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1. Introduction



Numerical sign problem

Numerical sign problem:

has prevented the first-principles analysis
of physically important systems

Examples

(1) QCD at finite density
(2) Solid state systems (using QMC)
- strongly correlated electron systems
- frustrated classical/quantum spin systems

(3) Real-time dynamics of quantum fields
(4) QCD with finite @

[2/15]



Various approaches

B method 1: no use of reweighting

¥ complex Langevin method [Parisi 1983, Klauder 1983]

(may show a wrong convergence problem) (< wrong results
w/ small stat errors

B method 2: deformation of the integration surface

V¥ lLefschetz thimble method [Witten 2010, Cristoforetti et al. 2012,
Fujii et al. 2013, Alexandru et al. 2015]

Tempered Lefschetz thimble method (TLTM) [MF-Umeda 2017]
[MF-Umeda-Matsumoto 2019]

worldvolume TLTM (WV-TLTM) [MF-Matsumoto 2020]

V¥ path optimization method (POM) [Mori-Kashiwa-Ohnishi 2017,
Alexandru et al. 2018]

B method 3: no use of MC in the first place

V¥ tensor network [Levin-Nave 2007, ...]
- good at calculating the free energy
- but not so much for correl fcns
- complementary to MC approach? 13/15]
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2. Lefschetz thimble method



Basic idea of the thimble method (1/2)

B complexification of dyn variable: x=(x)eR" = z=(z' =x'+iy')eC"

assumption (satisfied for most cases) (S(x) : action, O(x) : observable)

e 5@ e3@O(z) : entire fcns over CN (can have zeros) \

Cauchy’s theorem /y}

- -——

-
-
-

Integral does not change under continuous deformation
of integration surface : =, =R" — X (<= C")
(boundary at | x|— « kept fixed)

oy A XETOW[aze o
(O = j dxeS® jdz e5(2)
% >

severe sign problem |sign problem will be significantly reduced
if ImS(z) is almost constant on X

[4/15]



Basic idea of the thimble method (2/2)

JC (anti-thimble)

\\ j(Lefschetz thimble)

ImS(z) : constant

W prescription for deformation ~

anti-holomorphic gradient flow

2, =0S(z,) with z,_, =X

| , __mN
property X 20 — R

[S(z)] =05(z,)-2 =[6S(z,)| >0

ReS(z)| >0 : always increases except at crit pt £ (¢ : crit pt
t

[ImS(z)] =0 : always constant < 05(4)=0

Z o J (Lefschetz thimble) = set of orbits starting from ¢
ImS(z) : constant on J (=ImS(¢))

Sign problem s expected to disappear on Z; at a sufficiently large t
[5/15]




3. Tempered Lefschetz thimble method
(TLTM)



Ergodicity problem

[Fukuma-Umeda 1703.00861]

Sign problem resolved? NO!
Actually, there comes out another problem at large t : Ergodicity problem

iy zero of e 5%

1 (ReS(@)=+w e SO _ o AX2(y _i)P (B1)

~_ | signproblem: OK
ta= ergodicity problem : NG
> X
% o= RN [sign problem:NG]

hard to communicate with each other [Marinari-Parisi 1992]

[Swendsen-Wang 1986, Geyer 1991
Hukushima-Nemoto 1996]

solution : | Implement the tempering to the thimble method
[MF-Umeda 2017] temper the system with the flow time [g/15)




Tempered Lefschetz thimble method (TLTM)

[Fukuma-Umeda 1703.00861]
mTLTM

(1) Introducereplicasinbetween theinitialinteg surface 2, = RN
and the target deformed surface X; as {Ztozo' Tt Zgn o By, }

(2) Setup a Markov chain for the extended config space {(x,t,)}
(3) Estimate observables withasampleon X

Yy ReS(z) =+

[ sign problem'OK

ergod|C|ty problem OK
by tempering

)Y

"y . _g =R" [signproblem:NG]
easy transition through a detour 0~

Sign and ergodicity problems solved simultaneously ! |



TLTM has been successfully applied to ...

— (0+1)dim massive Thirring model [MF-Umeda 1703.00861]
— 2dim Hubbard model [MF-Matsumoto-Umeda 1906.04243, 1912.13303]

— chiral random matrix model (a toy model of finite density QCD)
[MF-Matsumoto 2012.08468]

— anti-ferro Ising on triangular lattice [MF-Matsumoto 2020, JPS meeting]

So far successful for all the models when applied,
though the system sizes are yet small (DOF < 200)

[8/15]



4. Worldvolume TLTM (WV-TLTM)



Pros and cons of TLTM

BTLTM [MF-Umeda 2017]
Replicas introducedinbetween X, and XZ; : {Ztozo, XD VI ZtA:T}

finite discrete set

Pros : can be applied to any systems
once formulated by path integrals with continuous variables

Cons : large comput cost at large DOF

- necessary # of replicas «c O(N°™?)
- need to calculate Jacobian J, (x) = 6z, (X) / &x o«c O(N®)

everytime we exchange configs between adjacent replicas [5/15]



ldea of WV-TLTM (1/2)

[MF-Matsumoto 2012.08468]
® Worldvolume TLTM (WV-TLTM)

HMC on a continuous accumulation of integ surfaces, R = U 24
0<t<T

“"worldvolume”

R : orbit of integration surface
inthe "target space" C" = R*"

orbit of particle — worldline

21 |orbitofstring — worldsurface

orbit of surface — worldvolume
(membrane)

Pros : can be applied to any systems
once formulated by path integrals with continuous variables
@ major reduction of comput cost at large DOF
-No need to introducereplicas
-No need to calculate Jacobian J; (x) = 0z, (x) / 0x inMD process
- Configs canmove largely due to the use of HMC [10/15]



ldea of WV-TLTM (2/2)

. [MF-Matsumoto 2012.08468]
W Basic |dea

J‘ dx e > O(x) _[2 dz, e P O(2) t-independent
(O(x)) = >0 5 = 5 (Cauchy's theorem)
jZ dx e 5™ jﬁt dz, e (2) t-independent
0

j dte W(t)_“ dz, e O(z) (W (t) : arbitrary function)
chosen s.t. the distribution
-W(t) S(2)
..-o ate jzt dzg & (ln t direction is almost umformj

) [, dtdz g(2) O@2)
IR dtdz, g(z)

< Path integrals over the worldvolume R

Statistical analysis method

for the WV-TLTM is established in
[MF-Matsumoto-Namekawa 2107.06858]

Matsumoto’s talk (Wednesday)

X
. =RN [11/15]



HMC on the worldvolume

W Algorithm [MF-Mat;umoto 3012.08468]
ADM decomposition of the induced metric : Soom  Bodt /‘dlﬁ
ds® = ’dt® + y,, (dx* + Adt)(dx” + S°dt) (« : lapce) . /(fﬂft._iw T da”
vol element of R : Dz = adt | dz,(x) |= « | det J | dtdx plitl )
rewt factor : A(z) = %e—nmsu) _ a—l(z)de_t‘]e—ilms(z) . ) x®

t,x"
|det J | | dz, () |

(base area)

potential V (z) =ReS(z) +W (t(z2))

JxD2e ' PAD)O@) (A2 0@), D) _JgPze? (@)
.

O = =
< (X)> J‘ Dz e—V(z)A(Z) <A(Z)>R j’ Dz e—V(Z)

(f(2)), : estimated with RATTLE (HMC on a constrained space)[Andersen 1983, Leimkuhler-Skeel 1994]

_ CN — j2N .“‘\_! \
Ty :ﬂ-—ASaV(Z)_ﬂvaFa(Z) L AL ,

\F, 7T >,

!
' =7+ASmy,

7' =rx—AsoV (2) - A"°F,(2) i

cf)
RATTLE on J =%, [Fujii et al. 2013]
RATTLE on X; [Alexandru@Lattice2019,

MF - Matsumoto - Umeda 2019]
[12/15]

A% and A'? are determined s.t.

{Z’ER and 2*Im[J](2) E,(2)]=0 T~
T r+u

7n'eT,R and A*Im[J](z")E,(z')]=0



Application: chiral random matrix model (1/2)
. . [MF-Matsumoto 2012.08468]
W finite density QCD

0 o
_ I u
:tre_ﬂ(H—,UN) [{7#,71/}—25;”/, 7/“_7/”_[61' 0 J}
= I[dA [dwdir] e(1/292)J'trF£V+J'[¢/7(7ﬂDﬂ +m)y+uy Tyl
Y7,

S L I el
s az(aﬂ+Aﬂ)+y m

ZQCD

toy model

B chiral random matrix model [Stephanov 1996, Halasz et al. 1998]

m W +ﬂJ quantum field replaced by j

. —n trw tw
Zsrepn —deVV € det(iwt fuom a matrix incl spacetime DOF
(T=0,N, =1

W = (VVIJ) = (le + IYIJ) NxXn Comp|eX matl’iX
(DOF : N=2n* < 4L*(N?-1))

M role as an important benchmark model

- well approximates the qualitative behaviour of QCD atlarge n

- complex Langevin suffers from wrong convergence [Bloch et al. 2018]
[13/15]



Application: chiral random matrix model (2/2)

matrix size : n=10 (DOF : N = 200) [MF-Matsumoto 2012.08468]
(now easy at large DOF compared to the original TLTM) sample size

1 2 reweighting : 10k
. — o\ . _ complex Langevin :10k
chiral condensate (yy) = oA InZg,,, [m=0.004, T =0] WV-TLTM - 4k-17k

0.06 ] 0.06F

0.05

¢ WV-TLTM

X reweighting ’ 0.05 —

= exact

——0:04

X complex Langevin 1

s 0.03; < 0.035_ WV-TLTM —— exact
= .02; reweighting S ook .
] 3
0.01ksign problem ool .
0.00F ] X %
: 0.00f >
0.01F ] ' complex Langevin
-0.01p ‘ e -001{wrong convergence)
0.2 0.4 0.6 0.8 1.0 02 0d 0% o3 -
u

. 1 "
baryon # density <WTW> E_EanSteph
- 2ndu

5ol 2 WV-TLTM
[ X reweighting X X 2.0:_ °® WV-TLTM 3
15} T exad * X complex Langevin . x % X
g [ . ht' ] § 1~5_' — exact X X
2 - reweighting (x4 1 z i x X .
s 1o (sign problem) * : 2 10} *” complex Langevin
: ] i x (wrong convergence)
0.5¢ ] [ X
E E 0.5 -x y x X ]
—0:07 1 0.0F .
0.2 0.4 0.6 0.8 1.0 02 o4 06 08 10

) ) [14/15]



5. Summary and outlook



Summary and outlook
B Summary

V¥ TLTM has a potential to be a solution to the sign problem
- the sign and ergodicity problems are solved simultaneously

¥ TLTM has been successfully applied to various models
(yet only to toy models at this stage)

(o finite density QCD chiral random matrix model [MF-Matsumoto]
. OMC _{strongly correl electron systems 1D/2D Hubbard model

N\

F-Matsumoto-Umeda]

frustrated classical / quatum spin systems antiferro Ising

on trianglular lattice
[MF-Matsumoto]

\

B Outlook [MF-Matsumoto-Namekawa, in progress]

V¥ Large-scale computation for large-size systems w/ WV-TLTM

V¥ Further improvements of algorithm

¥ Combining various algorithms
. cf) TRG for 2D YM:
(e.9.) TRG (non-MC) : good at calculating free energy  [vir-kadoh-Matsumoto 2107.14149]

V¥ Particularly important: MC calc for time-dependent systems

first-principles calc of nonequilibrium processes

such as early universe, heavy ion collision experiments, ... [15/15]



Thank you.
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