is sensitive to the spatial volume, while that in the confined phase is insensitive. Furthermore, we examine effects of alternative procedures in the SF*t***X method -- the order of the continuum and the vanishing flow-time extrapolations, the renormalization scale, and higher-order corrections in the matching coefficients. We confirm that the final results are all consistent with each other.**

K. Kanaya, M. Shirogane¹, S. Ejiri¹, R. Iwami¹, M. Kitazawa², H. Suzuki³, Y. Taniguchi, T. Umeda⁴ Univ. Tsukuba, 1 Niigata Univ., 2 Osaka Univ. 3 Kyushu Univ. 4 Hiroshima Univ.

SF*t*X works also when a basic symmetry is broken by the lattice regularization, thus helps to avoid complicated renormalizations.

We are applying SF*t*X to QCD with Wilson-type quarks to remove chiral violation problems. Our results show powerfulness of SF*t*X.

Taniguchi et al., PRD96, 014509 (2017); D95, 054502 (2017), D102, 014510 (2020)

2.1 Energy-momentum tensor by SF*t***X**

3. Conclusions

Latent heat and pressure gap at the first-order deconfining phase transition of SU(3) Yang–Mills theory using the small flow-time expansion method

Shirogane et al. (WHOT-QCD Collab.), Prog.Theor.Exp.Phys. 2021, 013B01 [arXiv: 2011.10292]

We study latent heat $\Delta \epsilon$ and the pressure gap Δp between **the hot and cold phases at the first-order deconfining transition of SU(3) Yang–Mills using the small flow-time expansion (SF***t***X) method. In the continuum limit, we find** $\Delta \epsilon / T^4 = 1.117 \pm 0.040$ for $N_s / N_t = 8$ and 1.349 ± 0.038 for $N_s/N_t = 6$ at T_c . We also confirm $\Delta p \approx 0$ as expected. From hysteresis curves of ϵ , we show that ϵ in the deconfined phase ϵ

Directly evaluate corresponding operator on the lattice. No renormalization required.

When the $O(a^2/t)$ lattice artifacts are correctly removed, the two methods should agree with each other.

2. $\Delta \epsilon$ and Δp at T_c in SU(3) YM

 $\dot{B}_{\mu}(t, x) = D_{\nu} G_{\nu\mu}(t, x), B_{\mu}(0, x) = A_{\mu}(x)$ Narayanan-Neuberger(2006), Lüscher(2010) **Gradient flow**: modification of fields in terms of a fictitious time *t*. Flowed field *B* $\mu \approx A\mu$ smeared over a physical range $\sqrt{(8t)}$. Operators of flowed fields have no UV divergences nor short-distance singularities at $t > 0$. Lüscher-Weisz (2011)

- $\hat{\mathbf{x}}$ Consistent with the derivative method (open symbols), except for $N_t = 6$. SFtX has smaller errors
- $\hat{\mathbf{x}}$ Volume dependence visible.
- We confirm: Δp is consistent with 0 within errors both in ① and ②.

Shirogane et al., PTEP 2021, 013B01 (2021)

- $N_t = 8$, 12, 16; $N_s = 48-128$ (*N_s/N_t* = 6, 8)
- At each (N_s, N_t) , 3–6 β 's are combined by multipoint histogram to fine-tune to *βc*
- $a = (N_t T_c)^{-1}$, $V = (N_s a)^3 = (Ns/N_t)^3 T_c^{-3}$
- Config. separation into hot and cold phases at β_c using Polyakov loop Ω with time-smearing.

2.2 Consistency of the methods ① **and** ②

 3^{\prime}

2.4 Hysteresis around *Tc*

Methods ① and ② as well as other variations of SF*t*X agree well with each other. => SF*t*X powerful and reliable.

 $\Delta \epsilon$ obtained with small errors by SFtX. $\Delta p \approx 0$ confirmed. Volume dependence of $\Delta\epsilon$ traced back to that in the hot phase.

$$
T_{\mu\nu}(x) = \lim_{(a,t)\to 0} \left\{ c_1(t) U_{\mu\nu}(t,x) + 4c_2(t) \delta_{\mu\nu} \left[E(t,x) - \langle E(t,x) \rangle_0 \right] \right\}
$$

\n
$$
U_{\mu\nu}(t,x) \equiv G_{\mu\rho}(t,x) G_{\nu\rho}(t,x) - \frac{1}{4} \delta_{\mu\nu} G_{\rho\sigma}(t,x) G_{\rho\sigma}(t,x) \qquad E(t,x) \equiv \frac{1}{4} G_{\mu\nu}(t,x) G_{\mu\nu}(t,x)
$$

\n
$$
c_1(t) c_2(t)
$$
: matching coefficients determined by perturbation theory.
\nWe show results of NNLO matching coeff is with the μ_0 renorm. scale.
\n
$$
\epsilon = -\langle T_{00} \rangle, \ p = \frac{1}{2} \sum_i \langle T_{ii} \rangle
$$

1. SF*t***X method based on GF**

SF*t***X method:** a general method to correctly calculate any renormalized observables on the lattice

H. Suzuki, PTEP 2013, 083B03 (2013) [E:2015, 079201]

We also compared with the results of NLO matching coefficients and/or the μ_d renormalization scale. \Rightarrow They are all consistent with each other.

2.3 Results of $\Delta \epsilon$ and Δp in the (a, t) \rightarrow 0 limit

 $\Delta \epsilon / T^4 = 1.117(40)$ *[N_s*/*N_t* = 8], 1.349(38) *[N_s*/*N_t* = 6].

Systematic errors due to the extrapolations are smaller than the statistic errors.

 2.5 hot cold (cf.) derivative method

uble extrapolation (a, a) with Range-2 and Range-3, respectively. $\mathcal{L}_{\mathcal{A}}$ fittings is smaller than unity. Then, we use the result of n as a central value, while the n Two methods of the double extrapolation $(a, t) \rightarrow 0$: ① *t* → 0 then *a* → 0 (2) *a* → 0 then *t* → 0

Clean signal by SF*t*X. $\hat{\mathbf{x}}$ Volume dependence visible in the metastable hot phase, while not in the cold phase.