Latent heat and pressure gap at the first-order deconfining phase transition of SU(3) Yang-Mills theory using the small flow-time expansion method

K. Kanaya, M. Shirogane¹, S. Ejiri¹, R. Iwami¹, M. Kitazawa², H. Suzuki³, Y. Taniguchi, T. Umeda⁴ Univ. Tsukuba, ¹ Niigata Univ., ² Osaka Univ. ³ Kyushu Univ. ⁴ Hiroshima Univ.

Shirogane et al. (WHOT-QCD Collab.), Prog.Theor.Exp.Phys. 2021, 013B01 [arXiv: 2011.10292]

We study latent heat $\Delta \epsilon$ and the pressure gap Δp between the hot and cold phases at the first-order deconfining transition of SU(3) Yang-Mills using the small flow-time expansion (SFtX) method. In the continuum limit, we find $\Delta \epsilon/T^4 = 1.117 \pm 0.040$ for $N_s/N_t = 8$ and 1.349 ± 0.038 for $N_s/N_t = 6$ at T_c . We also confirm $\Delta p \approx 0$ as expected. From hysteresis curves of ϵ , we show that ϵ in the deconfined phase

I. SFtX method based on GF

Gradient flow: modification of fields in terms of a fictitious time *t*.

 $\dot{B}_{\mu}(t,x) = D_{\nu}G_{\nu\mu}(t,x), \quad B_{\mu}(0,x) = A_{\mu}(x)$ Narayanan-Neuberger(2006), Lüscher(2010) Flowed field $B\mu \approx A\mu$ smeared over a physical range $\sqrt{(8t)}$. Operators of flowed fields have no UV divergences nor short-distance singularities at t > 0.

SFtX method: a general method to correctly calculate any renormalized observables on the lattice

Directly evaluate corresponding operator on the lattice. No renormalization required.

SFtX works also when a basic symmetry is broken by the lattice regularization, thus helps to avoid complicated renormalizations.

We are applying SFtX to QCD with Wilson-type quarks to remove chiral violation problems. Our results show powerfulness of SFtX.

Taniguchi et al., PRD96, 014509 (2017); D95, 054502 (2017), D102, 014510 (2020)

is sensitive to the spatial volume, while that in the confined phase is insensitive. Furthermore, we examine effects of alternative procedures in the SFtX method -- the order of the continuum and the vanishing flow-time extrapolations, the renormalization scale, and higher-order corrections in the matching coefficients. We confirm that the final results are all consistent with each other.

2.1 Energy-momentum tensor by SFtX

$$T_{\mu\nu}(x) = \lim_{(a,t)\to 0} \left\{ c_1(t)U_{\mu\nu}(t,x) + 4c_2(t)\delta_{\mu\nu} \left[E(t,x) - \langle E(t,x) \rangle_0 \right] \right\}$$

$$U_{\mu\nu}(t,x) \equiv G_{\mu\rho}(t,x)G_{\nu\rho}(t,x) - \frac{1}{4}\delta_{\mu\nu}G_{\rho\sigma}(t,x)G_{\rho\sigma}(t,x) \quad E(t,x) \equiv \frac{1}{4}G_{\mu\nu}(t,x)G_{\mu\nu}(t,x)$$

$$C_1(t) \ c_2(t): \text{ matching coefficients determined by perturbation theory.}$$
We show results of NNLO matching coeff's with the μ_0 renorm. scale.
$$\epsilon = -\langle T_{00} \rangle, \ p = \frac{1}{3}\sum_{i} \langle T_{ii} \rangle$$

2.2 Consistency of the methods (1) and (2)

We also compared with the results of NLO matching coefficients and/or the μ_d renormalization scale. => They are all consistent with each other.

2.3 Results of Δe and Δp in the (a, t) \rightarrow 0 limit

 $\Delta \epsilon / T^4 = 1.117(40) \ [N_s / N_t = 8], \ 1.349(38) \ [N_s / N_t = 6].$

Systematic errors due to the extrapolations are smaller than the statistic errors.

- ☆ Consistent with the derivative method (open symbols), except for $N_t = 6$. SFtX has smaller errors
- ☆ Volume dependence visible.
- We confirm: Δp is consistent with 0 within errors both in (1) and (2).

2.4 Hysteresis around T_c

(cf.) derivative method

Two methods of the double extrapolation $(a, t) \rightarrow 0$: (1) $t \rightarrow 0$ then $a \rightarrow 0$ (2) $a \rightarrow 0$ then $t \rightarrow 0$

When the $O(a^2/t)$ lattice artifacts are correctly removed, the two methods should agree with each other.

2. $\Delta\epsilon$ and Δp at T_c in SU(3) YM

Shirogane et al., PTEP 2021, 013B01 (2021)

- $N_t = 8, 12, 16; N_s = 48 128 (N_s/N_t = 6, 8)$
- At each (N_s, N_t), 3–6 β 's are combined by multipoint histogram to fine-tune to β_c
- $a = (N_t T_c)^{-1}, V = (N_s a)^3 = (N_s N_t)^3 T_c^{-3}$
- $\bullet\,$ Config. separation into hot and cold phases at β_c using Polyakov loop Ω with time-smearing.

 ☆ Clean signal by SFtX.
 ☆ Volume dependence visible in the metastable hot phase, while not in the cold phase.

3. Conclusions

- ☆ Methods ① and ② as well as other variations of SFtX agree well with each other. => SFtX powerful and reliable.
- $\Rightarrow \Delta \epsilon$ obtained with small errors by SFtX. $\Delta p \approx 0$ confirmed. \Rightarrow Volume dependence of $\Delta \epsilon$ traced back to that in the hot phase.