

�1

dy

|y| Cij

�x

y
,

µ̃

P z
,

µ

yP z

�
fj(y, µ) + O

�M2

P 2
z

,
�2

QCD

x2P 2
z

�

quasi-PDF 
computable with  

Lattice QCD

Perturbative matching 
coefficient

PDF

Power corrections
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Quasi-TMDPDFs

UV renormalization & scheme change

quasi-Beam function quasi-soft factor

needs to be computable with Lattice QCD
must have same IR physics as TMDPDF

(including                    dependence) bT � ��1
QCD

f̃q(x,�bT , µ, P z) =
�

dbz

2�
eibz(xP z) lim

a�0
L��

Z̃ �q(b
z, µ, µ̃)Z̃q

uv(b
z, µ̃, a)

� B̃q(bz,�bT , a, L, P z)�̃q
S(bT , a, L)

a = lattice spacing (UV regulator)

(isovector quark operators u-d, from here on)
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Towards quasi-TMDPDFs from Lattice QCD

Constructing the quasi beam function

Beam function: (light-cone correlator)

Bq(x,~bT , . . . ) =

Z
db+

4⇡
e
� i

2b
+
(xP�

)

D
p(P )

���q̄(bµ)W (0,~0T )

(b+,~bT )

�
�

2
q(0)

���p(P )
E

Quasi beam function: (equal-time correlator)

B̃q(x,~bT , . . . ) =

Z
dbz

2⇡
e
ibz

(xP z
)

D
p(P )

���q̄(bµ)W (0,~0T )

(bz,~bT )

�
3

2
q(0)

���p(P )
E

Wilson line path:
I Finite lattice size requires to truncate at length L

I Bare operators related by Lorentz boost

?

z

t

nn̄

b
z�b

z

�
�
b z
n̄

�
b z
n̄

b?

t
z

q

q

bz

L

b
µ =

b
+

2
(1, 0, 0, 1) + b

µ
T
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Towards quasi-TMDPDFs from Lattice QCD

Constructing the quasi beam function

Beam function: (light-cone correlator)

Bq(x,~bT , . . . ) =

Z
db+

4⇡
e
� i

2b
+
(xP�

)

D
p(P )

���q̄(bµ)W (0,~0T )

(b+,~bT )

�
�

2
q(0)

���p(P )
E

Quasi beam function: (equal-time correlator)

B̃q(x,~bT , . . . ) =

Z
dbz

2⇡
e
ibz

(xP z
)

D
p(P )

���q̄(bµ)W (0,~0T )

(bz,~bT )

�
3

2
q(0)

���p(P )
E

Wilson line path:
I Finite lattice size requires to truncate at length L

I Bare operators related by Lorentz boost

b?

t
z

q

q

b+

?

z

t

nn̄

b
z�b

z

�
�
b z
n̄

�
b z
n̄

b
µ =

b
+

2
(1, 0, 0, 1) + b

µ
T
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Quasi-Beam Functions

Bq = �p|OB |p�

OB :

B̃q = �p|ÕB |p�

ÕB :

Beam Function
Natural Quasi-Beam Function

Connected by boost 
(for bare operators)

Finite length L for Wilson lines, regulates rapidity divergences

~bT
~0T

~bT�L n̄

~bT�Ln

�L n̄

�Ln

(a)

~bT
~0T

~bT�L n̄

~bT�Ln

�L n̄

�Ln

(b)

~bT
~0T

~bT�L n̄

~bT�Ln

�L n̄

�Ln

(c)

~bT
~0T

~bT�L n̄

~bT�Ln

�L n̄

�Ln

(d)

Figure 4: One loop diagrams for the TMD soft function with finite-length Wilson lines
in Feynman gauge, up to mirror diagrams. The labels indicate the Wilson line paths in
position space.

for a Wilson line of size L stretching along the n direction, compared to its L ! 1 limit,

gst
a
n
µ 1� e

ik+L

k+
L!1
�! gst

a
n
µ 1

k+ + i0
. (3.7)

In Sec. 2, an explicit example of rapidity-divergent integral was discussed, see Eq. (2.15).
For finite L, the example integral changes to

Idiv =

Z
dk+dk�

f(k+k�)

(k+k�)1+✏
!

Z
dk+dk�

f(k+k�)

(k+k�)✏
1� e

ik+L

k+

1� e
�ik�L

k�
. (3.8)

Here we see that possible divergences as either k
±

! 0 are regulated by having finite L,
and the leftover logarithmic divergence as either k

±
! 1 is taken care of by dimensional

regularization.
In our construction of the quasi functions on lattice, we will replace the lightlike Wil-

son lines by spacelike Wilson lines, which affects the eikonal propagator, so the analog of
Eq. (3.8) is

Ĩdiv =

Z
dk0 dkz

f(k20 � k
2
z)

(k20 � k2z)
✏

1

k2z
!

Z
dk0 dkz

f(k20 � k
2
z)

(k20 � k2z)
✏

1� e
ikzL

kz

1� e
�ikzL

kz
. (3.9)

Clearly, the exponentials regulate a possible divergence as kz ! 0, and thus play a similar
role as in the lightlike case. However, Eq. (3.9) contains a quadratic dependence on kz in the
denominator, rather than the linear dependence on k

+ and k
� in Eq. (3.8). Thus, we can

also encounter linear divergences in L, as opposed to having only logarithmic divergences
ln(L) in the lightlike case.

3.2.1 Example: Lightlike soft function at NLO

To give a concrete example of the effect of finite L, we consider in detail the lightlike soft
function, defined in Eq. (2.9), at one loop. To account for the effect of finite lattice size,
the Wilson lines along the n and n̄ directions are truncated at Ln and Ln̄, respectively, and
transverse gauge links are included, as shown in Fig. 3b. In Feynman gauge, there are four
relevant diagrams, shown in Fig. 4, of which only (a) and (b) have rapidity divergences,
while (c) and (d) do not.

– 18 –

Spatial lines, so have power law UV divergence 

1
P z
� bT � L

� length = 2L + bT � bz

f̃q(x,�bT , µ, P z) =
�

dbz

2�
eibz(xP z) lim

a�0
L��

Z̃ �q(b
z, µ, µ̃)Z̃q

uv(b
z, µ̃, a)

� B̃q(bz,�bT , a, L, P z)�̃q
S(bT , a, L)
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Quasi-Soft Function �̃q
S = 1/

�
S̃q S̃q = �0|ÕS |0�

Towards quasi-TMDPDFs from Lattice QCD

Constructing the quasi soft function

Soft function: (light-cone correlator)

S
q(bT ) = h0

��[S†
nSTSn̄](~bT )[S

†
n̄S

†
TSn](~0T )

��0i

Quasi soft function: (equal-time correlator)

S̃
q(bT ) = h0

��[S†
ẑSTS�ẑ](~bT )[S

†
�ẑSTSẑ](~0T )

��0i

Wilson line path:
I Finite lattice size requires to truncate at length L

I Bare operators not related by Lorentz boost (more on this later)

b?

t
z

?

z

t

nn̄

b
z�b

z

�
b z
n̄

�
b
z n

v < 0v > 0

n
µ = (1, 0, 0, 1) , n̄µ = (1, 0, 0,�1)
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S̃q :
Sq : ?

No connection  
via a boost.

One way around this is to study ratios where         cancels.S̃q :
Musch, Hagler, Engelhardt, Negele, Schafer ’10,’11,’15

Yoon et.al.’17
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WD: Small linking paragraph transitioning from x-dependent PDFs to TMDs (even
though TMD quantities were investigated earlier
6.4.1 Lorentz-invariant approach

Calculational scheme

As already indicated in Sec. 2.8, lattice calculations of TMD (and GTMD) observables are
based on the evaluation of the fundamental hadronic matrix elements, cf. Eq. (2.143),

e�[�]
i (b , P0, P, S, v , ⌘, a) ⇤ 1

2

D
P0, S

��� ̄0
i (b
µ/2)�Wv

@⌘(bµ/2,�bµ/2) 0
i (�bµ/2)

���P, SE (6.53)

in states characterized by their momentum and spin; TMDs are derived from diagonal matrix
elements, P0 ⇤ P, whereas GTMDs, to be discussed further in Chap. 11, additionally depend
on the momentum transfer � ⇤ P0 � P. � stands for an arbitrary Dirac matrix structure and i
labels the quark flavor. As discussed in detail in Chap. 2, the presence of the gauge connection
Wv
@⌘ introduces divergences additional to the wave function renormalizations of the quark

operators; these can be absorbed into a multiplicative soft factor. In the calculational scheme
described in the following, the explicit evaluation of soft factors is avoided by considering ap-
propriate ratios in which they cancel. A method to evaluate soft factors in LQCD, which would
allow one to extend lattice calculations beyond ratio observables, is discussed in Sec. 6.4.2.

As laid out in Chap. 2, standard TMDs describing, e.g., the SIDIS and Drell-Yan processes
are obtained using a staple-shaped gauge connection path,�� as exhibited in Fig. 2.8. The path
is characterized not only by the separation of the quark operators b, but also the direction
of the staple v, and the length of the staple ⌘. In a LQCD calculation, ⌘ is finite, and one
must extrapolate the data to the ⌘ ! 1 limit. In addition, v is chosen to be space-like,
in order to be able to connect the definition in Eq. (6.53) to a Lorentz frame in which v is
purely spatial, and in which therefore the lattice calculation can be performed. As already
discussed in Sec. 2.8, a useful parameter characterizing the rapidity of the staple direction v
relative to the average hadron momentum P̄ ⇤ (P0 + P)/2 is the Collins-Soper type evolution
parameter ⇣̂ ⇤ v · P̄/(

p
|v2 |

p
P̄2). The connection with the modern Collins definition of TMDs

is established in the limit ⇣̂ ! 1.
In practice, reaching values of ⇣̂ in the range 1–2 in lattice calculations appears to be suf-

ficient to enter a regime in which the data fit a power law behavior that can be extrapolated
to the ⇣̂ ! 1 limit; an illustration is provided by Fig. 6.14 further below. For a light particle
such as the pion, this regime has been reached, whereas for the nucleon, current calcula-
tions as of this writing are still concentrated at lower values and only beginning to enter the
aforementioned regime. The extrapolation ⇣̂ ! 1 therefore appears feasible with continually
improving calculations, but does figure among the chief systematic uncertainties of lattice
TMD calculations. It persists as a challenge for future LQCD TMD investigations.

To facilitate the transformation of the results obtained in the Lorentz frame in which the
lattice calculation is performed back to the original frame in which TMDs are defined, it is
useful to employ a decomposition of Eq. (6.53) into Lorentz invariants. Once determined in the

��More complex paths can also become relevant when one extends considerations beyond the simplest pro-
cesses [632].

Use Lorentz Invariance to relate space-like and equal-time paths
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!

⌘!1

b
2 ⌘v + b

2

� b
2 ⌘v � b

2

v

Figure 2.8: Staple-shaped path for the gauge connection Wv
@⌘ in Eq. (2.143).

Lorentz Invariant Modern CS (yB) Euclidean Lattice
P · b P+b� �Pz bz

b2 �b2
T �b2

z � b2
T

⇣̂ ⇤
v · P

mp
p
�v2

sinh(yP � yB) sinh(yP)

v · bp
�v2

�e yB b�p
2

�vz bz � vT · bTq
v2

z + v2
T

⌘2v2 �1 �⌘2(v2
z + v2

T)

Table 2.7: Comparison in position space of the Lorentz invariant variables between the Euclidean lattice
approach and the modern CS definition prior to taking the yB ! �1 limit. In modern CS we have
bµ ⇤ (0, b� , bT) in light-cone coordinates where v ⇤ nB(yB) from Eq. (2.45). The Euclidean lattice
construction takes bµ ⇤ (0, bx

T , b
y
T , b

z) in Cartesian coordinates.

The correlator (2.143) furthermore depends on the momenta P, P0 of the in- and outgoing
states as well as their spin S. TMDs are obtained in the forward limit, P ⇤ P0, which we will
assume for the remainder of the discussion in this section. (The generalization to nonzero
momentum transfer yields the Generalized Transverse Momentum-Dependent parton distri-
butions (GTMDs) discussed in Chapter 11.) A useful parameter to characterize the rapidity
of the staple link direction v relative to the hadron is the dimensionless Collins-Soper type
evolution parameter

⇣̂ ⇤
v · Pp
|v2 |P2

⇤ sinh(yP � yv) . (2.146)

This parameter characterizes the staple link connecting the quark operators. It therefore differs
from the variable ⇣a defined in Eq. (2.30), which involves a combination of variables inherited
from the proton matrix element (mp and yA) and the TMD soft factor (yn).

Using Lorentz covariance, the matrix element in Eq. (2.143) can be decomposed into inde-
pendent tensors constructed from Pµ, bµ and vµ, with the coefficients (or amplitudes) uniquely
determined by the Lorentz scalars P · b, b2, ⇣̂, v · b/

p
�v2, and ⌘2v2 [127]. (Following standard

conventions, we do not treat the dependence on m2
p ⇤ P2 as a variable.) Such decompositions
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@⌘ in Eq. (2.143).
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Table 2.7: Comparison in position space of the Lorentz invariant variables between the Euclidean lattice
approach and the modern CS definition prior to taking the yB ! �1 limit. In modern CS we have
bµ ⇤ (0, b� , bT) in light-cone coordinates where v ⇤ nB(yB) from Eq. (2.45). The Euclidean lattice
construction takes bµ ⇤ (0, bx

T , b
y
T , b

z) in Cartesian coordinates.

The correlator (2.143) furthermore depends on the momenta P, P0 of the in- and outgoing
states as well as their spin S. TMDs are obtained in the forward limit, P ⇤ P0, which we will
assume for the remainder of the discussion in this section. (The generalization to nonzero
momentum transfer yields the Generalized Transverse Momentum-Dependent parton distri-
butions (GTMDs) discussed in Chapter 11.) A useful parameter to characterize the rapidity
of the staple link direction v relative to the hadron is the dimensionless Collins-Soper type
evolution parameter

⇣̂ ⇤
v · Pp
|v2 |P2

⇤ sinh(yP � yv) . (2.146)

This parameter characterizes the staple link connecting the quark operators. It therefore differs
from the variable ⇣a defined in Eq. (2.30), which involves a combination of variables inherited
from the proton matrix element (mp and yA) and the TMD soft factor (yn).

Using Lorentz covariance, the matrix element in Eq. (2.143) can be decomposed into inde-
pendent tensors constructed from Pµ, bµ and vµ, with the coefficients (or amplitudes) uniquely
determined by the Lorentz scalars P · b, b2, ⇣̂, v · b/

p
�v2, and ⌘2v2 [127]. (Following standard

conventions, we do not treat the dependence on m2
p ⇤ P2 as a variable.) Such decompositions

connection to bare (Collins) TMDPDF 
   requires η → ∞, ̂ζ → ∞
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Figure 6.12: Dependence of TMD observables on the staple length. Left: T-odd isovector (u � d
quark) generalized Sivers shift at fixed bT and ⇣̂. Right: T-even isovector generalized g1T worm-gear
shift at fixed bT and ⇣̂. Data were obtained on a domain wall fermion (DWF) ensemble at pion mass
m⇡ ⇡ 300 MeV and lattice spacing a ⇤ 0.084 fm; from Ref. [129]. Horizontal lines indicate averages
of the data points in the ranges ⌘|v | � 6a and ⌘|v |  �6a, respectively, where plateau behavior is
expected. Extrapolations at ⌘|v | ⇤ ±1 are obtained as mean values of the aforementioned averages
(with a relative minus sign in the case of the Sivers shift).

is also a T-even quantity. In contradistinction to the previous observables, it does not
involve any weighting with kT and is directly related to the well-known transversity
and unpolarized distribution functions. It is interpreted as a generalized tensor charge
because, in the formal bT ! 0 limit, the numerator corresponds to the integral of the
transversity distribution, i.e., the standard tensor charge. It is again normalized to the
corresponding number of valence quarks. It should however be emphasized that the
additional divergences that arise in the bT ! 0 limit require further renormalization, as
a consequence of which the ratio of tensor to vector renormalization constants, ZT/ZV ,
has to be accounted for when connecting the generalized tensor charge to the standard
tensor charge.

Note, in particular, that the ratios considered in Eqs. ((6.58))-((6.61)) cancel any multiplica-
tive renormalization and soft factors associated with the eAiB amplitudes at finite bT . It should
be emphasized, however, that the multiplicative nature of the renormalization and soft factors
obtained in the continuum theory is not immediately guaranteed to transfer to the lattice for-
mulation; the renormalization pattern of the lattice quantities requires separate consideration
depending on the concrete discretization employed, as is discussed below in connection with
Fig. 6.16.

Systematic behavior of lattice TMD observables – numerical studies

As already indicated in the above discussion, a number of challenges have to be ad-
dressed in order to arrive at controlled predictions for TMD observables that can be connected
to phenomenology. For one, whereas the extrapolation to infinite staple length ⌘ is fairly
straightforward, accessing the relevant ⇣̂ regime is more difficult, since it requires data at
sufficiently high hadron momenta. Secondly, the purported cancellation of renormalization
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Figure 6.13: Compilation of LQCD results for the Sivers shift, compared to a phenomenological estimate
obtained by constructing the Sivers shift from the results of the phenomenological analysis [288], as
described in Ref. [129]. Lattice results from several studies combine to a consistent picture, with
no significant dependence on the pion mass apparent in the range covered. The trend of the lattice
data as a function of the Collins-Soper-type parameter ⇣̂ suggests that agreement between lattice and
phenomenological estimates is within reach as lattice studies progress towards larger ⇣̂.

and soft factors in ratios such as in Eqs. (6.58)-(6.61) requires reexamination in the context of
LQCD. Thirdly, progress towards the physical quark masses must be made in lattice TMD
calculations; initial studies were performed at artificially large quark masses for reasons of
computational cost. In addition, early explorations of TMD observables focused on the point
b · P ⇤ 0, see Eqs. (6.58)-(6.61); since the longitudinal component of b is Fourier conjugate to
the longitudinal momentum fraction x, setting b · P ⇤ 0 corresponds to evaluating only the
x-integral of TMDs. To access the x-dependence of TMD observables, the numerical studies
must be extended to include scans of the b ·P direction. Furthermore, it is necessary to buttress
these lattice TMD investigations by performing quantitative studies of the scaling with the
lattice spacing a, in order to gain nonperturbative understanding of TMD evolution (lattice
calculations of the CS kernel governing rapidity evolution are discussed in Section 6.4.3). In
addition, the finite lattice size effects influencing the behavior of nonlocal operators such as
the one in Eq. (6.53) remain to be understood, cf. related considerations in Ref. [633].

Significant progress has been made in addressing these challenges. Fig. 6.14 displays a
result of a dedicated study [128] of the large ⇣̂ regime using the example of the Boer-Mulders
shift in the pion. The Boer-Mulders shift measures the average transverse momentum of quarks
polarized in the transverse direction orthogonal to the given momentum, in an unpolarized
hadron. The pion, by virtue of its lower mass compared with that of the nucleon, allows
one to access higher ⇣̂ (note that the hadron mass enters the denominator of ⇣̂). This case
demonstrates a stable extrapolation to the large ⇣̂ limit, with the signal surviving in the limit.
To obtain data of similar quality for the nucleon, it is necessary to employ the momentum
smearing method [634]. Lattice TMD studies underway at the time of this writing incorporate
this technique.

On the other hand, the question to what extent the multiplicative nature of renormaliza-

Eg.  ratio constraining Sivers function (u-d flavor)

Observe sign flip in gen. Sivers shift

Correct trend towards experimental result

R
dx f?

1T (x, bT , . . .)R
dx f1(x, bT , . . .)

= lim
⌘!1,⇣̂!1

�̃[f?
1T ](bz = 0, bT , a, . . .)

�̃[f1](bz = 0, bT , a, . . .)
+ . . .
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where n
µ = (1,�1,~0?)/(P z + P

t) in (t, z,~b?) coordi-

nates; Wn = W
†
n(�n +~b?)W?Wn(0) is a staple shaped

gauge link along n direction similar to those defined in
Eq. (2), where Wn(⇠) = Pexp

⇥
�ig

R
1

0
n ·A(⇠ + sn)

⇤
.

The same lightcone TMDWF also appears in factoriza-
tion for electromagnetic pion form factor in Ref. [36].

To extract soft functions from the lattice calculable
form factor in Eq. (15), we need to know the lightcone
TMDWF as well. Therefore, we construct a lattice cal-
culable quasi-TMDWF [20],

e�(x, b?, P ) (17)

= lim
L!1

Z
d�

4⇡
e
ix� hP | (zẑ/2 +~b?)e�Wz (�zẑ/2)|⌦ip

ZE(2L, b?, Y = 0)

where � = zP
z and ẑ

µ = (0, 1,~0?); e� can be chosen

as �5�t or �5�z; Wz = W
†
z (zẑ/2 + ~b?)W?Wz(�zẑ/2)

is a staple shaped gauge link along �ẑ direction with

Wz(⇠) = Pexp
h
ig

R
�L�⇠z

0
dsA

z(⇠ + sẑ)
i
pointing to �z

direction. Similar to Eq. (15) and quasi-TMDPDF fac-

torization [37], e� can be factorized into a perturbative
hard kernel and nonperturbative lightcone quantities [35]

e�(x, b?, P ) = H�(x, P )
�(x, b?, P, �)

S2(b?, �, �)
S1(b?, �, Y

0 = 0)

(18)

where � and � are on-lightcone regulators for gauge links
along lightlike P and its conjugate direction, and similar
to Eq. (15) � and � are taking the lightcone limit im-
plicitly. The subscript “1” of the soft function denotes
that one of the rapidity regulators are on-lightcone, and
the other staple-shaped gauge link is along temporal di-
rection indicated by Y

0 = 0. The soft functions S2 and
S1 subtract away the regulator dependencies introduced
in the lightcone TMDWF �. The overall combination in
the right hand side of Eq. (18) is rapidity regularization
scheme independent.

Combining Eqs. (15) and (18), we have

F (b?, P ·P
0)

R
dxdx0H(x, x0, P, P 0)e�(x0, b?, P

0)e�†(x, b?, P )

=
S2(b?, �, �0)

S1(b?, �, Y 0 = 0)S1(b?, Y = 0, �0)
⌘ SI(b?) (19)

where H ⌘ HF (x, x0)/H�(x)H�(x0) is entirely perturba-
tive, and SI is called the intrinsic soft function. Similar to
argument in Ref. [22], the lightcone singularities cancel in
the above combination, therefore the result SI is scheme
independent. It is worth to point out that SI = e

�D in
the o↵-lightcone scheme from Eq. (4) even though D is
scheme dependent in general. The soft functions with on-
lightcone regulator have the asymptotic forms for small
� similar to Eq. (4)

S1(b?, �, Y
0) = e

(Y 0
�ln �)K(b?)+D1(b?)+O(� exp(�Y )) (20)

S2(b?, �, �
0) = e

�(ln ��0)K(b?)+D2(b?)+O(��0)
. (21)

Based on Eq. (19), the Collins-Soper kernels K are can-
celled on the left hand side and we obtain the relation
2D1 � D2 = D. We have explicitly verified this relation
and Eq. (19) at one-loop level.
Similar to Eq. (19), we can show that the cross section

of DY can be factorized by quasi-TMDPDF [35]

d�DY

d2Q?

=

Z
dx dx

0
d
2
b?e

i~b?·~Q? (22)

⇥ �̂(x, x0
, P ·P

0) ef(x, b?, P ) ef(x0
, b?, P

0)SI(b?)

where Q? is the transverse momentum of produced lep-
ton pair, �̂(x, x0

, P ·P
0) is the hard kernel, and

ef(x, b?, P ) (23)

= lim
L!1

Z
d�

4⇡
e
ix� hP | (zẑ/2 +~b?)e�Wz (�zẑ/2)|P i

P z
p

ZE(2L, b?, Y = 0)

is a quasi-TMD parton distribution with definition sim-
ilar to the quasi-TMDWF in Eq. (17). With Eq. (22),
the DY process in low-transverse-momentum region
becomes predictable from first-principle calculations.

Discussion and conclusion.—To implement an actual
calculation of the soft function on lattice, particularly in
the HQET framework, some special considerations need
to be made [28–30]. It is known that the näıve infinite
heavy quark mass limit causes doubling problem, and the
usual technique, such as a Wilson term, can be used to lift
the degeneracy. The UV divergences from the transition
current require renormalization, which can be matched
to the dimensional-regularization scheme, and the veloc-
ity also need to be renormalized due to lattice artifacts.
Moreover, working with large velocity color sources might
have similar challenges as large-momentum hadrons [38].
For the soft function from the light-meson form factor,
various renormalization and matching will also need be
made. For correlators containing staple-shaped gauge
links, the nonperturbative renormalization has been dis-
cussed in Refs. [37, 39, 40]. We reserve a detailed discus-
sion about practicality of lattice calculations to [35].
It shall be remarked that the soft function in the o↵-

lightcone scheme approaches the lightcone limit through
the large rapidity separation

p
(2v · v0)2/v2(v0)2 =p

v+v0�/(v�v+) ! 1 but not through v
2
, (v0)2 ! 0.

A common definition of the universal soft function was
proposed in Refs. [22, 23]. The spacelike vectors u

µ =
�(�, 1, 0, 0) and u

0µ = �
0(��0

, 1, 0, 0) were chosen instead
of timelike v and v

0 to define the soft function for the DY
process. Despite the di↵erent definitions, we can prove
that this soft function is equal to what we defined in
Eq. (1) [35].

There are other e↵orts to propose soft functions on
lattice connecting quasi-TMDPDF to lightcone TMD-
PDF [17–19]. However, the soft function is controlled
by cusp anomalous dimension at large hyperbolic angle,
while other proposed soft functions are composed by Eu-
clidean gauge links with circular angle which cannot be

F
�̃

S̃q =

2

momenta on a 2+1 flavor CLS ensemble with a =
0.098 fm [26], see Table I. In particular we perform sim-
ulations of the large-momentum light-meson form factor
and quasi-TMD wave functions (TMDWFs), whose ratio
gives the intrinsic soft function [9]. The Wilson loop ma-
trix element will be used to remove the linear divergence
in the quasi-TMD wave function. The CS kernel, K, can
also be calculated from the external momentum depen-
dence of the quasi-TMD wave function [16], and we will
calculate it as a by-product. Our result is consistent with
that of a quenched lattice study using TMDPDFs [25].

FIG. 1. Illustration of the pseudo-scalar meson form factor
F calculated in this work. The initial and final momenta of
the pion are large and opposite. The transition “current” is
made of two local operators at a fixed spatial separation b⊥.
tsep is the time separation between the source and sink of the
pion.

Theoretical Framework. The intrinsic soft function
(SI) can be obtained from the QCD factorization of
a large-momentum form factor of a non-singlet light
pseudo-scalar meson with constituents π = q2γ5q1, with
the transition current made of two quark-bilinears with
a fixed transverse separation #b = (#n⊥b⊥, 0),

F (b⊥, P
z) = 〈π(− #P )|(q1Γq1)(#b)(q2Γq2)(0)|π(#P )〉c. (2)

Here q1,2 are light quark fields of different flavors, and
#P = (#0⊥, P z). The initial and final mesons approach
two opposite lightcone directions in the P z → ∞ limit.
Only the connected diagram is important in the large
momentum limit, as illustrated in Fig. 1.
It can be shown that the form factor defined in Eq. (2)

is factorizable into the quasi-TMDWF Φ and the intrinsic
soft function SI [9, 16]

F (b⊥, P
z) = SI(b⊥) (3)

×

∫ 1

0
dx dx′H(x, x′, P z)Φ†(x′, b⊥,−P z)Φ(x, b⊥, P

z)

whereH is perturbative hard kernel. The quasi-TMDWF
Φ is the Fourier transformation of the coordinate-space

correlation function

φ(z, b⊥, P
z) = lim

!→∞

φ!(z, b⊥, P z, %)
√

ZE(2%, b⊥)
, (4)

φ!(z, b⊥, P
z, %)

=
〈

0
∣

∣

∣
q1

(z

2
nz +#b

)

ΓΦW(#b, %)q2
(

−
z

2
nz

)
∣

∣

∣
π(#P )

〉

.

In the above W(#b, %) is the spacelike staple-shaped gauge
link,

W(#b, %) = Pexp

[

igs

∫ z/2

−!
ds nz ·A(nzs+ b⊥)

]

× Pexp

[

igs

∫ b⊥

0
ds n⊥ ·A(−%nz + sn⊥)

]

× Pexp

[

igs

∫ −!

−z/2
ds nz ·A(nzs)

]

, (5)

nz and n⊥ are the unit vectors in z and transverse di-
rections respectively. ZE(2%, b⊥) is the vacuum expec-
tation value of a rectangular spacelike Wilson loop with
size 2%×b⊥ which removes the pinch-pole singularity and
Wilson-line self-energy in quasi-TMDWF [9].
Since the UV divergence of the intrinsic soft function

is multiplicative [16], the ratio SI(b⊥, 1/a)/SI(b⊥,0, 1/a)
calculable on lattice is UV renormalization-scheme inde-
pendent, where b⊥,0 is a reference distance which is taken
small enough to be calculated perturbatively. Thus we
can obtain the result in the MS scheme through

SI,MS(b⊥, µ) =

(

SI(b⊥, 1/a)

SI(b⊥,0, 1/a)

)

SI,MS(b⊥,0, µ) (6)

where SI,MS(b⊥,0, µ) is perturbatively calculable, e.g.,

SI,MS(b⊥, µ) = 1−
αsCF

π
ln

µ2b2⊥
4e−2γE

+O(αs). (7)

In the present exploratory study, we will consider only
the leading order matching in Eq. (3), for which the per-
turbative kernel is H(x, x′, P z) = 1/(2Nc)+O(αs), inde-
pendent of x and x′. Using φ(0, b⊥,−P z) = φ(0, b⊥, P z)
under parity transformation, we obtain

SI(b⊥) =
2NcF (b⊥, P z)

|φ(0, b⊥, P z)|2
+O(αs, (1/P

z)2), (8)

where power corrections from finite P z are ignored. Since
P z is related to the rapidity of the meson, we henceforth
replace it by the boost factor γ ≡ Eπ/mπ. Eq. (6) can
be written as

SI,MS(b⊥, µ) =
F (b⊥, P z)

F (b⊥,0, P z)

|φ(0, b⊥,0, P z)|2

|φ(0, b⊥, P z)|2

+O(αs, γ
−2) . (9)

The ratio on the right-hand side of the above expression
is independent of the renormalization scale µ since only
the leading-order contribution is kept.
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F (b⊥, P
z) = 〈π(− #P )|(q1Γq1)(#b)(q2Γq2)(0)|π(#P )〉c. (2)

Here q1,2 are light quark fields of different flavors, and
#P = (#0⊥, P z). The initial and final mesons approach
two opposite lightcone directions in the P z → ∞ limit.
Only the connected diagram is important in the large
momentum limit, as illustrated in Fig. 1.
It can be shown that the form factor defined in Eq. (2)

is factorizable into the quasi-TMDWF Φ and the intrinsic
soft function SI [9, 16]
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In the above W(#b, %) is the spacelike staple-shaped gauge
link,
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nz and n⊥ are the unit vectors in z and transverse di-
rections respectively. ZE(2%, b⊥) is the vacuum expec-
tation value of a rectangular spacelike Wilson loop with
size 2%×b⊥ which removes the pinch-pole singularity and
Wilson-line self-energy in quasi-TMDWF [9].
Since the UV divergence of the intrinsic soft function

is multiplicative [16], the ratio SI(b⊥, 1/a)/SI(b⊥,0, 1/a)
calculable on lattice is UV renormalization-scheme inde-
pendent, where b⊥,0 is a reference distance which is taken
small enough to be calculated perturbatively. Thus we
can obtain the result in the MS scheme through

SI,MS(b⊥, µ) =

(

SI(b⊥, 1/a)

SI(b⊥,0, 1/a)

)

SI,MS(b⊥,0, µ) (6)

where SI,MS(b⊥,0, µ) is perturbatively calculable, e.g.,

SI,MS(b⊥, µ) = 1−
αsCF

π
ln

µ2b2⊥
4e−2γE

+O(αs). (7)

In the present exploratory study, we will consider only
the leading order matching in Eq. (3), for which the per-
turbative kernel is H(x, x′, P z) = 1/(2Nc)+O(αs), inde-
pendent of x and x′. Using φ(0, b⊥,−P z) = φ(0, b⊥, P z)
under parity transformation, we obtain

SI(b⊥) =
2NcF (b⊥, P z)

|φ(0, b⊥, P z)|2
+O(αs, (1/P

z)2), (8)

where power corrections from finite P z are ignored. Since
P z is related to the rapidity of the meson, we henceforth
replace it by the boost factor γ ≡ Eπ/mπ. Eq. (6) can
be written as

SI,MS(b⊥, µ) =
F (b⊥, P z)

F (b⊥,0, P z)

|φ(0, b⊥,0, P z)|2

|φ(0, b⊥, P z)|2

+O(αs, γ
−2) . (9)

The ratio on the right-hand side of the above expression
is independent of the renormalization scale µ since only
the leading-order contribution is kept.

�̃(x, b?, P ) = lim
L!1

P z

Z
dz

4⇡

hP | ̄(zẑ/2 +~b?)�̃Wz (�zẑ/2)|0ip
ZE(2L, b?, Y = 0)

(see parallel talk by Yizhuang Liu)
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Quasi-TMDPDF
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L��
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S(bT , a, L)

linear divergences in L cancel
        multiplicative renormalization (matrix with operator 
mixing on lattice)
Z̃ �

q(b
z, µ, µ̃)Z̃q

uv(b
z, µ̃, a)

Z̃ �
q(b

z, µ, µ̃)Z̃q
uv(b
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        converts lattice friendly scheme (   ) to        (   ) MSµ̃ µ
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Relation between Quasi-TMDPDF & TMDPDF

nonperturbative 
quasi-TMDPDF

nonperturbative 
TMDPDF

perturbative 
kernel

nonperturbative 
CS kernel

(Note: no convolution in x)

f̃q(x,�bT , µ, P z) = CTMD(µ, xP z) exp
�
1
2
�q

� (µ, bT ) ln
(2xP z)2

�

�
fq(x,�bT , µ, �)

[Ebert, IS, Zhao ’18]
[Ji, Liu, Liu ’19]

                         is spin independentf̃q(x,�bT , µ, P z) = CTMD(µ, xP z) exp
�
1
2
�q

� (µ, bT ) ln
(2xP z)2

�

�
fq(x,�bT , µ, �)

uses SCET in a somewhat different fashion than what we envisioned above because they
consider the analogy of the quasi-TMDPDF with a TMD hadronic tensor, and perform a
match up which simultaneously yields n-collinear, n̄-collinear, and soft fields. It is known
that a quasi soft function is needed as part of the definition of the quasi-TMDPDF in order
to properly carry out the quasi-TMDPDF to TMDPDF matching [14, 15, 17], and it is so
far not clear how the quasi soft function is treated by the analysis in Ref. [21], which is also
the case for our outline above.

4 Applications

We now discuss applications of our main finding in eq. (3.41). We find that the ratios of
spin-dependent TMDs and the unpolarized TMD can be directly obtained from those of
the quasi-TMDs, i.e.

g1L(x, bT , µ, ⇣)

f1(x, bT , µ, ⇣)
=

g̃1L(x, bT , µ, P z)

f̃1(x, bT , µ, P z)
,

h1(x, bT , µ, ⇣)

f1(x, bT , µ, ⇣)
=

h̃1(x, bT , µ, P z)

f̃1(x, bT , µ, P z)
,

h?1T (x, bT , µ, ⇣)

f1(x, bT , µ, ⇣)
=

h̃?1T (x, bT , µ, P
z)

f̃1(x, bT , µ, P z)
. (4.1)

In these ratios the matching coefficients drop out along with the nonperturbative soft con-
tributions in the function gSq and the Collins-Soper evolution factor. The anomalous dimen-
sions for the µ- and Collins-Soper evolutions are the same for the TMDs here, so the ratios
on both the left- and the right-hand sides are only dependent on x and bT . These relations
have power corrections that are suppressed by 1/(P zbT ), so one can calculate the ratios on
the r.h.s. in lattice QCD with different hadron momenta and interpolate to P z

! 1 to
obtain the final result.

In addition, we can consider the ratios of the x-integrated TMDs which were studied
in a different formalism based on exploiting Lorentz invariance in Refs. [22–26]. According
to eq. (2.13),
Z 1

�1
dx f̃ [�̃]

q/hS
(x,~bT , µ, P

z) = Z̃ 0
q(0, µ, µ̃)Z̃

q
uv(0, µ̃, a)�̃

q
S(bT , a, L)B̃

[�̃]
q/hS

(bz = 0,~bT , a, L, P
z) ,

(4.2)

where B̃[�̃]
q/hS

(bz = 0,~bT , a, L, P z) is the bare quasi beam function. The r.h.s. of eq. (4.2)
is finite, so the x-integration of the quasi-TMD is convergent. According to eq. (2.23), we
have

R
dx F̃ns/hS

(x, bT , µ, P z)
R
dx f̃1(x, bT , µ, P z)

=
B̃ns/hS

(0, bT , a, L, P z)

B̃ns(0, bT , a, L, P z)

=

R
dxCns

�
µ, xP z

�
Fns/hS

�
x, bT , µ, ⇣ = (2xP z)2

�
R
dxCns

�
µ, xP z

�
f1
�
x, bT , µ, ⇣ = (2xP z)2

� . (4.3)

Thus we see that this ratio of x-integrated quasi-TMDPDF is not directly related to the
ratio of x-integrated TMDs Fns/hS

and f1 in the formalism used here.
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1 (x, bT , µ, ⇣)

f1(x, bT , µ, ⇣)
=

f̃?
1 (x, bT , µ, P z)

f̃1(x, bT , µ, P z)
Ji, Liu, Schaefer, Yuan ‘20

Ebert, Schindler, IS, Zhao ’20;  Vladimirov, Schafer ’20

+O

⇣ 1

(bTxP z)2
,
⇤QCD

xP z

⌘
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Collins-Soper Kernel from Lattice 

�q
� (µ, bT ) =

1
ln(P z

1 /P z
2 )

ln
CTMD(µ, xP z

2 ) f̃q(x,�bT , µ, P z
1 )

CTMD(µ, xP z
1 ) f̃q(x,�bT , µ, P z

2 )

=
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ln(P z
1 /P z
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CTMD(µ, xP z
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dbzeibzxP z
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q Z̃q
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dbzeibzxP z
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does not require       �̃q
S

LHS independent of                  hadron state, spinP z
1 , P z

2 , x,

quasi-Beam fns.

M. Ebert, IS, Y. Zhao, 1811.00026

can setup          to remove power law divergences in num/denZ̃q
uv

f̃q(x,�bT , µ, P z) = CTMD(µ, xP z) exp
�
1
2
�q

� (µ, bT ) ln
(2xP z)2

�

�
fq(x,�bT , µ, �)

�q
⇣ (µ, bT )
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f̃q(x,�bT , µ, P z) = CTMD(µ, xP z) gS
q (bT , µ) exp

�
1
2
�q

� (µ, bT ) ln
(2xP z)2

�

�
fq(x,�bT , µ, �)available in MS at 1-loop

Using Eq. (4.15) to combine the bent quasi soft function from Eq. (4.27) together with
the natural quasi beam function from Eq. (4.2) we obtain a new quasi-TMDPDF

f̃
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�
. (4.29)

Comparing this result to the TMDPDF at one loop yields

f̃
TMD
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fTMD
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12

�

+O(↵2
s) , (4.30)

where have again fixed ⇣ = (2xP z)2 as explained previously. Since there is no bT dependence
on the RHS of Eq. (4.30), we see that all infrared logarithms of the TMDPDF are correctly
reproduced by this quasi-TMDPDF construction at one loop. Thus this construction obeys
the matching relation given in Eq. (3.6) with a one loop result for the matching coefficient
that is given by

C
TMD
qq0

�
µ, xP

z
�
= �qq0


1 +

↵sCF

4⇡

✓
� ln2

(2xP z)2
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+ 2 ln

(2xP z)2

µ2
� 4 +
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2

6

◆
+O(↵2

s)

�
.

(4.31)

Here, we ignore possible mixing of quarks with gluons. Then since mixing of quark flavors
can first arise at two loops, the one-loop coefficient is proportional to �qq0 . This result
provides a valid one-loop perturbative matching coefficient, which only depends on the
hard scale of the struck parton, xP z.

Assuming the validity of this quasi-TMDPDF construction beyond one loop, Eq. (4.31)
can be used to match the lattice quasi-TMDPDF to the TMDPDF. To obtain the required
input for this result one combines lattice calculations of the natural quasi beam function
and bent quasi soft function to obtain a lattice quasi-TMDPDF, which is then converted
into the MS scheme. Results for matching in more lattice friendly renormalization schemes
should be straightforward to derive following a similar approach to the one used here (see
e.g. [57, 65]).

5 Results and Outlook

In this section, we briefly summarize the impact of our calculations in the previous sections
for the matching between quasi-TMDPDF and TMDPDF, and what questions remain open
for further study. Without relying on the existence of a quasi soft function that yields the
correct infrared physics for a quasi-TMDPDF, we also discuss precisely what constraints
on TMDPDFs can still be rigorously derived from lattice calculations.
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Figure 6.16: Mixing pattern in the RI’/MOM scheme for quark bilinear operators with staple-shaped
gauge links constructed using improved Wilson fermions, from Ref. [172]. The quark operator sep-
aration b is purely transverse, with bT/a ⇤ 3, 7, 11 from left to right, where a ⇤ 0.06 fm denotes the
lattice spacing. The staple length is given by ⌘/a ⇤ 14. Colors indicate mixing strengths. White circles
indicate mixings already obtained in one-loop lattice perturbation theory [635].

Figure 6.17: Left: Isovector (u � d quark) SIDIS generalized g1T worm-gear shift as a function of bT
at a fixed ⇣̂, comparing results obtained using clover and domain wall fermions. Right: Isovector
straight-link generalized g1T worm-gear shift as a function of bT , comparing results obtained using
clover and domain wall fermions; the two panels were obtained using the same nucleon momenta in
the lattice calculation. The shaded areas indicate the regions which may be subject to significant lattice
artefacts even in the absence of operator mixing. From Ref. [129].
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First Lattice Result for Rapidity Anomalous Dimension
P. Shanahan, M. Wagman, Y. Zhao arXiv:2003.06063

nf=0 (quenched) simulation
Exploits universality:  uses 1.2 GeV pseudoscalar meson P z = 1.9 GeV, 2.6 GeV

4

Label � a [fm] L3
⇥ T  nsrc ncfg

E32 6.3017 0.06 323 ⇥ 64 0.1222 2 200

TABLE I: The ensemble of quenched QCD gauge field con-
figurations used in this work [41, 42]. The lattice spacing a is
determined from an analysis of scale setting in Ref. [43], and
the lattice geometry parameters L and T are specified in units
of a. For operator structures with Dirac index � = �4, ncfg

configurations are analyzed, with nsrc source locations chosen
on each. For other operator Dirac structures � 6= �4, a sub-
set with 25 configurations is analyzed, with 1 source location
computed on each.

Several observations are pertinent to the computation
of the Collins-Soper evolution kernel by Eq. (10). First,
since the kernel is independent of the external state [32],
one may calculate the quasi beam functions in the state
with the best signal-to-noise properties in a lattice QCD
calculation, e.g., for the pion. In a quenched calculation,
a heavier-than-physical valence quark mass can be cho-
sen for the same reason. Moreover, since although the
kernel is state-independent, the power-corrections to the
kernel are not, and so variation of the choice of exter-
nal state, and external state momenta, provides a test of
systematic e↵ects in a numerical calculation. Second, the
Collins-Soper kernel does not depend on the longitudinal
momentum fraction x or on the hadron momenta P z

i , at
O (bT /⌘, 1/(bT P z)). Although the truncation in the bz-
space Fourier integral will induce oscillatory behavior in
x-space, varying these parameters provides insight into
these additional systematic uncertainties.

An alternative approach to extracting the Collins-
Soper kernel by transforming the product of the match-
ing coe�cient and MS quasi beam function in Eq. (10)
into a convolution integral in bz-space was advocated in
Ref. [34]. Appendix E provides an investigation of this
approach and finds that it su↵ers from significant sys-
tematic uncertainties.

III. LATTICE QCD STUDY

The Collins-Soper evolution kernel is computed by
Eq. (10) in a lattice QCD calculation using a single
quenched ensemble, detailed in Table I. The calculation
is undertaken on gauge fields that have been subjected
to Wilson flow to flow-time t = 1.0 [44], in order to in-
crease the signal-to-noise ratio of the numerical results,
and gauge-fixed to Landau gauge, in order to permit the
use of gauge non-invariant quark wall sources. Quasi
beam functions are constructed for a pion external state
using valence quark propagators that are computed with
the tree-level O(a) improved Wilson clover fermion ac-
tion [45] and a  value that corresponds to a heavy pion
mass of 1.207(3) GeV. This choice may be made with-
out introducing systematic bias, since the Collins-Soper
kernel is independent of state. Three external state mo-
menta are studied, ~P = P z~ez with P z = nz2⇡/L for

FIG. 2: E↵ective energy function defined by Eq. (14) for

pion states with momenta |~P | = nz2⇡/L. Shaded bands dis-
play the result of single-exponential fits to the two-point cor-
relation functions for each non-zero momentum, and a two-
exponential fit at zero momentum; the number of states in
each fit is chosen to maximize an information criterion as de-
scribed in the text, and the fit ranges shown correspond to
the highest-weight fits in the weighted average over successful
two-point function fits as discussed in Appendix A.

nz 2 {2, 3, 4}, corresponding to P z 2 {1.29, 1.94, 2.58}
GeV, allowing the kernel to be computed from three
di↵erent momentum ratios. To improve the overlap
of boosted pion interpolating operators onto their re-
spective ground states and improve statistical precision,
a combination of wall sources and momentum-smeared
sinks [46] are used to construct two-point and three-point
correlation functions.

Bare quasi beam functions Bbare
� (bz,~bT , a, ⌘, P z) are

extracted for non-local quark bilinear operators (Eq. (6))
with Wilson line staple geometries defined by staple
extents ⌘ ranging between 0.6 and 0.8 fm (⌘/a 2
{10, 12, 14}), and with staple widths and asymmetries
corresponding to |bT | and bz ranging from �(⌘ � a)
to (⌘ � a). In order for the mixing contributions to
Eq. (10) to be consistently included, bare quasi beam
functions are computed for all Dirac operator structures
�. As detailed in the caption of Table I, however, lower
statistics are used for operators with Dirac structures
� 6= �4, whose contributions to the Collins-Soper kernel
are suppressed by the renormalization factors. Previ-
ously, the 16-dimensional vector of MS renormalization
factors ZMS

O�4�0
(µ, bz,~bT , a, ⌘) was computed for the same

ensemble and operator parameters as studied here [39],
and those results are used in this work.

The two-point correlation function for the pion, pro-
jected to a given three-momentum ~P , is defined as:

C2pt(t, ~P ) =
X

~x

ei~P ·~xh0|⇡~P,S(~x, t)⇡†

~P,W
(0)|0i

t�0�!
Z~P

2aE~P

e�E~P t + . . . , (13)

where Z~P denotes the combination of overlap fac-
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FIG. 6: Examples of fits to the averaged renormalized quasi

beam functions B
MS
�4 (µ, bz, bT , a, P

z) using functional forms
based on Hermite and Bernstein polynomials (Eqs. (17-18)).
Further examples of fits at di↵erent choices of the bT and P z

parameters are shown in Appendix C.

Fourier transform of FHerm
N (P z, bzP z; {ak}, �, !, �) with

respect to bzP z to be complex, and correspondingly en-
ables FHerm

N (P z, bzP z; {ak}, �, !, �) to be an asymmetric
function of bzP z. The real and imaginary parts of the
quasi beam function are symmetric and antisymmetric
functions of bz respectively in the ⌘ ! 1 limit; how-
ever, the numerical results presented in this work show
significant departures from these expectations, particu-
larly for large bT , as shown in Fig. 5(b). The observed
asymmetry could arise from finite-volume e↵ects: e↵ec-
tive field theory calculations [49] have demonstrated that
finite-volume e↵ects for pion matrix elements of non-
local operators with separation ` generically take the
form e�m⇡(L�`). In this work, one therefore expects bz-
dependent finite-volume e↵ects of the form e�m⇡(L�⌘+bz)

as well as additional bz independent finite-volume ef-
fects. In addition, exponential dependence on bz could
arise from an imperfect cancellation between power-law-
divergent lattice artifacts in Bbare

� (bz,~bT , a, ⌘, P z) and

ZMS
O�4�

(µ, bz,~bT , a, ⌘)R̃(bT , bR
T , a, ⌘). Taking Im(!) 6= 0 al-

lows the fit form in Eq. (17) to include exponential depen-
dence on bz and is found to significant improve the quality
of fits to the numerical results with large bT & 0.5 fm.

The second model considered assumes that the Fourier
transform of the quasi beam function has compact sup-
port on the interval 0 < x < 1 [30, 31, 33], which is
expected to become valid for large P z, and takes the
form

FBern
N (P z, bzP z; {ar

n}, �, A, B)

=
N�1X

r=0

ar

Z 1

0
dx ei(bzP z)x xA(1 � x)B(P zx)�Br,N�1(x) ,

(18)

where Br,N�1, for r 2 {0, . . . N � 1} are the N Bern-
stein basis polynomials of degree N � 1 normalized as
in Ref. [50], and asymmetry in bz is accommodated by
taking Im(ar) 6= 0.

Using either functional form, FHerm
N or FBern

N , as a

model for B
MS
�4 , and evaluating Eq. (10) with the tree-

level matching factor CTMD
ns = 1, gives the result �q,MS

⇣ =
�, where � is the model parameter appearing in Eqs. (17)-
(18). That is, the resulting Collins-Soper kernel is in-
dependent of x by construction. The full procedure by
which each functional form is fit to the numerical results
for the quasi beam function is described in Appendix C,
and examples of the resulting fits are shown both in Fig. 6
and in Appendix C. Briefly, the fits are undertaken simul-
taneously at all P z and bz values for a given bT , and an
information criterion is used to choose the model trunca-
tion N for each fit. While both models fit the quasi beam
function well within the range of P zbz values constrained
by the lattice data (with an average �2/Ndof over all fits
of 0.9, tabulated in Appendix C), it is clear from Fig. 6
that they correspond to substantially di↵erent models
outside this range.

The Collins-Soper kernel determined from each set of
model fits is shown in Fig. 7. The results obtained us-
ing the two model forms, i.e., the Hermite polynomial
model, in which the quasi beam function has support on
�1 < x < 1, and the Bernstein polynomial model,
with support on 0 < x < 1, are consistent. This en-

couragingly suggests that �q,MS
⇣ is well-constrained by

the numerical results at the P z and bz values of this cal-
culation, and that the model-dependence introduced in
the Fourier transform is relatively mild. Perturbative
results for the 0-flavor Collins-Soper kernel [47, 48] are
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FIG. 6: Examples of fits to the averaged renormalized quasi

beam functions B
MS
�4 (µ, bz, bT , a, P

z) using functional forms
based on Hermite and Bernstein polynomials (Eqs. (17-18)).
Further examples of fits at di↵erent choices of the bT and P z

parameters are shown in Appendix C.

Fourier transform of FHerm
N (P z, bzP z; {ak}, �, !, �) with

respect to bzP z to be complex, and correspondingly en-
ables FHerm

N (P z, bzP z; {ak}, �, !, �) to be an asymmetric
function of bzP z. The real and imaginary parts of the
quasi beam function are symmetric and antisymmetric
functions of bz respectively in the ⌘ ! 1 limit; how-
ever, the numerical results presented in this work show
significant departures from these expectations, particu-
larly for large bT , as shown in Fig. 5(b). The observed
asymmetry could arise from finite-volume e↵ects: e↵ec-
tive field theory calculations [49] have demonstrated that
finite-volume e↵ects for pion matrix elements of non-
local operators with separation ` generically take the
form e�m⇡(L�`). In this work, one therefore expects bz-
dependent finite-volume e↵ects of the form e�m⇡(L�⌘+bz)

as well as additional bz independent finite-volume ef-
fects. In addition, exponential dependence on bz could
arise from an imperfect cancellation between power-law-
divergent lattice artifacts in Bbare

� (bz,~bT , a, ⌘, P z) and

ZMS
O�4�

(µ, bz,~bT , a, ⌘)R̃(bT , bR
T , a, ⌘). Taking Im(!) 6= 0 al-

lows the fit form in Eq. (17) to include exponential depen-
dence on bz and is found to significant improve the quality
of fits to the numerical results with large bT & 0.5 fm.

The second model considered assumes that the Fourier
transform of the quasi beam function has compact sup-
port on the interval 0 < x < 1 [30, 31, 33], which is
expected to become valid for large P z, and takes the
form

FBern
N (P z, bzP z; {ar

n}, �, A, B)

=
N�1X

r=0

ar

Z 1

0
dx ei(bzP z)x xA(1 � x)B(P zx)�Br,N�1(x) ,

(18)

where Br,N�1, for r 2 {0, . . . N � 1} are the N Bern-
stein basis polynomials of degree N � 1 normalized as
in Ref. [50], and asymmetry in bz is accommodated by
taking Im(ar) 6= 0.

Using either functional form, FHerm
N or FBern

N , as a

model for B
MS
�4 , and evaluating Eq. (10) with the tree-

level matching factor CTMD
ns = 1, gives the result �q,MS

⇣ =
�, where � is the model parameter appearing in Eqs. (17)-
(18). That is, the resulting Collins-Soper kernel is in-
dependent of x by construction. The full procedure by
which each functional form is fit to the numerical results
for the quasi beam function is described in Appendix C,
and examples of the resulting fits are shown both in Fig. 6
and in Appendix C. Briefly, the fits are undertaken simul-
taneously at all P z and bz values for a given bT , and an
information criterion is used to choose the model trunca-
tion N for each fit. While both models fit the quasi beam
function well within the range of P zbz values constrained
by the lattice data (with an average �2/Ndof over all fits
of 0.9, tabulated in Appendix C), it is clear from Fig. 6
that they correspond to substantially di↵erent models
outside this range.

The Collins-Soper kernel determined from each set of
model fits is shown in Fig. 7. The results obtained us-
ing the two model forms, i.e., the Hermite polynomial
model, in which the quasi beam function has support on
�1 < x < 1, and the Bernstein polynomial model,
with support on 0 < x < 1, are consistent. This en-

couragingly suggests that �q,MS
⇣ is well-constrained by

the numerical results at the P z and bz values of this cal-
culation, and that the model-dependence introduced in
the Fourier transform is relatively mild. Perturbative
results for the 0-flavor Collins-Soper kernel [47, 48] are
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(a) (b)

(c) (d)

FIG. 4: Renormalized quasi beam function BMS
�4 (µ, bz,~bT , a, ⌘, b

R
T , P

z) in Eq. (11) (right column), and the same quantity

divided by the factor R̃(bT , b
R
T , a, ⌘) in Eq. (12) (left column), similarly averaged, for various parameter choices. The horizontal

shaded bands show the results of constant fits in bRT and ⌘ to the renormalized quasi beam function as a function of bz and P z

(at the fixed a of the calculation), as described in the text.
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FIG. 5: Averaged renormalized quasi beam function B
MS
�4 (µ, bz, bT , a, P

z = nz2⇡/L) at small (a) and large (b) bT , after

averaging over directions of ~bT , and weighted averaging over bRT and ⌘, as detailed in Appendix C. Further examples of the
averaged renormalized quasi beam functions at di↵erent choices of bT are also given in Appendix C.
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FIG. 7: Collins-Soper evolution kernel obtained using fits to the renormalized quasi beam functions based on Hermite and
Bernstein polynomial bases (Eqs. (17-18)), computed as described in the text. The background shading density is proportional
to 1/(bTP

z) + bT /⌘, indicating regions of greater and lesser sensitivity to power corrections which are not included in the
uncertainties presented. The black dotted, dashed and solid lines show perturbative results for the 0-flavor Collins-Soper kernel
up to three-loop order [47, 48]. Perturbative results become singular at bT ⇠ 0.25 fm because they reach the Landau pole

associated with ⇤
MS,Nf=0

QCD = 639 MeV.

(a) (b)

FIG. 8: Fractional truncation e↵ects in the MS-renormalized quasi beam functions, defined by Eq. (19), evaluated at x = 0.5
for two di↵erent bT values shown. The red vertical line denotes the maximum bz used in this study; the vertical axis range
corresponds to the P z range of this study.

4

Label � a [fm] L3
⇥ T  nsrc ncfg

E32 6.3017 0.06 323 ⇥ 64 0.1222 2 200

TABLE I: The ensemble of quenched QCD gauge field con-
figurations used in this work [41, 42]. The lattice spacing a is
determined from an analysis of scale setting in Ref. [43], and
the lattice geometry parameters L and T are specified in units
of a. For operator structures with Dirac index � = �4, ncfg

configurations are analyzed, with nsrc source locations chosen
on each. For other operator Dirac structures � 6= �4, a sub-
set with 25 configurations is analyzed, with 1 source location
computed on each.

Several observations are pertinent to the computation
of the Collins-Soper evolution kernel by Eq. (10). First,
since the kernel is independent of the external state [32],
one may calculate the quasi beam functions in the state
with the best signal-to-noise properties in a lattice QCD
calculation, e.g., for the pion. In a quenched calculation,
a heavier-than-physical valence quark mass can be cho-
sen for the same reason. Moreover, since although the
kernel is state-independent, the power-corrections to the
kernel are not, and so variation of the choice of exter-
nal state, and external state momenta, provides a test of
systematic e↵ects in a numerical calculation. Second, the
Collins-Soper kernel does not depend on the longitudinal
momentum fraction x or on the hadron momenta P z

i , at
O (bT /⌘, 1/(bT P z)). Although the truncation in the bz-
space Fourier integral will induce oscillatory behavior in
x-space, varying these parameters provides insight into
these additional systematic uncertainties.

An alternative approach to extracting the Collins-
Soper kernel by transforming the product of the match-
ing coe�cient and MS quasi beam function in Eq. (10)
into a convolution integral in bz-space was advocated in
Ref. [34]. Appendix E provides an investigation of this
approach and finds that it su↵ers from significant sys-
tematic uncertainties.

III. LATTICE QCD STUDY

The Collins-Soper evolution kernel is computed by
Eq. (10) in a lattice QCD calculation using a single
quenched ensemble, detailed in Table I. The calculation
is undertaken on gauge fields that have been subjected
to Wilson flow to flow-time t = 1.0 [44], in order to in-
crease the signal-to-noise ratio of the numerical results,
and gauge-fixed to Landau gauge, in order to permit the
use of gauge non-invariant quark wall sources. Quasi
beam functions are constructed for a pion external state
using valence quark propagators that are computed with
the tree-level O(a) improved Wilson clover fermion ac-
tion [45] and a  value that corresponds to a heavy pion
mass of 1.207(3) GeV. This choice may be made with-
out introducing systematic bias, since the Collins-Soper
kernel is independent of state. Three external state mo-
menta are studied, ~P = P z~ez with P z = nz2⇡/L for

FIG. 2: E↵ective energy function defined by Eq. (14) for

pion states with momenta |~P | = nz2⇡/L. Shaded bands dis-
play the result of single-exponential fits to the two-point cor-
relation functions for each non-zero momentum, and a two-
exponential fit at zero momentum; the number of states in
each fit is chosen to maximize an information criterion as de-
scribed in the text, and the fit ranges shown correspond to
the highest-weight fits in the weighted average over successful
two-point function fits as discussed in Appendix A.

nz 2 {2, 3, 4}, corresponding to P z 2 {1.29, 1.94, 2.58}
GeV, allowing the kernel to be computed from three
di↵erent momentum ratios. To improve the overlap
of boosted pion interpolating operators onto their re-
spective ground states and improve statistical precision,
a combination of wall sources and momentum-smeared
sinks [46] are used to construct two-point and three-point
correlation functions.

Bare quasi beam functions Bbare
� (bz,~bT , a, ⌘, P z) are

extracted for non-local quark bilinear operators (Eq. (6))
with Wilson line staple geometries defined by staple
extents ⌘ ranging between 0.6 and 0.8 fm (⌘/a 2
{10, 12, 14}), and with staple widths and asymmetries
corresponding to |bT | and bz ranging from �(⌘ � a)
to (⌘ � a). In order for the mixing contributions to
Eq. (10) to be consistently included, bare quasi beam
functions are computed for all Dirac operator structures
�. As detailed in the caption of Table I, however, lower
statistics are used for operators with Dirac structures
� 6= �4, whose contributions to the Collins-Soper kernel
are suppressed by the renormalization factors. Previ-
ously, the 16-dimensional vector of MS renormalization
factors ZMS

O�4�0
(µ, bz,~bT , a, ⌘) was computed for the same

ensemble and operator parameters as studied here [39],
and those results are used in this work.

The two-point correlation function for the pion, pro-
jected to a given three-momentum ~P , is defined as:

C2pt(t, ~P ) =
X

~x

ei~P ·~xh0|⇡~P,S(~x, t)⇡†

~P,W
(0)|0i

t�0�!
Z~P

2aE~P

e�E~P t + . . . , (13)

where Z~P denotes the combination of overlap fac-

(1 GeV)-1(2 GeV)-1

nf=0 (quenched) simulation
Exploits universality:  uses 1.2 GeV pseudoscalar meson
Includes nonperturbative renormalization, tree level matching

P. Shanahan, M. Wagman, Y. Zhao arXiv:2003.06063

Larger 1/(bT P z) power corrections
(not included in error bars)

Result for Nonperturbative TMD 
Rapidity Anomalous Dimension 

(nf=0)
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FIG. 5. Quasi-TMDWF (upper panel) and extracted Collins-
Soper kernel (lower panel), as functions of b⊥. The visible P z

dependence of the quasi-TMDWF can be primarily under-
stood by that from the Collins-Soper kernel, as the kernel we
obtained with tree level matching is consistent with up to 3-
loop perturbative calculations (at small b⊥) with the strong
coupling αs at the scale 1/b⊥, and also the non-perturbative
result from the pion quasi-TMDPDF. Results from quenched
lattice calculations [25] are also shown for comparison.

soft function by simulating the light-meson form factor
of four-quark non-local operators and quasi-TMD wave

functions. Our result shows a mild hadron momentum
dependence, which allows a future precision study to
eliminate the large momentum dependence using pertur-
bative matching [16]. As a reliability check, the agree-
ment between the CS kernel obtained from our quasi-
TMDWF result and the previous calculations shows
that the systematic uncertainties including the partially
quenching effect, the leading perturbative matching and
missing power corrections 1/γ in LaMET expansion
might be sub-leading. Still our calculation paves the way
towards the first principle predictions of physical cross
sections for, e.g., Drell-Yan and Higgs productions at
small transverse momentum.
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S̃q(b�, µ, Y ) = eY ��(µ,b�)S�1
I (b�, µ)

4

where n
µ = (1,�1,~0?)/(P z + P

t) in (t, z,~b?) coordi-

nates; Wn = W
†
n(�n +~b?)W?Wn(0) is a staple shaped

gauge link along n direction similar to those defined in
Eq. (2), where Wn(⇠) = Pexp

⇥
�ig

R
1

0
n ·A(⇠ + sn)

⇤
.

The same lightcone TMDWF also appears in factoriza-
tion for electromagnetic pion form factor in Ref. [36].

To extract soft functions from the lattice calculable
form factor in Eq. (15), we need to know the lightcone
TMDWF as well. Therefore, we construct a lattice cal-
culable quasi-TMDWF [20],

e�(x, b?, P ) (17)

= lim
L!1

Z
d�

4⇡
e
ix� hP | (zẑ/2 +~b?)e�Wz (�zẑ/2)|⌦ip

ZE(2L, b?, Y = 0)

where � = zP
z and ẑ

µ = (0, 1,~0?); e� can be chosen

as �5�t or �5�z; Wz = W
†
z (zẑ/2 + ~b?)W?Wz(�zẑ/2)

is a staple shaped gauge link along �ẑ direction with

Wz(⇠) = Pexp
h
ig

R
�L�⇠z

0
dsA

z(⇠ + sẑ)
i
pointing to �z

direction. Similar to Eq. (15) and quasi-TMDPDF fac-

torization [37], e� can be factorized into a perturbative
hard kernel and nonperturbative lightcone quantities [35]

e�(x, b?, P ) = H�(x, P )
�(x, b?, P, �)

S2(b?, �, �)
S1(b?, �, Y

0 = 0)

(18)

where � and � are on-lightcone regulators for gauge links
along lightlike P and its conjugate direction, and similar
to Eq. (15) � and � are taking the lightcone limit im-
plicitly. The subscript “1” of the soft function denotes
that one of the rapidity regulators are on-lightcone, and
the other staple-shaped gauge link is along temporal di-
rection indicated by Y

0 = 0. The soft functions S2 and
S1 subtract away the regulator dependencies introduced
in the lightcone TMDWF �. The overall combination in
the right hand side of Eq. (18) is rapidity regularization
scheme independent.

Combining Eqs. (15) and (18), we have

F (b?, P ·P
0)

R
dxdx0H(x, x0, P, P 0)e�(x0, b?, P

0)e�†(x, b?, P )

=
S2(b?, �, �0)

S1(b?, �, Y 0 = 0)S1(b?, Y = 0, �0)
⌘ SI(b?) (19)

where H ⌘ HF (x, x0)/H�(x)H�(x0) is entirely perturba-
tive, and SI is called the intrinsic soft function. Similar to
argument in Ref. [22], the lightcone singularities cancel in
the above combination, therefore the result SI is scheme
independent. It is worth to point out that SI = e

�D in
the o↵-lightcone scheme from Eq. (4) even though D is
scheme dependent in general. The soft functions with on-
lightcone regulator have the asymptotic forms for small
� similar to Eq. (4)

S1(b?, �, Y
0) = e

(Y 0
�ln �)K(b?)+D1(b?)+O(� exp(�Y )) (20)

S2(b?, �, �
0) = e

�(ln ��0)K(b?)+D2(b?)+O(��0)
. (21)

Based on Eq. (19), the Collins-Soper kernels K are can-
celled on the left hand side and we obtain the relation
2D1 � D2 = D. We have explicitly verified this relation
and Eq. (19) at one-loop level.
Similar to Eq. (19), we can show that the cross section

of DY can be factorized by quasi-TMDPDF [35]

d�DY

d2Q?

=

Z
dx dx

0
d
2
b?e

i~b?·~Q? (22)

⇥ �̂(x, x0
, P ·P

0) ef(x, b?, P ) ef(x0
, b?, P

0)SI(b?)

where Q? is the transverse momentum of produced lep-
ton pair, �̂(x, x0

, P ·P
0) is the hard kernel, and

ef(x, b?, P ) (23)

= lim
L!1

Z
d�

4⇡
e
ix� hP | (zẑ/2 +~b?)e�Wz (�zẑ/2)|P i

P z
p

ZE(2L, b?, Y = 0)

is a quasi-TMD parton distribution with definition sim-
ilar to the quasi-TMDWF in Eq. (17). With Eq. (22),
the DY process in low-transverse-momentum region
becomes predictable from first-principle calculations.

Discussion and conclusion.—To implement an actual
calculation of the soft function on lattice, particularly in
the HQET framework, some special considerations need
to be made [28–30]. It is known that the näıve infinite
heavy quark mass limit causes doubling problem, and the
usual technique, such as a Wilson term, can be used to lift
the degeneracy. The UV divergences from the transition
current require renormalization, which can be matched
to the dimensional-regularization scheme, and the veloc-
ity also need to be renormalized due to lattice artifacts.
Moreover, working with large velocity color sources might
have similar challenges as large-momentum hadrons [38].
For the soft function from the light-meson form factor,
various renormalization and matching will also need be
made. For correlators containing staple-shaped gauge
links, the nonperturbative renormalization has been dis-
cussed in Refs. [37, 39, 40]. We reserve a detailed discus-
sion about practicality of lattice calculations to [35].
It shall be remarked that the soft function in the o↵-

lightcone scheme approaches the lightcone limit through
the large rapidity separation

p
(2v · v0)2/v2(v0)2 =p

v+v0�/(v�v+) ! 1 but not through v
2
, (v0)2 ! 0.

A common definition of the universal soft function was
proposed in Refs. [22, 23]. The spacelike vectors u

µ =
�(�, 1, 0, 0) and u

0µ = �
0(��0

, 1, 0, 0) were chosen instead
of timelike v and v

0 to define the soft function for the DY
process. Despite the di↵erent definitions, we can prove
that this soft function is equal to what we defined in
Eq. (1) [35].

There are other e↵orts to propose soft functions on
lattice connecting quasi-TMDPDF to lightcone TMD-
PDF [17–19]. However, the soft function is controlled
by cusp anomalous dimension at large hyperbolic angle,
while other proposed soft functions are composed by Eu-
clidean gauge links with circular angle which cannot be

S̃q =

nf=2+1 simulation, mπ = 547 MeV
No renormalization, tree level matching

Rapidity Anom. Dim. Intrinsic nonperturbative 
soft function
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17Numerical Results
Ø Intrinsic soft function (leading order):
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In the limit of a very energetic hadron and large L, the matrix element W can be rewritten in
the factorized form

W
[�]
f h

(b; `, L; v, P, S;µ) =
1

P+

Z
dxe

ix`P
+
���CH

✓
|x|P

+

µ

◆ ���
2
�[�0]

f h
(x, b;µ, ⇣) (b;µ, ⇣̄) + ... , (2.3)

where � is a physical TMD distribution,  is a combination of soft-factors [18], and the ellipsis
represents the power suppressed correction discussed later. The factorization scales µ, ⇣ and ⇣̄

are discussed in the following section. The perturbative coefficient function CH is known up to
next-to-leading order (NLO) [16, 18]. It reads

���CH

✓
p

µ

◆ ���
2
= 1 + CF

↵s(µ)

4⇡

✓
� ln2

✓
4p2

µ2

◆
+ 2 ln

✓
4p2

µ2

◆
� 4 +

⇡
2

6

◆
+O(↵2

s
). (2.4)

Note that the coefficient function is strictly universal and independent of �. The expression on the
RHS of (2.3) contains

�0 =
�
+
�
�����+

4
. (2.5)

The operation on the RHS of (2.5) selects the TMD distributions of leading twist, whereas higher-
twist distributions are nullified and appear as part of the power corrections in (2.3).

The factorization theorem (2.3) is valid in the parameter range defined by

P
�

P+
⌧ 1,

1

|b|P+
⌧ 1,

|b|

L
⌧ 1,

`

L
⌧ 1, `⇤QCD ⌧ 1, (2.6)

where ⇤QCD is the characteristic low-energy scale of QCD. Essentially, one needs large hadron
momentum, large longitudinal size of the contour L, and fixed transverse size b. The parameter `

must not be too large to guarantee the `-independence of the function  .
The presence of unknown nonperturbative factors prevents the direct determination of TMDs

from the lattice matrix element (2.1). To eliminate the unknown and singular factor  we consider
a ratio of W ’s evaluated at the same value of b but for different momenta. In this case, the functions
 cancel, and the result is expressed entirely in terms of the physical TMDs. For the extraction of
the CS kernel, we use the ratio

R
[�]
f h

(P1, P2; b; `, L; v, S) =
P

+
1 W

[�]
f h

(b; `, L; v, P1, S;µ)

P
+
2 W

[�]
f h

(b; `, L; v, P2, S;µ)
. (2.7)

Substituting the expression (2.3) we obtain

R
[�]
f h

(P1, P2; b; `, L; v, S) =

Z
dx1e

ix1`P
+
1 |CH(|x1|P

+
1 /µ)|2�[�0]

f h
(x1, b;µ, ⇣1)

Z
dx2e

ix2`P
+
2 |CH(|x2|P

+
2 /µ)|2�[�0]

f h
(x2, b;µ, ⇣2)

+ ... , (2.8)

where the ellipsis denotes power suppressed terms. To cancel the factors  we took ⇣̄1 = ⇣̄2 = ⇣̄,
which according to (2.10) implies ⇣i = (2xiP

+
i
v
�)2µ2

/⇣̄. Note that the ratio (2.8) is independent of
µ. The factorization theorems derived in refs.[16, 17] are equivalent to (2.3). The only difference is
that the authors of refs. [16, 17] consider the qTMD together with a certain soft factor Sbent, which
is equivalent to the division of (2.3) by Sbent. The factor Sbent is constructed such that it cancels
 in the perturbative regime. Performing the inverse Fourier transformation, one determines the
physical TMD distribution from the combination of qTMD and Sbent. This approach gives access to
the full TMD. However, it contains several fundamental complications. The two main complications
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Figure 2: (left) The factor r computed for d-quark unpolarized TMDs in the proton (blue) and
pion (black), using the phenomenological extractions [12, 35]. The solid line (with an uncertainty
band, due to the extraction uncertainties) is the result for the direct evaluation (2.20). The dashed
line is the result of the perturbative computation (2.21) with the function M shown in fig. 3.
(right) The factor r was computed for the d-quark Sivers function in the proton, using the phe-
nomenological extraction [36]. The orange line (with an uncertainty band due to the extraction
uncertainty) presents the direct evaluation (2.20). The black line is the result of perturbative com-
putation (2.21), and the function M is shown in fig. 3. The Sivers function is not sign-definite,
which produces diverging uncertainty bands for the ratio.

where �0 is the leading order QCD beta function �0 = 11
3 Nc �

2
3Nf .

The solution of the system (2.11,2.12) is

�[�]
f h

(x, b;µ, ⇣) = exp
h Z

P

✓
�F (µ, ⇣)

dµ

µ
+

K(b, µ)

2

d⇣

⇣

◆i
�[�]

f h
(x, b;µ0, ⇣0), (2.16)

where P is an arbitrary path connecting the points (µ, ⇣) and (µ0, ⇣0) [34]. Path-independence is
guaranteed by the integrability condition (2.13). For our purposes, it will be convenient to evolve
TMDs along the path of constant µ. Choosing the straight path we obtain

�[�]
f h

(x, b;µ, ⇣) =

✓
⇣

⇣0

◆K(b,µ)/2

�[�]
f h

(x, b;µ, ⇣0). (2.17)

2.3 Extraction of the CS kernel from ratios at ` = 0

In our lattice simulation we evaluate W at ` = 0. In this case, the expression (2.8) simplifies to

R
[�]
f h

(P1, P2; b) =

Z
dx1|CH(|x1|P

+
1 /µ)|2�[�0]

f h
(x1, b;µ, ⇣1)

Z
dx2|CH(|x2|P

+
2 /µ)|2�[�0]

f h
(x2, b;µ, ⇣2)

+ ... , (2.18)

where we also drop unimportant variables (L, v, S) from the argument for brevity. To explicitly
extract the CS kernel we evolve both TMDs in ⇣ to the point ⇣0 using (2.17), and obtain

R
[�]
f h

(P1, P2; b) =

✓
P

+
1

P
+
2

◆K(b,µ)

r[�]
f h

(b, µ;P1, P2) + ... , (2.19)

where

r[�]
f h

(b, µ;P1, P2) =

Z
dx1|x1|

K(b,µ)
|CH(|x1|P

+
1 /µ)|2�[�0]

f h
(x1, b;µ, ⇣0)

Z
dx2|x2|

K(b,µ)
|CH(|x2|P

+
2 /µ)|2�[�0]

f h
(x2, b;µ, ⇣0)

. (2.20)
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Figure 3: The function M[�]
f h

(2.22) computed using fits for the d-quark unpolarized TMDs
in the proton (blue) and in the pion (black), and from the d-quark Sivers function (brown) in
refs.[12, 35, 36], with uncertainty bands. The numbers to the right show the mean and the error
for each case, where the error is given by the maximal deviation. Note that for the unpolarized
TMD f1 there is more precise experimental data available than for the Sivers function f1T and thus
M[f1]

f h
(b) can be determined with higher precision than M[f1T ]

f h
(b).

In general, the function r[�]
f h

has complicated properties. For example, its numerator and denom-
inator have potential problems with convergence at x ! 0, see the discussion in ref. [18]. Also, the
function r[�]

f h
depends on µ. To simplify it and reveal its dependence on µ, we expand r[�]

f h
in the

limit of small ↵s. The NLO perturbative expansion for this function is

r[�]
f h

(b, µ;P1, P2) = 1 (2.21)

+4CF

↵s(µ)

4⇡
ln

✓
P

+
1

P
+
2

◆h
1� ln

✓
4P+

1 P
+
2 |v

�
|
2

µ2

◆
� 2M[�]

f h
(b, µ)

i
+O(↵2

s
),

where

M[�]
f h

(b, µ) =

Z
dx1 ln|x1|x

K(b,µ)
1 �[�]

f h
(x1, b;µ, ⇣0)

Z
dx2x

K(b,µ)
2 �[�]

f h
(x2, b;µ, ⇣0)

. (2.22)

In the following we use this expression as our approximation for r[�]
f h

, assuming M[�]
f h

to be a
constant in b. The scale µ is selected to nullify the logarithm in the square brackets of (2.21)

µ =
q

2P+
1 P

+
2 , (2.23)

where we used that |v
�
|= 1/

p
2.

The central point of our approach is the assumption that the function r[�]
f h

is almost indepen-
dent of b. Such a behavior is expected, because a different behavior of denominator and numerator
in (2.20) can only come from the lnx term present in CH . Therefore, any essential deviation from
the constant behavior implies a significant change of the x-profile between different values of b,
which is unlikely. In fig. 2 we present examples of the function r[�]

f h
for different TMDs computed

using phenomenological extractions [12, 35, 36]. The deviation of r[�]
f h

from its mean value for
b > 1GeV�1 is (+1.2%,-3.5%) for the unpolarized TMD in the proton, and (+2%,-5%) for the
unpolarized TMD in the pion. Let us mention that in the case of the Sivers function, the integrals
are not sign-definite, and thus the ratios (2.20) are singular at certain points (see fig. 2(right)). This
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dent of b. Such a behavior is expected, because a different behavior of denominator and numerator
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assume NP factor

is constant

K = �q
⇣

Assumes certain NP factor is constant (supported by pheno-extractions),  
  no need for Fourier Trnsfm.

P z = 1.25, 1.73, 2.27GeV
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4

where n
µ = (1,�1,~0?)/(P z + P

t) in (t, z,~b?) coordi-

nates; Wn = W
†
n(�n +~b?)W?Wn(0) is a staple shaped

gauge link along n direction similar to those defined in
Eq. (2), where Wn(⇠) = Pexp

⇥
�ig

R
1

0
n ·A(⇠ + sn)

⇤
.

The same lightcone TMDWF also appears in factoriza-
tion for electromagnetic pion form factor in Ref. [36].

To extract soft functions from the lattice calculable
form factor in Eq. (15), we need to know the lightcone
TMDWF as well. Therefore, we construct a lattice cal-
culable quasi-TMDWF [20],

e�(x, b?, P ) (17)

= lim
L!1

Z
d�

4⇡
e
ix� hP | (zẑ/2 +~b?)e�Wz (�zẑ/2)|⌦ip

ZE(2L, b?, Y = 0)

where � = zP
z and ẑ

µ = (0, 1,~0?); e� can be chosen

as �5�t or �5�z; Wz = W
†
z (zẑ/2 + ~b?)W?Wz(�zẑ/2)

is a staple shaped gauge link along �ẑ direction with

Wz(⇠) = Pexp
h
ig

R
�L�⇠z

0
dsA

z(⇠ + sẑ)
i
pointing to �z

direction. Similar to Eq. (15) and quasi-TMDPDF fac-

torization [37], e� can be factorized into a perturbative
hard kernel and nonperturbative lightcone quantities [35]

e�(x, b?, P ) = H�(x, P )
�(x, b?, P, �)

S2(b?, �, �)
S1(b?, �, Y

0 = 0)

(18)

where � and � are on-lightcone regulators for gauge links
along lightlike P and its conjugate direction, and similar
to Eq. (15) � and � are taking the lightcone limit im-
plicitly. The subscript “1” of the soft function denotes
that one of the rapidity regulators are on-lightcone, and
the other staple-shaped gauge link is along temporal di-
rection indicated by Y

0 = 0. The soft functions S2 and
S1 subtract away the regulator dependencies introduced
in the lightcone TMDWF �. The overall combination in
the right hand side of Eq. (18) is rapidity regularization
scheme independent.

Combining Eqs. (15) and (18), we have

F (b?, P ·P
0)

R
dxdx0H(x, x0, P, P 0)e�(x0, b?, P

0)e�†(x, b?, P )

=
S2(b?, �, �0)

S1(b?, �, Y 0 = 0)S1(b?, Y = 0, �0)
⌘ SI(b?) (19)

where H ⌘ HF (x, x0)/H�(x)H�(x0) is entirely perturba-
tive, and SI is called the intrinsic soft function. Similar to
argument in Ref. [22], the lightcone singularities cancel in
the above combination, therefore the result SI is scheme
independent. It is worth to point out that SI = e

�D in
the o↵-lightcone scheme from Eq. (4) even though D is
scheme dependent in general. The soft functions with on-
lightcone regulator have the asymptotic forms for small
� similar to Eq. (4)

S1(b?, �, Y
0) = e

(Y 0
�ln �)K(b?)+D1(b?)+O(� exp(�Y )) (20)

S2(b?, �, �
0) = e

�(ln ��0)K(b?)+D2(b?)+O(��0)
. (21)

Based on Eq. (19), the Collins-Soper kernels K are can-
celled on the left hand side and we obtain the relation
2D1 � D2 = D. We have explicitly verified this relation
and Eq. (19) at one-loop level.
Similar to Eq. (19), we can show that the cross section

of DY can be factorized by quasi-TMDPDF [35]

d�DY

d2Q?

=

Z
dx dx

0
d
2
b?e

i~b?·~Q? (22)

⇥ �̂(x, x0
, P ·P

0) ef(x, b?, P ) ef(x0
, b?, P

0)SI(b?)

where Q? is the transverse momentum of produced lep-
ton pair, �̂(x, x0

, P ·P
0) is the hard kernel, and

ef(x, b?, P ) (23)

= lim
L!1

Z
d�

4⇡
e
ix� hP | (zẑ/2 +~b?)e�Wz (�zẑ/2)|P i

P z
p

ZE(2L, b?, Y = 0)

is a quasi-TMD parton distribution with definition sim-
ilar to the quasi-TMDWF in Eq. (17). With Eq. (22),
the DY process in low-transverse-momentum region
becomes predictable from first-principle calculations.

Discussion and conclusion.—To implement an actual
calculation of the soft function on lattice, particularly in
the HQET framework, some special considerations need
to be made [28–30]. It is known that the näıve infinite
heavy quark mass limit causes doubling problem, and the
usual technique, such as a Wilson term, can be used to lift
the degeneracy. The UV divergences from the transition
current require renormalization, which can be matched
to the dimensional-regularization scheme, and the veloc-
ity also need to be renormalized due to lattice artifacts.
Moreover, working with large velocity color sources might
have similar challenges as large-momentum hadrons [38].
For the soft function from the light-meson form factor,
various renormalization and matching will also need be
made. For correlators containing staple-shaped gauge
links, the nonperturbative renormalization has been dis-
cussed in Refs. [37, 39, 40]. We reserve a detailed discus-
sion about practicality of lattice calculations to [35].
It shall be remarked that the soft function in the o↵-

lightcone scheme approaches the lightcone limit through
the large rapidity separation

p
(2v · v0)2/v2(v0)2 =p

v+v0�/(v�v+) ! 1 but not through v
2
, (v0)2 ! 0.

A common definition of the universal soft function was
proposed in Refs. [22, 23]. The spacelike vectors u

µ =
�(�, 1, 0, 0) and u

0µ = �
0(��0

, 1, 0, 0) were chosen instead
of timelike v and v

0 to define the soft function for the DY
process. Despite the di↵erent definitions, we can prove
that this soft function is equal to what we defined in
Eq. (1) [35].

There are other e↵orts to propose soft functions on
lattice connecting quasi-TMDPDF to lightcone TMD-
PDF [17–19]. However, the soft function is controlled
by cusp anomalous dimension at large hyperbolic angle,
while other proposed soft functions are composed by Eu-
clidean gauge links with circular angle which cannot be

S̃q =

nf=2+1 simulation, mπ = 350 MeV
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Figure 2. The lattice results of S(b⊥) for various momenta,
together with the one-loop perturbative result S1−loop

MS
and its

variant S′1−loop
MS

with ↵s including up to 4 loops. The scale µ

in Eq. (17) is set as µ = 2 GeV.

cancelling the dominant higher-twist e↵ects, the results
become much more consistent. The residual deviations
serve as measure of important systematic e↵ects to be
controlled in future studies.

Results of the soft function – After checking the
consistency among the various improved pion matrix ele-
ments, we use the choice of 1

2
(F�5�1 + F�1) as an example

to present the results of S(b⊥) for various momenta P z

and pion masses m⇡
vi.

In Fig. 2, S(b⊥, P z
) is shown together with the one-

loop perturbative curve [35],
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ln
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where one-loop and four-loop values of ↵s are used at the
physically most relevant scale of S(b⊥), i.e. 1�b⊥. The
scale µ is set as µ = 2 GeV. We note that the lattice re-
sults agree qualitatively with the perturbative function
at around b⊥ ∼ 0.2 fm, particularly at the largest boost
and when the higher-order e↵ects are partially included
via ↵s. At larger b⊥, non-perturbative features start to
set in and the decay of S(b⊥) is slower than the pertur-
bative prediction. It is also noteworthy that the conver-
gence of the lattice results in P z clearly increases with
b⊥ – the results from the two largest P z are compatible
for b⊥ � 0.2 fm, while smaller transverse separations will
need yet larger boosts to establish convergence.

In Fig. 3, we examine the pion mass dependence of
the soft function. Although S(b⊥) is extracted from pion
matrix elements which depend on the detailed process
of ⇡(P z

) → ⇡(−P z
), the factorization allows us to can-

cel this process dependence. Performing the calculation
at four pion masses, we find that the lattice results are
generally consistent within statistical errors, although a
small systematic increase is found when decreasing m⇡.
This observation supports the statement from the factor-
ization [17] that the soft function does not depend on the

Figure 3. The intrinsic soft function S(b⊥) for the pion masses
ranging from 827 MeV to 350 MeV. Here, we show results
calculated at the momentum P

z = 5 2⇡
L

as an example.

detailed hadronic information from the initial/final state.
Results for the Collins-Soper kernel – The

Collins-Soper kernel K(b⊥, µ) governs the rapidity evo-
lution of the TMDPFs. In LaMET, the quasi-TMDPDF
is factorized into the light-cone TMDPDF and a
K(b⊥, µ) ln(⇣z�⇣) factor, where ⇣z = 2(xP z

)
2, with P z

playing the role of the rapidity, while ⇣ is the light-cone
counterpart of ⇣z [36]. Thus, by taking the ratio of quasi-
TMDPDFs at di↵erent values of P z, one can extract
K(b⊥, µ). This ratio can also be expressed in terms of
the quasi-TMDWFs [18] as
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Figure 4. The lattice results for the Collins-Soper kernel
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yellow [20], blue [19], green [18] and red. The results from
a same calculation are shifted horizontally to make an easier
comparison.
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bT [fm] 0.12 0.24 0.36 0.48

�q,MS

⇣ -0.419(53)(50) -0.49(5)(12) -0.76(9)(8) -0.82(15)

TABLE III. Collins-Soper kernel with µ = 2 GeV as a func-
tion of bT . The first uncertainty is the average of that deter-

mined from calculations using B̂MS

�4 and B̂MS

�3 as described in
the text, while the second is a systematic uncertainty com-
puted as half the di↵erence of the central values of the results
obtained using quasi beam functions defined with the two
Dirac structures.

pected to be larger2 at large and small values of x and at
small values of P z, the variation of �̂q

⇣ over these choices is
used to define an estimate of the systematic uncertainty.

Precisely, a best value for the Collins-Soper kernel is
determined from �̂q

⇣ via a multi-step procedure. First,
the largest window of x is determined for which the data
for all choices of the pair {P z

1
, P z

2
} are consistent with

a common constant value. In practice this region is de-
fined as the largest window in which a constant fit to the
data at a set of discrete x points has a �2/d.o.f.  1.
The central value and uncertainty are defined as the me-
dian and the 68% confidence interval of the union of the
bootstrap data in that x window, including all {P z

1
, P z

2
}

pairs. The result of this procedure is robust to changes in
the discretization of x, for su�ciently fine discretization
scales (100 points spanning 0 < x < 1 uniformly are used
in the analysis presented). This procedure is performed
separately for �̂q

⇣ determined from beam functions calcu-

lated with Dirac structures �4 and �3; examples of the
resulting values are shown with �̂q

⇣ in Fig. 12, with the
remainder presented in Appendix B. The central values
of the independent calculations with Dirac structures �4

and �3 are averaged, and the average uncertainty is added
in quadrature with half the di↵erence between the central
values obtained using each Dirac structure, to yield the
final results of this work which are shown as a function
of bT in Fig. 13, and are tabulated in Table. III.

In addition to the approach followed here, there are a
number of alternative methods of extracting the Collins-
Soper kernel that have been proposed or employed in
other studies, for example:

• “LO”: The perturbative matching coe�cient
CTMD

ns
computed to leading-order (LO), instead of

NLO, can be used in an analysis otherwise mirror-
ing that presented here;

• “Hermite/Bernstein”: As proposed in Ref. [19],
the P zbz-dependence of the quasi beam functions

2 The matching coe�cient includes large logarithms of xP z
i at

small x, while the quasi beam functions at x ! 0 and x ! 1
are sensitive to the long-range correlations in bz and are thus
a↵ected by the truncation of the data in P zbz . In addition, the
power corrections are expected to be enhanced at small x.

(a) �̂q
⇣ computed from quasi beam functions B̂MS

�4 .

0.2 0.4 0.6 0.8

-1.5

-1.0

-0.5

0.0

0.5

(b) �̂q
⇣ computed from quasi beam functions B̂MS

�3 .

FIG. 12. �̂q
⇣ , computed as defined in Eq. (28) for all momen-

tum pairs {P z
1 , P

z
2 }, denoted by P z

1 /P
z
2 in the legend. The

horizontal shaded band shows the fit window in x, as well
as the total uncertainty of the best result, determined as de-
scribed in the text.

FIG. 13. Collins-Soper kernel as a function of bT , determined

from B̂MS

�4 (purple circles) B̂MS

�3 (red triangles), and the final
combined results of this work (green squares), computed as
described in the text. For the latter points, the inner (outer)
error bars show the first (quadrature-combined) uncertainties
given in Table. III.
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(a)

(b)

FIG. 10. Percentage contribution to the renormalized quasi
beam functions from mixing of operators with di↵erent Dirac
structures. Note that the ratios shown are outside of the plot
range near the nodes of the beam functions; in this example
the maximum mixing that is resolved from zero at greater
than 2� is 0.32(5), and occurs in the real component of the
beam function for nz = 5, bz/a = 5.

few free parameters. Specifically, for each choice of bT
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function B
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�4 (and independently B
MS

�3 ) are fit with even
and odd functions of bz respectively, defined as
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The value of nmax is chosen to minimize the Akaike infor-
mation criterion (AIC) [41] and corresponds to nmax 2

{2, 3, 4} for all cases. The fits with these optimal values
of nmax are of high quality in all cases, with an average
�2/d.o.f. = 0.41. The resulting models of the quasi beam

functions are denoted B̂MS

�4 (and, correspondingly B̂MS

�3 ),
and are illustrated in Fig. 11 (with further examples pro-
vided in Appendix B).
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FIG. 11. Example of fits by Eqs. (26) and (27) (shaded
bands) to the real and imaginary parts of the quasi beam
functions, for bT /a = 1.
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which coincides with �q
⇣ (µ, bT ) up to power corrections

such as higher-twist corrections in the factorization for-
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and x. One approach to determine �q
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, x) is to model, fit, and subtract, these

various artifacts. However, the most straightforward
models of these e↵ects do not provide good fits to the
numerical data of this study, as detailed in Appendix D.
Instead, since the contamination in �̂q

⇣ will be di↵erent at
each choice of P z
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, and x, and the e↵ects can be ex-
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bT [fm] 0.12 0.24 0.36 0.48

�q,MS

⇣ -0.419(53)(50) -0.49(5)(12) -0.76(9)(8) -0.82(15)

TABLE III. Collins-Soper kernel with µ = 2 GeV as a func-
tion of bT . The first uncertainty is the average of that deter-

mined from calculations using B̂MS

�4 and B̂MS

�3 as described in
the text, while the second is a systematic uncertainty com-
puted as half the di↵erence of the central values of the results
obtained using quasi beam functions defined with the two
Dirac structures.

pected to be larger2 at large and small values of x and at
small values of P z, the variation of �̂q

⇣ over these choices is
used to define an estimate of the systematic uncertainty.

Precisely, a best value for the Collins-Soper kernel is
determined from �̂q

⇣ via a multi-step procedure. First,
the largest window of x is determined for which the data
for all choices of the pair {P z

1
, P z

2
} are consistent with

a common constant value. In practice this region is de-
fined as the largest window in which a constant fit to the
data at a set of discrete x points has a �2/d.o.f.  1.
The central value and uncertainty are defined as the me-
dian and the 68% confidence interval of the union of the
bootstrap data in that x window, including all {P z

1
, P z

2
}

pairs. The result of this procedure is robust to changes in
the discretization of x, for su�ciently fine discretization
scales (100 points spanning 0 < x < 1 uniformly are used
in the analysis presented). This procedure is performed
separately for �̂q

⇣ determined from beam functions calcu-

lated with Dirac structures �4 and �3; examples of the
resulting values are shown with �̂q

⇣ in Fig. 12, with the
remainder presented in Appendix B. The central values
of the independent calculations with Dirac structures �4

and �3 are averaged, and the average uncertainty is added
in quadrature with half the di↵erence between the central
values obtained using each Dirac structure, to yield the
final results of this work which are shown as a function
of bT in Fig. 13, and are tabulated in Table. III.

In addition to the approach followed here, there are a
number of alternative methods of extracting the Collins-
Soper kernel that have been proposed or employed in
other studies, for example:

• “LO”: The perturbative matching coe�cient
CTMD

ns
computed to leading-order (LO), instead of

NLO, can be used in an analysis otherwise mirror-
ing that presented here;

• “Hermite/Bernstein”: As proposed in Ref. [19],
the P zbz-dependence of the quasi beam functions

2 The matching coe�cient includes large logarithms of xP z
i at

small x, while the quasi beam functions at x ! 0 and x ! 1
are sensitive to the long-range correlations in bz and are thus
a↵ected by the truncation of the data in P zbz . In addition, the
power corrections are expected to be enhanced at small x.
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(a) �̂q
⇣ computed from quasi beam functions B̂MS

�4 .

(b) �̂q
⇣ computed from quasi beam functions B̂MS

�3 .

FIG. 12. �̂q
⇣ , computed as defined in Eq. (28) for all momen-

tum pairs {P z
1 , P

z
2 }, denoted by P z

1 /P
z
2 in the legend. The

horizontal shaded band shows the fit window in x, as well
as the total uncertainty of the best result, determined as de-
scribed in the text.

FIG. 13. Collins-Soper kernel as a function of bT , determined

from B̂MS

�4 (purple circles) B̂MS

�3 (red triangles), and the final
combined results of this work (green squares), computed as
described in the text. For the latter points, the inner (outer)
error bars show the first (quadrature-combined) uncertainties
given in Table. III.
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FIG. 10. Percentage contribution to the renormalized quasi
beam functions from mixing of operators with di↵erent Dirac
structures. Note that the ratios shown are outside of the plot
range near the nodes of the beam functions; in this example
the maximum mixing that is resolved from zero at greater
than 2� is 0.32(5), and occurs in the real component of the
beam function for nz = 5, bz/a = 5.

few free parameters. Specifically, for each choice of bT

and P z, the real and imaginary parts of the quasi beam

function B
MS

�4 (and independently B
MS

�3 ) are fit with even
and odd functions of bz respectively, defined as

fRe(�, {rn}; b
z) = exp[�(bz)2/(2�2)]

nmaxX
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rn(bz)2n (26)

fIm(�, {rn}; b
z) = exp[�(bz)2/(2�2)]

nmaxX

n=0

in(bz)2n+1.

(27)

The value of nmax is chosen to minimize the Akaike infor-
mation criterion (AIC) [41] and corresponds to nmax 2

{2, 3, 4} for all cases. The fits with these optimal values
of nmax are of high quality in all cases, with an average
�2/d.o.f. = 0.41. The resulting models of the quasi beam

functions are denoted B̂MS

�4 (and, correspondingly B̂MS

�3 ),
and are illustrated in Fig. 11 (with further examples pro-
vided in Appendix B).
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FIG. 11. Example of fits by Eqs. (26) and (27) (shaded
bands) to the real and imaginary parts of the quasi beam
functions, for bT /a = 1.
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which coincides with �q
⇣ (µ, bT ) up to power corrections

such as higher-twist corrections in the factorization for-
mula for the quasi TMDPDF, and discretization ar-
tifacts, which introduce the dependence on P z
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�̂q
⇣ (µ, bT ; P z

1
, P z

2
, x) is to model, fit, and subtract, these

various artifacts. However, the most straightforward
models of these e↵ects do not provide good fits to the
numerical data of this study, as detailed in Appendix D.
Instead, since the contamination in �̂q

⇣ will be di↵erent at
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FIG. 14. bT -dependence of the Collins-Soper kernel computed from the same quasi beam functions via the di↵erent approaches
defined in Sec. IIID. All points other than the primary results of this work (“NLO”) are o↵set on the horizontal axis for clarity.
For the “NLO” and “LO” approaches, results computed based on quasi beam functions with Dirac structures �4 and �3 are
combined as described in the text; the outer error bars include half the di↵erence between the results with �4 and �3 combined
in quadrature with the average uncertainty, shown by the inner error bars. For the other approaches the empty (filled) points
show results obtained with Dirac structure �4 (�3). “Hermite/Bernstein” points with Dirac structure �3 are not shown at
bT /a = 4 because the corresponding fits of the P zbz-dependence of the relevant quasi beam functions were of poor quality, as
described in the text.

can be fit to models based on Hermite and Bern-
stein polynomial bases constructed to yield x-
independent Collins-Soper kernels via Eq. (28),
taking the LO value of the perturbative matching
coe�cient CTMD

ns
;

• “bz = 0”: An approximation of the Collins-Soper
kernel can be computed with LO matching using
only the quasi beam functions evaluated at bz = 0
(this approach does not require a Fourier transform
in bz):

[�q
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2
)

#
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(29)

• “bz = 0, bare”: As proposed in Ref. [20], the same
approach described for “bz = 0” can be followed,
using bare quasi beam functions Bbare

�4 rather than
renormalized quasi beam functions (i.e., neglect-
ing operator mixing between di↵erent Dirac struc-
tures);

• “bz = 0/bT = 0, bare”: As proposed in Ref. [22],
a variation of the ‘bz = 0” approach can be used,

approximating the Collins Soper kernel as

[�q
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)
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1
)

#
.

(30)

Each of these methods can be followed using the quasi
beam functions computed in this work; a comparison of
the results is provided in Fig. 14. For the “LO” ap-
proach, the same procedure is followed to combine the
results obtained using quasi beam functions with Dirac
structures �3 and �4 as for the “NLO” method which
yields the main results of this work. For the other ap-
proaches the results obtained with the two Dirac struc-
tures are not always consistent at one standard deviation,
and are shown separately; for bT /a = 4 no results for
the “Hermite/Bernstein” approach are shown with Dirac
structure �3 as the model fits were of poor quality with
�2/d.o.f. > 2. In the case of the “bz = 0/bT = 0, bare”
approach, bare quasi beam functions with ⌘/a = 14,
which is the largest extent studied in this work for all
P z, are used in the analysis.

Clearly, although the same quasi beam functions are
used, the Collins-Soper kernel determined via each of
these approaches is very di↵erent, and many of the results
are inconsistent with the best results of this study at sev-
eral standard deviations, with uncertainties as much as
an order of magnitude smaller. This is to be expected if
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FIG. 10. Percentage contribution to the renormalized quasi
beam functions from mixing of operators with di↵erent Dirac
structures. Note that the ratios shown are outside of the plot
range near the nodes of the beam functions; in this example
the maximum mixing that is resolved from zero at greater
than 2� is 0.32(5), and occurs in the real component of the
beam function for nz = 5, bz/a = 5.

few free parameters. Specifically, for each choice of bT

and P z, the real and imaginary parts of the quasi beam

function B
MS

�4 (and independently B
MS

�3 ) are fit with even
and odd functions of bz respectively, defined as

fRe(�, {rn}; b
z) = exp[�(bz)2/(2�2)]

nmaxX

n=0

rn(bz)2n (26)

fIm(�, {rn}; b
z) = exp[�(bz)2/(2�2)]

nmaxX

n=0

in(bz)2n+1.

(27)

The value of nmax is chosen to minimize the Akaike infor-
mation criterion (AIC) [41] and corresponds to nmax 2

{2, 3, 4} for all cases. The fits with these optimal values
of nmax are of high quality in all cases, with an average
�2/d.o.f. = 0.41. The resulting models of the quasi beam

functions are denoted B̂MS

�4 (and, correspondingly B̂MS

�3 ),
and are illustrated in Fig. 11 (with further examples pro-
vided in Appendix B).

(a)

(b)

FIG. 11. Example of fits by Eqs. (26) and (27) (shaded
bands) to the real and imaginary parts of the quasi beam
functions, for bT /a = 1.

Finally, in terms of the models B̂MS

�4 , the relation defin-
ing the Collins-Soper kernel in Eq. (10) is realized as

�̂q
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which coincides with �q
⇣ (µ, bT ) up to power corrections

such as higher-twist corrections in the factorization for-
mula for the quasi TMDPDF, and discretization ar-
tifacts, which introduce the dependence on P z

1
, P z

2
,

and x. One approach to determine �q
⇣ (µ, bT ) from

�̂q
⇣ (µ, bT ; P z

1
, P z

2
, x) is to model, fit, and subtract, these

various artifacts. However, the most straightforward
models of these e↵ects do not provide good fits to the
numerical data of this study, as detailed in Appendix D.
Instead, since the contamination in �̂q

⇣ will be di↵erent at
each choice of P z

1
, P z

2
, and x, and the e↵ects can be ex-
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(b) Comparison with quenched results of Ref. [19] (SWZ), as
well as results from the LPC [20], Regensburg/NMSU [21],
and ETMC/PKU [22] collaborations. Di↵erent sets of points
with the same color show di↵erent sets of results from the

same collaboration.

FIG. 15. bT -dependence of the Collins-Soper kernel as determined in this work (green squares in both panels) compared with
(a) phenomenological results, and (b) the results of other lattice QCD calculations of this quantity.

the e↵ects of higher-order matching, renormalization and
mixing, and power corrections, are significant, as each of
the approaches listed above treats one or more of these
systematic e↵ects di↵erently than in the primary analysis
presented here.

IV. OUTLOOK

This work presents a determination of the Collins-
Soper kernel from a dynamical lattice QCD calculation
following the approach of Refs. [26, 27]. Several system-
atic uncertainties remain to be addressed; in particular,
the quark masses used correspond to an unphysically-
large pion mass of m⇡ = 538(1) MeV, and the results are
obtained using a single ensemble of gauge field configura-
tions such that e↵ects from the discretization and finite
lattice volume cannot be fully quantified. A fully model-
independent calculation will require these systematics to
be addressed, lattice QCD calculations to be performed
over a larger range of P zbz to eliminate the need to ex-
trapolate the quasi beam functions to large |bz

| and en-
able the DFT approach to be used, and larger values of
P z to be included to reduce the contributions from power
corrections and higher-twist e↵ects which dominate the
uncertainties of this calculation. With these caveats in
mind, the results of this work may be compared with
phenomenological extractions of the Collins-Soper ker-
nel, as shown in Fig. 15a. The lattice QCD and phe-
nomenological determinations are broadly consistent at
large bT , with clear deviations at the smallest bT values
studied; discretization e↵ects are expected to be largest
at small bT and might be relevant for understanding this
e↵ect. It is clear that, while challenging to achieve com-
putationally, future fully-controlled calculations by this

approach with uncertainties comparable to those of the
present study will be su�cient to di↵erentiate di↵erent
models of the Collins-Soper kernel and will provide im-
portant input for the analysis of low-energy SIDIS data
and the determinations of the TMDPDFs.

In considering the prospects for such future controlled
determinations of the Collins-Soper kernel from lattice
QCD, it is informative to contrast the results of this
study with those of other lattice QCD investigations; a
comparison of existing calculations [19–22] is provided in
Fig. 15b. All dynamical calculations use quark masses
resulting in similar values of the pion mass to that of the
calculation presented here (ranging from the lightest en-
semble with m⇡ = 350 MeV in Ref. [22] to m⇡ = 547
MeV in Ref. [20]), while the quenched calculation of
Ref. [19], in which the kernel should not depend on the
valence quark masses since it is independent of the exter-
nal state, is performed at m⇡ = 1.207 GeV. Each calcu-
lation uses a slightly di↵erent approach to constrain the
Collins-Soper kernel from quasi beam functions. In par-
ticular, the “Hermite/Bernstein” approach is followed in
Ref. [19] (“SWZ”), the calculation of Ref. [20] (“LPC”)
uses the “bz = 0, bare” approach, that of Ref. [21]
(“Regensburg/NMSU”) uses an approach similar to the
“bz = 0, bare” approach but with NLO matching, and
Ref. [22] (“ETMC/PKU) applies the “bz = 0/bT = 0,
bare” approach. While the various calculations exhibit
similar dependence on bT , there are some significant dis-
crepancies between the numerical results, and a wide
range of uncertainty estimates. Given the analysis of
Sec. III D, this is to be expected; even when the same
quasi beam function data is used, following the various
“bz = 0” approaches and the approach presented here re-
sult in significant systematic di↵erences, and significantly
di↵erent uncertainty estimates. Since Refs. [20–22] all
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obtained using a single ensemble of gauge field configura-
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able the DFT approach to be used, and larger values of
P z to be included to reduce the contributions from power
corrections and higher-twist e↵ects which dominate the
uncertainties of this calculation. With these caveats in
mind, the results of this work may be compared with
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bare” approach. While the various calculations exhibit
similar dependence on bT , there are some significant dis-
crepancies between the numerical results, and a wide
range of uncertainty estimates. Given the analysis of
Sec. III D, this is to be expected; even when the same
quasi beam function data is used, following the various
“bz = 0” approaches and the approach presented here re-
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Differences can be explained by combination of  power corrections  
and LO vs. NLO matching 

𝒪(1/(bT xPz)2)

nf=2+1+1 simulation, MILC configs with staggered quarks, mphys
π

RIMOM matrix renormalization, conversion to , and one loop matchingMS
matrix elements with pion state, ,mπ = 538 MeV P z = 0.65, 1.1, 1.5GeV
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Summary

Major advances in phenomenology & theory for TMDPDFs 
Lattice determination of TMDPDFs is rapidly advancing field,  
hard work, but shows significant promise

Targets:
• Non-perturbative CS Kernel
• Info on Spin-dependent TMDPDFs (in ratios)
• Info about 3D structure,  and   (in ratios)x bT
• proton vs. pion TMDPDFs (in ratios)

• TMDPDF with  and  (normalization) x bT

• flavor dependence of TMDPDFs (in ratios)

• Gluon TMDPDFs ? 
• Fragmentation ??? 


