Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 gauge theory on the lattice

György Baranka

Eötvös Loránd University Budapest

July 26, 2021 The 38th International Symposium on Lattice Field Theory

Based on arXiv:2104.03779 Work done in collaboration with Matteo Giordano

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 gauge theory on the lattice

э

<回ト < Eト < Eト

Introduction I

 Localisation of low modes of the Dirac operator was observed in QCD and other gauge theories above the deconfinement transition [Garcia-Garcia and Osborn, 2007, Ujfalusi et al., 2015]

Localisation and delocalisation from Ref. [Ujfalusi et al., 2015]

< D > < A > < B >

- Sea/island picture → Ordered Polyakov loops in deconfined phase. In this ordered "sea" modes are localised on the fluctuations of Polyakov loops [Bruckmann et al., 2011]
- To push the connection of these properties to its limit → Z₂ gauge theory in 2+1 dimensions and study the spectrum of the staggered Dirac operator, link variables: U_μ(n) = ±1

3

イロト イヨト イヨト

Localisation of eigenmodes of the Dirac operator

- IPR₁ = $\sum_{n} |\psi_1(n)|^4$
- $\operatorname{PR}_{I} = \operatorname{IPR}_{I}^{-1}(N_{t}V)^{-1}$
- The scaling of the modes can be determined by the fractal dimension:

$$\operatorname{PR}(\lambda, N_s) \approx c(\lambda) N_s^{\alpha(\lambda)-2}$$

Localised mode $\rightarrow \alpha = 0$ Delocalised mode $\rightarrow \alpha = 2$

$$\alpha(\lambda) = 2 + \log\left(\frac{\mathrm{PR}(\lambda, N_{s_1})}{\mathrm{PR}(\lambda, N_{s_2})}\right) / \log\left(\frac{N_{s_1}}{N_{s_2}}\right)$$

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 gauge theory on the lattice

э

문▶ ★ 문▶

Confined phase

 $\beta = 0.67$

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 gauge theory on the lattice

Deconfined phase $(\overline{P} > 0)$

Both low and high modes are localised, bulk modes are delocalised

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 gauge theory on the lattice

Fractal dimension of near zero modes

The fractal dimension drops to zero at the deconfinement transition($\beta_c(N_t = 4) = 0.73107(2)$ [Caselle and Hasenbusch, 1996])

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 gauge theory on the lattice

Sea/island picture of localisation

• How much of the wave function is localised on negative Polyakov loops?

$$\mathscr{P} = \sum_{x,t} P(x) |\psi(x,t)|^2$$

Delocalised modes:

$$\mathscr{P} \approx \frac{1}{VN_t} \sum_{x,t} P(x) = \frac{1}{V} \sum_x P(x) = \overline{P}$$

Localised modes:

$$\mathscr{P} \approx \sum_{(x,t)\in V_0} P(x) |\psi(x,t)|^2 \approx \overline{P}_{V_0}$$

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 gauge theory on the lattice

Sea/island picture of localisation, deconfined phase

For delocalised modes \mathscr{P} takes the value of the average Polyakov loops. However, for localised modes \mathscr{P} drops significantly

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 gauge theory on the lattice

Plaquettes encode dynamics. How do localised modes correlate with negative plaquettes?

$$A(n) = \frac{1}{2} \sum_{\substack{\mu,\nu=1\\\mu<\nu}}^{3} [4 - U_{\mu\nu}(n) - U_{\mu\nu}(n-\hat{\mu}) - U_{\mu\nu}(n-\hat{\nu}) - U_{\mu\nu}(n-\hat{\mu}-\hat{\nu})]$$

- $\mathscr{U} = \sum_{n} A(n) |\psi(n)|^2$ measures the average number of negative plaquettes touched by the modes
- $\widetilde{\mathscr{U}} = \sum_{A(n)>0,n} |\psi(n)|^2$ measures how much of the modes lives on sites touched by negative plaquettes

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 gauge theory on the lattice

イロト 不得下 イヨト イヨト 二日

Localisation and negative plaquettes

High localised modes prefer the clusters of negative plaquettes more than low localised modes

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 gauge theory on the lattice

Localisation and negative plaquettes

For localised modes most part of the modes live on sites that are touched by at least one negative plaquette

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 gauge theory on the lattice

э

- Localisation of low modes is present in QCD and many gauge theories, even in \mathbb{Z}_2 gauge theory

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 gauge theory on the lattice

3

(ロ) (四) (三) (三)

- Localisation of low modes is present in QCD and many gauge theories, even in \mathbb{Z}_2 gauge theory
- Numerical results confirm the predictions of the sea/island picture of localisation

3

イロト イポト イヨト イヨト

Gvörgv Baranka

- Localisation of low modes is present in QCD and many gauge theories, even in \mathbb{Z}_2 gauge theory
- Numerical results confirm the predictions of the sea/island picture of localisation
- A novel result is that the very high modes are localized in both phases of the theory

3

イロト イポト イヨト イヨト

- Localisation of low modes is present in QCD and many gauge theories, even in \mathbb{Z}_2 gauge theory
- Numerical results confirm the predictions of the sea/island picture of localisation
- A novel result is that the very high modes are localized in both phases of the theory
- Localized modes display a strong correlation with the position of negative plaquettes in both phases of the theory

3

イロン イボン イヨン イヨン

[Bruckmann et al., 2011] Bruckmann, F., Kovács, T. G., and Schierenberg, S. (2011).

Anderson localization through polyakov loops: lattice evidence and random matrix model.

Physical Review D, 84(3):034505.

[Caselle and Hasenbusch, 1996] Caselle, M. and Hasenbusch, M. (1996).

Deconfinement transition and dimensional cross-over in the 3d gauge ising model.

Nuclear Physics B, 470(3):435-453.

[Garcia-Garcia and Osborn, 2007] Garcia-Garcia, A. M. and Osborn, J. C. (2007).
Chiral phase transition in lattice qcd as a metal-insulator transition. *Physical Review D*, 75(3):034503.

3

イロン イロン イヨン イヨン

- [Ujfalusi et al., 2015] Ujfalusi, L., Giordano, M., Pittler, F., Kovács, T. G., and Varga, I. (2015).
 - Anderson transition and multifractals in the spectrum of the Dirac operator of Quantum Chromodynamics at high temperature.

Phys. Rev. D, 92(9):094513.

3

イロン イ団 と イヨン イヨン

Sea/island picture of localisation, confined phase

For localised high modes $\mathscr P$ becomes much lower, while for delocalised modes $\mathscr P$ is closer to \overline{P}

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 gauge theory on the lattice

э