Confinement-Deconfinement transition and Z_2 symmetry in Z_2 +Higgs theory

Sabiar Shaikh

The Institute of Mathematical Sciences, Chennai.

July 28, 2021

based on arXiv:2102.11091, in collaboration with Minati Biswal, Sanatan Digal, Vinod Mamale

Sabiar Shaikh

Lattice 2021, MIT

1 Introduction

- 2 Z_2 symmetry in Z_2 +Higgs gauge theory
- 3 Monte Carlo simulation results
- 4 The Partition Function and Density of States in 0 + 1 Dimension

5 Summary

Introduction

- Z_N symmetry plays an important role in the confinement-deconfinement (CD) transition in pure SU(N) gauge theories. In these theories, at finite temperature, the allowed gauge transformations are classified by the centre of the gauge group, i.e Z_N .
- Previous studies of Z_N symmetry in SU(N) Higgs theories have found that the Z_N symmetry is restored in the Higgs symmetric phase in the continuum limit (i.e. large number of temporal lattice points N_{τ}). [S. Digal et. al., Nucl.Phys.B910,30-39(2016)]
- In the Z_2 Higgs theory, the fields being Ising like, one can hope to understand better the Z_2 explicit breaking and its dependence on the coupling between the gauge and Higgs fields and N_{τ} .
- Our goal in this study is to investigate the strength of the explicit breaking of this symmetry by varying the parameters of the theory and N_{τ} .

Total action in Z_2 +Higgs theory

• The action for the Z_2 +Higgs theory in four dimensional lattice $(N_s^3 \times N_\tau)$ is given by,

$$S = -\beta_g \sum_P U_P - \kappa \sum_{n,\hat{\mu}} \Phi_{n+\hat{\mu}} U_{n,\hat{\mu}} \Phi_n.$$
(1)

• The plaquette $U_P = U_{n,\hat{\mu}} U_{n+\hat{\mu},\hat{\nu}} U_{n+\hat{\nu},\hat{\mu}} U_{n,\hat{\nu}}$.

Z_2 symmetry in pure gauge theory

• The pure gauge part of the action is invariant under the Z₂ gauge transformations,

$$U_{n,\hat{\mu}} \to V_n U_{n,\hat{\mu}} V_{n+\hat{\mu}}^{-1} \tag{2}$$

where $V_n = \pm 1 \in Z_2$. The V_n 's satisfy the boundary condition,

$$V(\vec{n}, n_4 = 1) = zV(\vec{n}, n_4 = N_{\tau}).$$
(3)

 $z = \pm 1 \in Z_2$. So the gauge transformations can be classified by the group Z_2 and in pure gauge theory Z_2 symmetry is always there.

• The Polyakov loop is, $L(\vec{n}) = \prod_{n_4=1}^{n_4} U_{(\vec{n},n_4),\hat{4}} \Rightarrow$ Order parameter transforms non-trivially under Z_2 gauge transformations

$$L(\vec{n}) \to zL(\vec{n}).$$
 (4)

Explicit symmetry breaking in presence of Higgs fields

- For this theory, under the Z_2 gauge transformation, Higgs field(Φ_n) in the fundamental representation transform as, $\Phi_n \rightarrow V_n \Phi_n$
- Higgs fields are periodic and satisfy the boundary condition, $\Phi(\vec{n}, n_4 = 1) = \Phi(\vec{n}, n_4 = N_{\tau})$
- Under Z₂ gauge transformation the Higgs fields transform as,

$$\Phi(\vec{n}, n_4 = 1) \rightarrow V(\vec{n}, n_4 = 1) \Phi(\vec{n}, n_4 = 1)$$

$$= zV(\vec{n}, n_4 = N_t) \Phi(\vec{n}, n_4 = N_\tau)$$

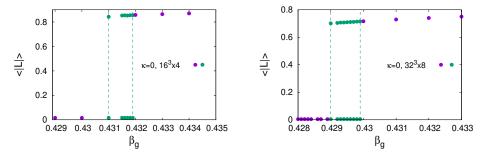
$$= z \Phi_g(\vec{n}, n_4 = N_\tau)$$
(5)

So the gauge transformed matter fields Φ_g satisfy the boundary condition, $\Phi_g(\vec{n}, n_4 = 1) = z \Phi_g(\vec{n}, n_4 = N_\tau)$

• Φ_g does not remain periodic when z = -1. Therefore, in the presence of Higgs field Φ_n the Z_2 symmetry is broken explicitly.

イロト イポト イヨト イヨト 三日

Symmetry in partition function


• In the partition function,

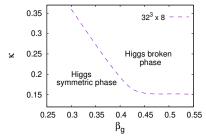
$$\mathcal{Z} = \sum_{\Phi, U} e^{-S} \tag{6}$$

- Since the action for $\kappa = 0$ is invariant under Z_2 gauge transformations, any configuration and it's gauge rotated counterpart will contribute equally to the partition function i.e there is Z_2 symmetry.
- For κ ≠ 0 case given a configuration, one can define a Z₂ counterpart in which only the gauge links are Z₂ rotated i.e (U, Φ) → (U_g, Φ). Obviously S(U, Φ) ≠ S(U_g, Φ) and these pair of configurations will not contribute equally to the partition function.

CD transition for $N_{\tau} = 4,8$ in pure gauge theory

• The average of the Polyakov loop is plotted vs β_g for $N_{\tau} = 4, 8$. There is a range in β_g for which clearly separated peaks in the distribution of the Polyakov loop has been observed.

• The two peaks suggest that the transition is first order [M. Creutz et. al., Phys. Rev. Lett. 42, 1390(1979)]. For larger lattice sizes the range of β_g over which two states are observed increases.


Sabiar Shaikh

Lattice 2021, MIT

July 28, 2021 8 / 20

Phase diagram

- The effect of the Φ field on the CD transition and Z₂ symmetry is expected to depend on κ. [G.A.Jongeward et. al., Phys.Rev.D21,3360(1980)]
- In the Higgs broken phase(κ > κ_c), i.e large κ, the interaction term dominates over the entropy or DoS ⇒ Z₂ symmetry is badly broken.
- In the Higgs symmetric phase(κ < κ_c), it is the DoS i.e the distribution of the interaction term dominate.
 ⇒ Possibility for realization of Z₂ symmetry.

 In our simulations the Higgs transition is found to be first order for intermediate range of β_g and crossover for both small and large β_g.
 [M. Creutz et. al., Phys. Rept. 95, 201-282 (1983)]

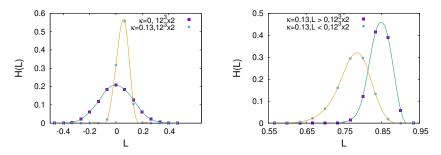

Sabiar Shaikh

Lattice 2021, MIT

July 28, 2021 9 / 20

CD transition in presence of Higgs fields

• In figure we show *CD* transition in the Higgs symmetric phase $(\kappa = 0.13)$. The *CD* transition is first order even in the presence of Φ , though the transition point shifts to lower values of β_g .

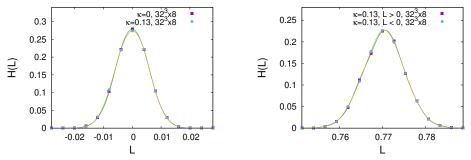


• For small but non-zero κ the CD transition is first order for $N_{\tau} \geq 3$.

biar		

Histogram for $N_{\tau} = 2$ with Higgs field

- To check the N_{τ} dependence of the Z_2 symmetry at $\kappa = 0.13$, the distribution of Polyakov loop is computed both in the confined and the deconfined phases
- For $N_{\tau} = 2$ the histograms clearly show there is no Z_2 symmetry.

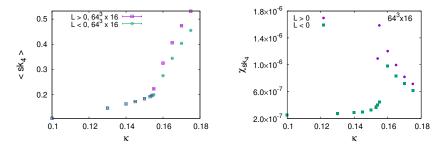


 In the deconfined phase, L < 0 data is Z₂ rotated and then compared with L > 0 data.

	aikh

Histogram for $N_{\tau} = 8$ with Higgs field

 For N_τ = 8, the histogram of Polyakov loop for two Z₂ sectors agree well with each other.


• The simulation results indicate that the Z_2 symmetry is restored at large N_{τ} in the presence of matter fields.

	aikł	

July 28, 2021 12 / 20

Dependence of Z_2 symmetry on the phase of Higgs

- $sk_4 = \sum_n \Phi_n U_{n,\hat{4}} \Phi_{n+\hat{4}}^{\dagger}$, Susceptibility $\chi_{sk_4} = \langle sk_4^2 \rangle \langle sk_4 \rangle^2$
- Along x-axis on the left (κ < 0.154) it is Higgs symmetric phase and on the right (κ > 0.154) it is Higgs broken phase.

• At $\beta_g = 0.435$, for larger N_{τ} , the κ value at which the two polyakov loop sectors differ significantly in sk_4 and χ_{sk_4} is higher.

	aikh	

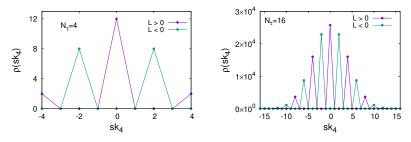
Role of DoS: Example in 0 + 1D

• The temporal component of the gauge Higgs interaction corresponding to a particular spatial site can be written as,

$$S_{1D} = -\kappa s k_4, \quad s k_4 = \sum_{n=1}^{N_\tau} \Phi_n U_n \Phi_{n+1}$$
(7)

 Φ_n satisfies the periodic boundary condition $\Phi_{N_{\tau}+1} = \Phi_1$.

• We set $U_i = 1$, for $i = 1, 2, ..., N_{\tau} - 1$ and $U_{N_{\tau}} = L$. The partition function for L = 1 is nothing but that of the one dimensional Ising chain. For L = -1 the only difference is that the coupling between $\Phi_{N_{\tau}}$ and Φ_1 is anti-ferromagnetic. The exact partition functions

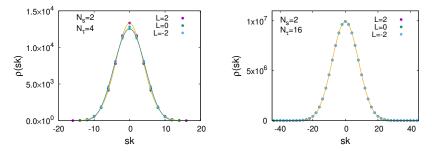

$$\mathcal{Z}(L=1) = \lambda_1^{N_\tau} + \lambda_2^{N_\tau}, \quad \mathcal{Z}(L=-1) = \lambda_1^{N_\tau} - \lambda_2^{N_\tau}$$
(8)

where $\lambda_1 = e^{\kappa} + e^{-\kappa}$ and $\lambda_2 = e^{\kappa} - e^{-\kappa}$. The free energies in large N_{τ} are, $V(L = 1) = V(L = -1) = -TN_{\tau}\log(\lambda_1)$

• It shows that there is Z_2 symmetry in 0+1 dimensions in the limit of $N_{\tau} \to \infty$.

Density of states in 0 + 1D

- The realisation of the Z_2 symmetry must come from the Z_2 symmetry of the entropy or the *DoS* i.e $\rho(sk_4)$.
- For small N_{τ} there are clear difference in $\rho(sk_4)$ for $L = \pm 1$.

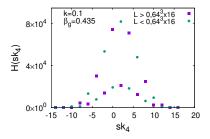


- For large N_{τ} , $\rho(sk_4)$'s for both $L = \pm 1$ are well described by a gaussian centred at $sk_4 = 0$, with $\sqrt{N_{\tau}}$ as standard deviation.
- The thermodynamics in the $N_{\tau} \to \infty$ limit will be dominated by peak height and distribution of $\rho(sk_4)$ around the peak, which is Z_2 symmetric, for all finite κ .

Sabiar Shaikh

Density of states in 1 + 1D

• In order to take into account the effect of nearest neighbour coupling along the spatial direction we consider 1 + 1 dimensional model with $N_s = 2$ and vary N_{τ} . Here $sk = sk_1 + sk_4$.


• The results for the distribution of the total interaction action for $N_{\tau} = 4$ and $N_{\tau} = 16$ shows that for higher N_{τ} , $\rho(sk)$ around the peak sk = 0 do not depend on L i.e the realization of Z_2 symmetry at higher N_{τ} .

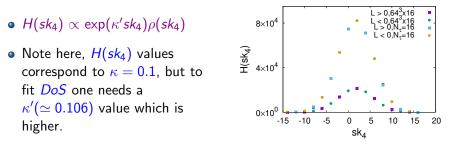
Sabiar Shaikh

July 28, 2021 16 / 20

Histogram in 3 + 1D

- Fig. shows the distribution H(sk₄) for N_τ = 16 at κ = 0.1 and β_g = 0.435. For these values of κ and β_g, the system is found to be in the deconfined and Higgs symmetric phase.
- The thermal average of the Polaykov loop for the two sectors are found to be $\langle L \rangle = 0.5896 \pm 0.002$ and -0.5897 ± 0.00199 .

 The results clearly show that H(sk₄) for both the Polyakov loop sectors can be approximately described by single function in other words the presence of Z₂ symmetry.


Sabiar Shaikh

Lattice 2021, MIT

July 28, 2021 17 / 20

Comparison of 3 + 1D and 0 + 1D results

• We try to fit the 3 + 1 dimensional simulation result with 0 + 1 dimensional *DoS* by including an extra Boltzmann factor, i.e $\exp(\kappa' sk_4)$. The resulting fit agree very well with $H(sk_4)$.

• This is due to the fact that in 3 + 1 dimensions sk_4 at a given spatial point interacts with sk_4 at the nearest neighbour sites.

- Our results suggest that the 3 + 1D Monte Carlo simulations can be reproduced using the DoS of the 0 + 1D model.
- In presence of Higgs fields the Z_2 symmetry realization happens in the large N_{τ} limit in the Higgs symmetric phase.
- The realization of Z₂ symmetry is due to dominance of DoS over the Boltzman factor.
- Computing the *DoS* in *SU(N)*+Higgs theory is a difficult task as the configuration space is infinite. The Z₂+Higgs theory in four dimensions provides a suitable alternative as the field variables take values ±1.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thank You

	aikh

July 28, 2021 20 / 20

3