Finite Temperature QCD with Physical (u/d, s, c) Domain-Wall Quarks

Ting-Wai Chiu (趙挺偉)

National Taiwan Normal University

National Taiwan University

In collaboration with Yu-Chih Chen and Tung-Han Hsieh (for the TWQCD collaboration)

Lattice 2021, July 26-30, 2021

<u>Outline</u>

- Introduction
- Actions and algorithms
- Gauge ensembles
- Hadron masses on the 64^4 lattice with a ~0.064 fm
- Topological charge via the Wilson flow
- Topological susceptibility for T ~ 155--516 MeV
- Remarks

Introduction

- The topologically susceptibility $\chi_t = \lim_{V_4 \to \infty} \langle Q_t^2 \rangle / V_4$ is a vital quantity to measure the quantum fluctations of the topology of *QCD* vacuum. For $T < T_c$, χ_t is related to chiral condensate $\Sigma = -\langle \overline{\psi} \psi \rangle$, which is the origin of spontaneous chiral symmetry breaking, giving the majority of the visible (non-dark) mass in the universe today.
- If the Pecci-Quinn machanism is realized in Nature, the evolution of χ_t(T) from the early universe to T_γ determines the axion relic energy density, a promising candidate of the dark matter.

axion mass: $m_A(T) = \sqrt{\chi_t(T)} / f_A$, f_A : the scale of breaking the $U(1)_{PQ}$ sym.

Compute χ_t(a,T) of 15 ensembles with physical (u/d, s, c) DW quarks, for T ≈ 155-516 MeV and 3 lattice spacings (0.064, 0.068, 0.075) fm, to extract χ_t(T) in the continuum limit.

2021/7/28

Actions and Algorithms

- Quarks: optimal DWF [TWC, PRL 2003] with $N_s = 16$, $\lambda_{max}/\lambda_{min} = 6.20/0.05$. Gluons: plaquette gauge action at $\beta = 6/g^2 = (6.20, 6.18, 6.15)$
- For the one-flavor, use the Exact One-Flavor pseudofermion Action (EOFA) [Y.C. Chen & TWC, Phys. Lett. B738 (2014) 55; TWC, Phys. Lett. B744 (2015) 95]
- For the 2-flavor, use the two-flavor action for DWF. [TWC, T.H. Hsieh, Y.Y. Mao, Phys. Lett. B702 (2012) 131]

Optimal Domain-Wall Fermion

VOLUME 90, NUMBER 7

PHYSICAL REVIEW LETTERS

week ending 21 FEBRUARY 2003

Optimal Lattice Domain-Wall Fermions

Ting-Wai Chiu*

Department of Physics, University of Washington, Seattle, Washington 98195-1560 Department of Physics, National Taiwan University, Taipei, Taiwan 106, Taiwan (Received 30 October 2002; published 19 February 2003)

I show that the conventional formulations of lattice domain-wall fermion with any finite N_s (in the fifth dimension) do not preserve the chiral symmetry optimally and propose a new action which preserves the chiral symmetry optimally for any finite N_s .

$$\omega_{s} = \frac{1}{\lambda_{\min}} \sqrt{1 - \kappa'^{2} s n^{2} \left(v_{s}; \kappa' \right)}, \quad s = 1, \cdots, N_{s}$$

Effective 4D Dirac op. of the optimal DWF is exactly equal to the Zolotarev optimal rational approx. of the overlap Dirac op. Optimal DWF with R₅ Symmetry [TWC, Phys. Lett. B 744 (2015) 95-100]

$$N_s = 2n \text{ (even)} \qquad \omega_s = \omega_{N_s+1-s} = \frac{1}{\lambda_{min}} \sqrt{1 - \kappa'^2 \operatorname{sn}^2 \left(\frac{(2s-1)K'}{N_s};\kappa'\right)}$$

2021/7/28

Gauge Ensembles

- Lattice sizes : $64^3 \times (64, 20, 16, 12, 10, 8, 6)$
- Lattice spacings : $a \simeq (0.064, 0.068, 0.075)$ fm,

 $a^{-1} \approx (3.1, 2.9, 2.6) \text{ GeV}$

- Spatial volume : $L^3 > (4 \text{ fm})^3$, $M_{\pi}L > 3$
- Temperatures : $\sim 0 520$ MeV
- Statistics : ~500 3000 configurations per ensemble
- The lattice spacings are determined by the Wilson flow,

using $t^2 \langle E \rangle \Big|_{t=t_0} = 0.3$ with $\sqrt{t_0} = 0.1416(8)$ fm.

- The masses of *s* and *c* quarks are fixed by the masses of $\phi(1020)$ and $J/\psi(3097)$ respectively, while the mass of u/d quarks by $M_{\pi}(140)$, on the 64⁴ lattices.
- The HMC simulations are performed on 10-20 units of Nvidia DGX-1 at 3 institutions/organizations in Taiwan, since January 2018.
 2021/7/28 T.W. Chiu, QCD with physical (u/d, s, c) 6

The Spectrum of the Lowest-lying Mesons

 64^4 , $\beta = 6.20$, a = 0.064 fm, 400 confs TWC, arXiv:2020.06126

The Spectrum of the Lowest-lying Baryons

 64^4 , $\beta = 6.20$, a = 0.064 fm, 400 confs TWC, arXiv:2020.06126

T.W. Chiu, QCD with physical (u/d, s, c)

15 Ensembles

β	<i>a</i> [fm]	N_x	N_t	$T = (N_t a)^{-1} [\text{MeV}]$	# confs
6.20	0.064	64	6	516	3038
6.20	0.064	64	8	387	2665
6.20	0.064	64	10	310	2547
6.20	0.064	64	12	258	1684
6.20	0.064	64	16	193	2230
6.20	0.064	64	20	155	2491
6.18	0.068	64	6	479	2908
6.18	0.068	64	8	360	2088
6.18	0.068	64	10	288	1629
6.18	0.068	64	12	240	649
6.18	0.068	64	16	180	565
6.15	0.075	64	6	438	2454
6.15	0.075	64	8	329	2109
6.15	0.075	64	10	263	831
6.15	0.075	64	12	219	811

T.W. Chiu, QCD with physical (u/d, s, c)

Topological Charge and Topological Susceptibility

- The topological charge Q_t of each configuration is measured via the Wilson flow, using the clover definition.
- The Wilson flow equation is integrated from $t / a^2 = 0$ to 256 with the step size $\Delta t / a^2 = 0.01$.
- In order to extrapolate $\chi_t = \langle Q_t^2 \rangle / V_{4D}$ to the continuum limit, Q_t is required to be measured at the same *t* (in physical units) for all ensembles, which is chosen to be t = 0.8192 fm² in this study.

Evolution of Qt in HMC at T=155 MeV

Histogram of Qt at T=155 MeV

T.W. Chiu, QCD with physical (u/d, s, c)

Topological Susceptibility at T=155 MeV

Evolution of Q_t in HMC at T=516 MeV

Histogram of Q_t at T=516 MeV

T.W. Chiu, QCD with physical (u/d, s, c)

Topological Susceptibility at T=516 MeV

How to use the data points of $\chi_t(a,T)$ to extract $\chi_t(T)$ in the continuum limit ?

T.W. Chiu, QCD with physical (u/d, s, c)

power law $\chi_t^{1/4}(a,T) = (c_0 + c_1 a^2) \left(\frac{T_c}{T}\right)^p$ can only fit data points at high T

T.W. Chiu, QCD with physical (u/d, s, c)

Fitting to
$$\chi_t^{1/4}(a,T) = (c_0 + c_1 a^2) \frac{x^p}{1 + bx + cx^2}, \quad x = \frac{T_c}{T}, \quad T_c = 155 \text{ MeV}$$

T.W. Chiu, QCD with physical (u/d, s, c)

Comparison with other lattice QCD results with physical (u/d, s, c) quarks

T.W. Chiu, QCD with physical (u/d, s, c)

Remarks

What would be the causes for the discrepancy between this work and Borsanyi et al., Nature 539, 69 (2016)?

• Different lattice fermions ?

But, presumably, in the continuum limit, they should give consistent results, if they are both in the same universality class of Dirac fermion.

- Borsanyi et al. used the eigenvalue reweighting and the fixed sector integral techniques rather than direct simulations.
 It is unclear to what extent these techniques are valid ?
- To clarify these issues, independent studies using the DWF are needed, as well as direct simulations with the staggered fermion.

Thank you for your attention !

Acknowledgement

National Taiwan Normal University

National Taiwan University

Backup Slides

Design lattice QCD with physical (u,d,s,c) quarks

TWC, arXiv:1811.08095

For the $64^3 \times 64$ lattice, $M_{\pi}L \approx 3$, $M_{\pi} \approx 140$ MeV, $L \approx 4.3$ fm

Nvidia DGX-1

- > Jan 2018 Oct 2018, the DGX-1 in the Nvidia Taipei office is used for the initial thermalization of the 64⁴ lattice at β = 6.20 with a=0.064 fm.
- Since Dec 2018, 4 units of DGX-1 (HP clone) at Academia Sinica Grid Computing are used for production runs.
- From 2019-2020, used 10-20 units of DGX-1 in Taiwania 2 at NCHC for production runs.

Nvidia DGX-1(8 V100+NVLink)

Figure taken from the White Paper NVIDIA DGX-1 With Tesla V100 System Architecture

<u>臺灣杉二號(TAIWANIA 2)</u> 2,016 NVIDIA Tesla V100 32GB GPU = 252 units of DGX-1

TOP500 #28 (9 PFLOPS) Green500 #19 (11.285 GFLOPS/W)

T.W. Chiu, QCD with physical (u/d, s, c)

30

Topological Susceptibility of Lattice QCD with Physical (u/d, s, c) DW quarks at zero temperature

TWC, arXiv:2002.06126

