The basics and applications of the tempered Lefschetz thimble method for the numerical sign problem

Masafumi Fukuma (Dept Phys, Kyoto Univ)

@Lattice 2021 (online)

Based on work with

Nobuyuki Matsumoto, Yusuke Namekawa and Naoya Umeda (RIKEN/BNL) (YITP, Kyoto U) (PwC)

- -- **MF** and **Umeda**, "Parallel tempering algorithm for integration over Lefschetz thimbles" [PTEP2017(2017)073B01, arXiv:1703.00861]
- -- **MF**, **Matsumoto** and **Umeda**, "Applying the tempered Lefschetz thimble method to the Hubbard model away from half filling" [PRD100(2019)114510, arXiv:1906.04243]
- -- **MF**, **Matsumoto** and **Umeda**, "Implementation of the HMC algorithm on the tempered Lefschetz thimble method" [arXiv:1912.13303]
- -- **MF** and **Matsumoto**, "Worldvolume approach to the tempered Lefschetz thimble method" [PTEP2021(2021)023B08, arXiv:2012.08468]
- -- **MF**, **Matsumoto** and **Namekawa**, "Statistical analysis method for the Worldvolume Monte Carlo algorithm" [arXiv:2107.06858]

1. Introduction

Numerical sign problem

Numerical sign problem:

has prevented the first-principles analysis of physically important systems

Examples

- (1) QCD at finite density
- (2) Solid state systems (using QMC)
	- strongly correlated electron systems
	- frustrated classical/quantum spin systems
- (3) Real-time dynamics of quantum fields
- (4) QCD with finite θ

Various approaches

■method 1: no use of reweighting

▼ complex Langevin method **[Parisi 1983, Klauder 1983]** (may show a wrong convergence problem) ϕ wrong results $\left(\begin{matrix} \Leftarrow \text{ wrong results} \ \text{w/ small stat errors} \end{matrix}\right)$

■method 2: deformation of the integration surface

- ▼ Lefschetz thimble method **[Witten 2010, Cristoforetti et al. 2012,** Tempered Lefschetz thimble method (TLTM) **[MF-Umeda 2017]** worldvolume TLTM (WV-TLTM) **[MF-Matsumoto 2020] [MF-Umeda-Matsumoto 2019] Fujii et al. 2013, Alexandru et al. 2015]**
- ▼ path optimization method (POM) **[Mori-Kashiwa-Ohnishi 2017, Alexandru et al. 2018]**

■method 3: no use of MC in the first place

- ▼ tensor network **[Levin-Nave 2007, ...]**
	- $\left(\text{-}$ good at calculating the free energy $\left.\right)$
	- \sim but not so much for correl fons - but not so much for correl fcns
	- $($ complementary to MC approacn? $\,$ $\,$ $\,$ $\,$ - complementary to MC approach?

Various approaches

■method 1: no use of reweighting

▼ complex Langevin method **[Parisi 1983, Klauder 1983]** (may show a wrong convergence problem) ϕ wrong results $\left(\begin{matrix} \Leftarrow \text{ wrong results} \ \text{w/ small stat errors} \end{matrix}\right)$

■method 2: deformation of the integration surface

▼ Lefschetz thimble method **[Witten 2010, Cristoforetti et al. 2012,** Tempered Lefschetz thimble method (TLTM) **[MF-Umeda 2017]** worldvolume TLTM (WV-TLTM) **[MF-Matsumoto 2020] [MF-Umeda-Matsumoto 2019] Fujii et al. 2013, Alexandru et al. 2015]**

▼ path optimization method (POM) **[Mori-Kashiwa-Ohnishi 2017, Alexandru et al. 2018]**

■method 3: no use of MC in the first place

- ▼ tensor network **[Levin-Nave 2007, ...]**
	- $\left(\text{-}$ good at calculating the free energy $\left.\right)$
	- \sim but not so much for correl fons - but not so much for correl fcns
	- $($ complementary to MC approacn? $\,$ $\,$ $\,$ $\,$ - complementary to MC approach?

Plan

- 1. Introduction (done)
- 2. Lefschetz thimble method
- 3. Tempered Lefschetz thimble method (TLTM)
- 4. Worldvolume-TLTM (WV-TLTM)
- 5. Summary and outlook

2. Lefschetz thimble method

Basic idea of the thimble method (1/2)

Cauchy's theorem **complexification of dyn variable:** $x = (x^i) \in \mathbb{R}^N \implies z = (z^i = x^i + iy^i) \in \mathbb{C}^N$ $e^{-S(z)}$, $e^{-S(z)}\mathcal{O}(z)$: entire fcns over \mathbb{C}^N (can have zeros) <u>assumption</u> (satisfied for most cases) $(S(x):$ action, $\mathcal{O}(x):$ observable) of integration surface : $\Sigma_0 = \mathbb{R}^N \rightarrow \Sigma$ ($\subset \mathbb{C}^N$) Integral does not change under continuous deformation 0 0 $f(x) \mathcal{O}(x) = \int_{-\infty}^{\infty} dz e^{-S(z)}$ (x) $\int_{z}^{z} e^{-S(z)}$ $f(x)$ $\int_{\Gamma} dz e^{-S(z)} \mathcal{O}(z)$ (x) $S(x)$ *C* (x) $\int_{z}^{x} e^{-S(z)}$ $S(x)$ $\int_{Z}^{x} e^{-S(z)}$ $dx e^{-S(x)} \mathcal{O}(x)$ $\int_{\Sigma} dz e^{-S(z)} \mathcal{O}(z)$ *x e dz* $dx e^{-S(x)}$ dz $f^{-S(x)}\mathcal{O}(x) = \int d\tau e^{-x}$ $-S(x)$ $\int d\tau e^{-x}$ Σ_0 $\qquad \qquad \qquad \mathcal{L}^{(1)}$ $\qquad \qquad \mathcal{L}$ Σ_0 J_{Σ} $\langle \mathcal{O}(x) \rangle \equiv \frac{2z_0}{c}$ = $\int_{\Sigma_{0}} dx e^{-S(x)} \mathcal{O}(x)$ $\int_{\Sigma_0} dx e^{-S(x)}$ $\mathcal{O}(x)$ $\int_{\Sigma} dz e^{-S(z)} \mathcal{O}$ \mathcal{O} **if Im S(z) is almost constant on Σ** sign problem will be significantly reduced severe sign problem Σ $\Sigma_{0}=\mathbb{R}^{N}$ *x* \overline{y} \overline{y} \overline{y} \overline{z} \overline{z} \overline{z} (boundary at $|x| \rightarrow \infty$ kept fixed)

Basic idea of the thimble method (2/2)

$$
[S(z_t)]^{\cdot} = \partial S(z_t) \cdot \dot{z}_t = |\partial S(z_t)|^2 \ge 0
$$

 $\left| \text{Re} S(z_t) \right|$ $\left| \text{Im} S(z_t) \right|$ $\vert \ \vert \ \geq 0$ 0 ((z_t) $\left|\text{Re}\,S(z_t)\right|^2 \geq 0$: always increases except at crit pt $\left|\text{Im}\,S(z_t)\right|=0$: always constant *t t S z S z* $\left[\left[\text{Re}\,S(z_t)\right]^2 \geq 0$: always increases except at crit pt ζ $\left[\left[\text{Im}S(z_t)\right]^{T}=\right]$ ≥ $\overline{\mathcal{L}}$ \bullet $\dot{\hspace{0.6cm}} = 0$: always constant $\Leftrightarrow \partial S(\zeta) = 0$: *S* ζ ζ $\sqrt{\zeta}$: crit pt $\sqrt{\zeta}$ $\left(\Leftrightarrow \overline{\partial S(\zeta)}=0\right)$ crit pt

 $\Sigma_t \xrightarrow{t \to \infty} \mathcal{J}$ (Lefschetz thimble) = set of orbits starting from ζ $\text{Im} S(z)$: constant on \mathcal{J} (= $\text{Im} S(\mathcal{L})$)

Sign problem is expected to disappear on Σ_t at a sufficiently large t^-

3. Tempered Lefschetz thimble method (TLTM)

Ergodicity problem

[Fukuma-Umeda 1703.00861]

Sign problem resolved? **NO!**

Actually, there comes out another problem at large *t* : **Ergodicity problem**

Tempered Lefschetz thimble method (TLTM) **[Fukuma-Umeda 1703.00861]**

■TLTM

- and the target deformed surface Σ_T as $\left\{\Sigma_{t_0=0},\,\,\Sigma_{t_1},\,\,\Sigma_{t_2},\,\,\,...,\,\,\Sigma_{t_A=T}\right\}$ (1) Introduce replicas in between the initial integ surface $\Sigma_{_0} = \mathbb{R}^N$ Σ_T as $\big\{\Sigma_{t_0=0},\,\,\Sigma_{t_1},\,\,\Sigma_{t_2},\,\,\,...,\,\,\Sigma_{t_A=T}$
- (2) Setup a Markov chain for the extended config space $\{(x,t_a)\}$
- (3) Estimate observables with a sample on Σ_{T}

Sign and ergodicity problems solved simultaneously !

TLTM has been successfully applied to ...

- ー (0+1)dim massive Thirring model **[MF-Umeda 1703.00861]**
- ー 2dim Hubbard model **[MF-Matsumoto-Umeda 1906.04243, 1912.13303]**
- ー chiral random matrix model (a toy model of finite density QCD) **[MF-Matsumoto 2012.08468]**
- ー anti-ferro Ising on triangular lattice **[MF-Matsumoto 2020, JPS meeting]**

though the system sizes are yet small (DOF ≤ 200) So far successful for all the models when applied,

4. Worldvolume TLTM (WV-TLTM)

Pros and cons of TLTM

■TLTM **[MF-Umeda 2017]**

Replicas introduced in between Σ_0 and Σ_T :

$$
\left\{ \Sigma_{t_0=0}, \ \Sigma_{t_1}, \ \Sigma_{t_2}, \ \ldots, \ \Sigma_{t_A=T} \right\}
$$

- Pros : can be applied to any systems once formulated by path integrals with continuous variables
- Cons : large comput cost at large DOF
	- necessary # of replicas $\propto O(N^{0-1})$
	- need to calculate Jacobian $J_t(x) = \partial z_t(x) / \partial x \propto O(N^3)$ everytime we exchange configs between adjacent replicas

[9/15]

Idea of WV-TLTM

[MF-Matsumoto 2012.08468]

■ Worldvolume TLTM (WV-TLTM)

HMC on a continuous accumulation of integ surfaces, $\mathcal{R} = \bigcup_{\alpha < \beta} \Sigma$ *t*

- Pros : can be applied to any systems once formulated by path integrals with continuous variables
	- ⊕ major reduction of comput cost at large DOF
		- No need to introduce replicas
		- No need to calculate Jacobian $J_t(x) = \partial z_t(x) / \partial x$ in MD process
		- Configs can move largely due to the use of HMC

[10/15]

Idea of WV-TLTM (2/2)

[MF-Matsumoto 2012.08468]

■ Basic Idea

$$
\langle \mathcal{O}(x) \rangle = \frac{\int_{\Sigma_0} dx \, e^{-S(x)} \mathcal{O}(x)}{\int_{\Sigma_0} dx \, e^{-S(x)}} = \frac{\int_{\Sigma_t} dz_t \, e^{-S(z)} \mathcal{O}(z)}{\int_{\Sigma_t} dz_t \, e^{-S(z)}} \quad \text{t-independent (Cauchy's theorem)}
$$
\n
$$
= \frac{\int_0^T dt \, e^{-W(t)} \int_{\Sigma_t} dz_t \, e^{-S(z)} \mathcal{O}(z)}{\int_0^T dt \, e^{-W(t)} \int_{\Sigma_t} dz_t \, e^{-S(z)}} \quad \text{(W(t) : arbitrary function)}
$$
\n
$$
= \frac{\int_{\mathcal{R}} dt \, dz_t \, g(z) \mathcal{O}(z)}{\int_{\mathcal{R}} dt \, dz_t \, g(z)} \quad \text{in } t \text{ direction is almost uniform}
$$
\n
$$
= \frac{\int_{\mathcal{R}} dt \, dz_t \, g(z) \mathcal{O}(z)}{\int_{\mathcal{R}} dt \, dz_t \, g(z)} \quad \text{in the integral is over the worldvolume } \mathcal{R}
$$
\n
$$
= \frac{\int_{\mathcal{R}} dt \, dz_t \, g(z)}{\int_{\mathcal{R}} dt \, dz_t \, g(z)} \quad \text{in the WV-TIIM is established in [MF-Matsumoto's talk (Wednesday))}
$$
\n
$$
= \frac{\int_{\Sigma_t} dz_t \, g(z) \mathcal{O}(z)}{\int_{\Sigma_t} dz_t \, g(z)} \quad \text{in the WV-TIIM is established in [MF-Matsumoto's talk (Wednesday))}
$$
\n
$$
= \frac{\int_{\Sigma_t} dz_t \, g(z) \mathcal{O}(z)}{\int_{\Sigma_t} dz_t \, g(z)} \quad \text{in the WV-TIIM is established in [MF-Matsumoto's talk (Wednesday))}
$$
\n
$$
= \frac{\int_{\Sigma_t} dz_t \, g(z) \mathcal{O}(z)}{\int_{\Sigma_t} dz_t \, g(z)} \quad \text{in the WV-TIIM is established in [MF-Matsumoto's talk (Wednesday))}
$$
\n
$$
= \frac{\int_{\Sigma_t} dz_t \, g(z) \mathcal{O}(z)}{\int_{\Sigma_t} dz_t \, g(z)} \quad \text{in the WV-TIIM is established in [MF-Matsumoto's talk (Wednesday))}
$$
\n
$$
= \frac
$$

HMC on the worldvolume

■ Algorithm

ADM decomposition of the induced metric : $ds^2 = \alpha^2 dt^2 + \gamma_{ab} (dx^a + \beta^a dt) (dx^b + \beta^b dt) ~~\big(\alpha \,$: lapce $\big)$ \Rightarrow vol element of $\mathcal{R} : Dz = \alpha dt \mid dz(x) = \alpha | \det J | dt dx$ $\text{rowt factor:} \begin{aligned} & A(z) \equiv \frac{dt \, dz_t}{Dz} e^{-i \text{Im} S(z)} = \alpha^{-1}(z) \frac{\det J}{|\det J|} e^{-i \text{Im} S(z)} \end{aligned}$ *D e J* $A(z) \equiv \frac{dt dz}{\Delta}$ *z* $\equiv \frac{dI}{dt} \frac{dZ_t}{dz} e^{-i |\text{Im} S(z)|} = \alpha^{-1}(z) \frac{\text{det} J}{dz} e^{-i |\text{Im} S(z)|} \frac{dt}{dz} \frac{dZ_t}{dz}$

potential
$$
V(z) = \text{Res}(z) + W(t(z))
$$

$$
\langle \mathcal{O}(x) \rangle = \frac{\int_{\mathcal{R}} Dz \, e^{-V(z)} A(z) \, \mathcal{O}(z)}{\int_{\mathcal{R}} Dz \, e^{-V(z)} A(z)} \equiv \frac{\langle A(z) \mathcal{O}(z) \rangle_{\mathcal{R}}}{\langle A(z) \rangle_{\mathcal{R}}} \qquad \left(\langle f(z) \rangle_{\mathcal{R}} \equiv \frac{\int_{\mathcal{R}} Dz \, e^{-V(z)} f(z)}{\int_{\mathcal{R}} Dz \, e^{-V(z)}} \right)
$$

 $\langle f(z)\rangle_{\mathcal{R}}$: estimated with RATTLE (HMC on a constrained space) [Andersen 1983, Leimkuhler-Skeel 1994]

[MF-Matsumoto 2012.08468]

Application: chiral random matrix model (1/2) ■**finite density QCD CONSERVANCE TO THE EXECUTIVE TO THE EXECUTIVE**

$$
Z_{QCD} = \text{tr } e^{-\beta (H - \mu N)} \n= \int [dA_{\mu}] [d\psi d\overline{\psi}] e^{(1/2g^2)} \left[\text{tr } F_{\mu\nu}^2 + \int [\bar{\psi} (\gamma_{\mu} D_{\mu} + m)\psi + \mu \psi^{\dagger} \psi] \right] \n= \int [dA_{\mu}] e^{(1/2g^2)} \left[\text{tr } F_{\mu\nu}^2 + \int [\bar{\psi} (\gamma_{\mu} D_{\mu} + m)\psi + \mu \psi^{\dagger} \psi] \right] \n= \int [dA_{\mu}] e^{(1/2g^2)} \left[\text{tr } F_{\mu\nu}^2 \right] \text{Det} \left(\begin{array}{cc} m & \sigma_{\mu} (\partial_{\mu} + A_{\mu}) + \mu \\ \sigma_{\mu}^{\dagger} (\partial_{\mu} + A_{\mu}) + \mu & m \end{array} \right)
$$
\ntoy model

■chiral random matrix model **[Stephanov 1996, Halasz et al. 1998]**

 v_{11} v_{2} – n tr W^{\dagger} $Z_{\mathsf{Steph}} = \int d^2W \; e^{-n \; \mathsf{tr} W^\dagger W} \mathsf{det} \bigg(\frac{m}{iW^\dagger + m} \; \mathcal{L} \bigg)$ *m e m W W d i* μ μ $-n \operatorname{tr} W^{\dagger} W$ _{dot} $m \qquad iW + \mu$ $\begin{pmatrix} iW^{\dagger} + \mu & m \end{pmatrix}$ $=\int d^2W e^{-n \operatorname{tr} W^{\dagger}W} \det \begin{pmatrix} m & iW + i \end{pmatrix}$ $\int d^2 W \ e^{-n \text{ tr} W^\dagger W} \det \begin{pmatrix} m & iW + \mu \\ iW^\dagger + \mu & m \end{pmatrix} \quad \begin{pmatrix} \text{quantum field replaced by} \\ \text{a matrix incl spacetime DOF} \end{pmatrix}$ a matrix incl spacetime DOF $(T = 0, N_f = 1)$

 $W = (W_{ij}) = (X_{ij} + iY_{ij}) : n \times n$ complex matrix $(DOF: N = 2n^2 \Leftrightarrow 4L^4(N_c^2 - 1)$

■ role as an important benchmark model

- well approximates the qualitative behaviour of QCD at large *n*
- complex Langevin suffers from wrong convergence **[Bloch et al. 2018]**

5. Summary and outlook

Summary and outlook

■Summary

- \blacktriangledown TLTM has a potential to be a solution to the sign problem
	- the sign and ergodicity problems are solved simultaneously
- ▼ TLTM has been successfully applied to various models (yet only to toy models at this stage)
	- chiral random matrix model [**MF-Matsumoto**] • finite density QCD $\begin{bmatrix} \end{bmatrix}$
	- 1D/2D Hubbard model antiferro Ising on trianglular lattice **[MF-Matsumoto-Umeda]** • QMC : $\left\{\begin{matrix} \text{strongly correl electron systems} \\ \text{frustrated classical/ quantum spin systems} \end{matrix}\right\}$ $\Big\}$ $\left\{ \cdot \right.$ ONC \cdot \cdot QMC : $\left\{ \cdot \right.$ $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ ः {

[MF-Matsumoto]

[15/15]

■ <u>Outlook</u> [MF-Matsumoto-Namekawa, in progress]

- ▼ Large-scale computation for large-size systems w/ WV-TLTM
- \blacktriangledown Further improvements of algorithm
- \blacktriangledown Combining various algorithms $(e.g.)$ TRG (non-MC): good at calculating free energy **cf) TRG for 2D YM: [MF-Kadoh-Matsumoto 2107.14149]**
- ▼ Particularly important: MC calc for time-dependent systems
	- first-principles calc of nonequilibrium processes such as early universe, heavy ion collision experiments, ...

Thank you.