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We study latent heat A¢ and the pressure gap Ap between
the hot and cold phases at the first-order deconfining
transition of SU(3) Yang-Mills using the small flow-time
expansion (SFtX) method. In the continuum limit, we find

Ae/T*=1.117 £ 0.040 for N,/N,=8 and 1.349 +0.038 for
N,/N, =6 at T.. We also confirm Ap ~ 0 as expected. From
hysteresis curves of ¢, we show that ¢ in the deconfined phase

is sensitive to the spatial volume, while that in the confined
phase is insensitive. Furthermore, we examine effects of
alternative procedures in the SFtX method -- the order of the
continuum and the vanishing flow-time extrapolations, the
renormalization scale, and higher-order corrections in the
matching coefficients. We confirm that the final results are all
consistent with each other.

1. SFtX method based on GF

Gradient flow: modification of fields in terms of a fictitious time t.
Bﬂ(t,x) =DG,(t,x), BM(O,x) = Aﬂ(x) Narayanan-Neuberger(2006), Lischer(2010)

v-up
Flowed field By = Ay smeared over a physical range +/(8t).

Operators of flowed fields have no UV divergences nor short-distance
singularities at t > 0. Lischer-Weisz (201 1)

SFtX method: a general method to correctly calculate any
renormalized observables on the lattice
H. Suzuki, PTEP 2013, 08303 (2013) [E:2015,079201]
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Directly evaluate corresponding operator on
the lattice. No renormalization required.

SFEX works also when a basic symmetry is broken by the lattice regularization,
thus helps to avoid complicated renormalizations.
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We are applying SFtX to QCD with Wilson-type quarks to remove chiral
violation problems. Our results show powerfulness of SFtX.

Taniguchi et al,, PRD96, 014509 (2017); D95, 054502 (2017),D102,014510 (2020)
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N=2+1 QCD with heavy ud quenched QCD
Taniguchi et al, PRD96 (2017) Kitazawa et al, PRD94 (2016)

Two methods of the double extrapolation (g, t)—0:
(D t— 0 then a =0
@ a—0 then t =0

When the O(a?/t) lattice artifacts are correctly removed, the two
methods should agree with each other.

2. Acand Ap at 7, in SU(3) YM
Shirogane et al., PTEP 2021,013B01I (2021)
® Ne=8 12,16, Ns=48-128 (Ns/N:= 6,8)

® At each (Ns N, 3-6 p's are combined by
multipoint histogram to fine-tune to j.

® a=(NT)", V=Wa)?®=Ns/N) T3

® Config. separation into hot and cold phases at
B, using Polyakov loop € with time-smearing.
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2.1 Energy-momentum tensor by SFtX
7,00= lim {cl(r)UW(z, X) + 4es(8,, [E(t, %) = (E(t, )] }

1 1
Upy (£, %) = Gy (£, )Gy p (8, ) — Zdﬂvaa(t,x)Gp,,(t, x) E(t,x)= 7 v (& )Gy (8, X)
¢1(t) ¢5(t): matching coefficients determined by perturbation theory.
l We show results of NNLO matching coeff's with the o renorm. scale.
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We also compared with the results of NLO matching coefficients and/or the
Uq renormalization scale. => They are all consistent with each other.

2.3 Results of Ac and Ap in the (a, t)—0 limit
w Ae/T* = 1.117(40) [N,/N, = 8], 1.349(38) [N,/N, = 6].

Systematic errors due to the extrapolations are smaller than the statistic errors.
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2.4 Hysteresis around T,
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w Clean signal by SFtX.

W Volume dependence visible
in the metastable hot phase,
while not in the cold phase.
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3. Conclusions
v Methods (D and (@ as well as other variations of SFtX agree
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well with each other. => SFtX powerful and reliable.
w A€ obtained with small errors by SFtX. Ap = 0 confirmed.

W Volume dependence of Ae traced back to that in the hot phase.



