
We study latent heat  and the pressure gap  between 
the hot and cold phases at the first-order deconfining 
transition of SU(3) Yang–Mills using the small flow-time 
expansion (SFtX) method. In the continuum limit, we find 

 for  and  for 
 at . We also confirm  as expected. From 

hysteresis curves of , we show that  in the deconfined phase 

is sensitive to the spatial volume, while that in the confined 
phase is insensitive. Furthermore, we examine effects of 
alternative procedures in the SFtX method -- the order of the 
continuum and the vanishing flow-time extrapolations, the 
renormalization scale, and higher-order corrections in the 
matching coefficients. We confirm that the final results are all 
consistent with each other.
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Δϵ /T 4 = 1.117 ± 0.040 Ns /Nt = 8 1.349 ± 0.038
Ns /Nt = 6 Tc Δp ≈ 0

ϵ ϵ

SFtX works also when a basic symmetry is broken by the lattice regularization, 
thus helps to avoid complicated renormalizations.
We are applying SFtX to QCD with Wilson-type quarks to remove chiral 
violation problems.  Our results show powerfulness of SFtX.

Taniguchi et al., PRD96, 014509 (2017); D95, 054502 (2017), D102, 014510 (2020)

2.1 Energy-momentum tensor by SFtX

3. Conclusions
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finite & physically well-defined

Directly evaluate corresponding operator on 
the lattice.  No renormalization required.
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physical obs.

To carry out  (a, t)→0,  
we need to avoid 
O(a2/t) lattice artifacts.

We call the resulting fit 
range as "linear window".
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In Fig. 5, the black solid bar at t ¼ 0 with a squared
symbol denotes the result of the extrapolation with Range-1,
while the open circle and triangle symbols denote the results
with Range-2 and Range-3, respectively. χ2=dof in these
fittings is smaller than unity. Then, we use the result of
Range-1 as a central value, while those of Range-2 and

Range-3 are used to estimate the systematic error associated
with the fit range.3

FIG. 5. Results of continuum extrapolation (black band) for Δ=T4 (left) and s=T3 (right) as functions of tT2. The extrapolation to
t ¼ 0 using the data in Range-1 is shown by the dashed line, and the extrapolated value with the error is given by the filled square at
t ¼ 0. The extrapolated values with Range-2 and Range-3 are also shown around the origin.

FIG. 4. Nτ dependence of s=T3 at tT2 ¼ 0.005, 0.01, 0.015 and 0.02 together with the result of continuum extrapolation using
Eq. (24).

3In our previous exploratory study of Δ=T4 and s=T3 in
Ref. [9], the continuum limit has been taken, while the flow time
was fixed to be tT2 ¼ 0.02. There was no resolution to detect the
slope Cμν owing to limited statistics and coarse lattice.
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quenched QCD
Kitazawa et al, PRD94 (2016)

Nf=2+1 QCD with heavy ud
Taniguchi et al, PRD96 (2017)

Two methods of the double extrapolation (a, t)→0:
①  t → 0  then  a → 0
②  a → 0  then  t → 0

When the O(a2/t) lattice artifacts are correctly removed, the two 
methods should agree with each other.

①
②

2.  and  at  in SU(3) YM
Shirogane et al., PTEP 2021, 013B01 (2021)

Δϵ Δp Tc

Nt = 8, 12, 16;  Ns = 48–128  (Ns/Nt = 6, 8)
At each (Ns, Nt), 3–6 's are combined by 
multipoint histogram to fine-tune to 

,  
Config. separation into hot and cold phases at 

 using Polyakov loop  with time-smearing.

β
βc

a = (NtTc)−1 V = (Nsa)3 = (Ns /Nt)3 T−3
c

βc Ω

hotcold

2.2 Consistency of the methods ① and ②

2.4 Hysteresis around Tc

Methods ① and ② as well as other variations of SFtX agree 
well with each other.   =>  SFtX powerful and reliable.

 obtained with small errors by SFtX.   confirmed.

Volume dependence of  traced back to that in the hot phase.

Δϵ Δp ≈ 0
Δϵ

2.3 Results of  and  in the (a, t)→0 limitΔϵ Δp

(t) (t): matching coefficients determined by perturbation theory. 
We show results of NNLO matching coeff's with the µ0 renorm. scale. 
c1 c2

Tμν(x) = lim
(a,t)→0 {c1(t)Uμν(t, x) + 4c2(t)δμν[E(t, x) − ⟨E(t, x)⟩0]}

1. SFtX method based on GF

Narayanan-Neuberger(2006), Lüscher(2010)

Gradient flow:  modification of fields in terms of a fictitious time t.

Flowed field  Bµ ≈ Aµ smeared over a physical range √(8t).
Operators of flowed fields have no UV divergences nor short-distance 
singularities at t > 0.

SFtX method: a general method to correctly calculate any 
renormalized observables on the lattice 

H. Suzuki, PTEP 2013, 083B03 (2013) [E:2015, 079201]

Lüscher-Weisz (2011) 

·Bμ(t, x) = DνGνμ(t, x), Bμ(0,x) = Aμ(x)
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Testing fit-range dependence.
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Methods ① and ② are well consistent.
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Systematic errors due to the extrapolations are smaller than the statistic errors.
Δϵ /T 4 = 1.117(40) Ns /Nt = 8 1.349(38) Ns /Nt = 6
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.  SFtX has smaller errors
Volume dependence visible.
Nt = 6

We confirm:  is consistent 
with 0 within errors both in 
① and ②.
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Clean signal by SFtX.
Volume dependence visible 
in the metastable hot phase, 
while not in the cold phase.

We also compared with the results of NLO matching coefficients and/or the 
µd renormalization scale.   =>  They are all consistent with each other.
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