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1. Introduction 2. T and m dependence

2d order case

QCD partition function —(q9)

Z(m) = /[dA] det(D(A) + m)Nf e~ oc(A)
Nf=2 (my,=mgqg=m)

chiral condensate

4. Separating U(1), part

x(m) = x°°"(m) + x“**(m)
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mixed

U(1)a anomaly contribution

3. Question
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SU(2)xSU(2) breaking
Ayy(m) = (P*(z)P*(0) — 5*(x)S*(0))

condensate breaks both

SU(2)r, x SU(2 d U(1 ’
(2)r (2)r and U(1)4 (m) = 3(5°(2)S°(0) ~ P*(2) P*(0)

How much of :
5 (m) = 37(5°(2)5°(0) — P*(a) P*(0)

_ (@) .
v Q(A) : topological charge

x(m) = o (@q)(m)

The formulas are known in continuum but true
on a lattice only with overlap fermions.

[ LLNL/RBC 2014, Nicola et al. 2018,2020 ]

comes from U(1), breaking?

Cf. Callan-Dashen-Gross 1978
suggested instanton effect
= U(1), anomaly
= trigger of SU(2)xSU(2) breaking.
't may indicate that
instanton disappears
= U(1)A anomaly disappears
= SU(2)xSU(2) restoration.

5. Lattice set-up

Nf=2 flavor QCD

=190(~1.1Tc), 220, 260, 330 MeV.
(Lt=8,10,12,14)

1/a =2.6 GeV (0.075fm)

1=24,32,40,48 [1.8-3.6fm] (at T=220MeV)
Mobius domain-wall fermion + reweighted
overlap fermion

Quark mass from 3MeV

(< phys. pt. Y4AMeV) to 30MeV.
Measurement is w/ spec. decomposition.

Let us examine this in lattice
QCD w/ chiral fermions.

T=190 MeV

7=220 MeV —a—

1=260 MeV —eo—

1=260 MeV (direct MDW) o
1=330 MeV (direct MDW) o
U(1) anomaly part ----

/. Summary

Chiral susceptibility is dominate by

Vo TEIOMeV(=a29 e U(1) anomaly at T>=190MeV.
e Conn. part ~ U(1), susceptibility
S Stk S-SR i ososteetingree-L

Discon. part ~ top. susceptibility

Numerical simultions were performed on IBM System Blue Gene Solution at KEK under a support of its Large
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~95% of signals comes from axial U(1) breaking effect.
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