Infrared physics of the SU(2) Georgi-Glashow phase transition Lauri Niemi, Kari Rummukainen, Riikka Seppä, David J. Weir

University of Helsinki

What was known

- \blacktriangleright The Georgi-Glashow model Higgses $SU(2) \rightarrow U(1)$, yielding 't Hooft-Polyakov magnetic monopoles.
- ▶ The photon-like excitation is massive due to monopole condensation.
- ► On the lattice, the number density of monopoles is ultraviolet divergent.

What this work adds

- We study the monopole gas, renormalizing the measurement of monopole density using gradient flow. The renormalized quantity is shown to have a well-defined continuum limit.
- We see the expected proportionality between monopole density and photon mass, even in the nonperturbative crossover region.

Continuum theory

 \blacktriangleright The Georgi-Glashow model consists of SU(2) gauge fields and a Higgs field ϕ in the adjoint representation. By dimensional reduction, its infrared behavior at high temperature is well described by a 3D theory with temperature dependent parameters:

$$S = \int d^3x \, \left\{ \frac{1}{2} \operatorname{Tr} F_{ij} F_{ij} + \operatorname{Tr} [D_i, \phi]^2 + m_3^2 (T) \operatorname{Tr} \phi^2 + \lambda_3 (T) (\operatorname{Tr} \phi^2)^2 \right\}.$$

The same 3D action arises as the high-temperature limit of two-color QCD, and

Lattice formulation

- \blacktriangleright Writing the SU(2) plaquette as U_{ij} , our lattice action reads $S = \beta \sum_{x,i < j} \left(1 - \frac{1}{2} U_{ij}(x) \right) + 2a \sum_{x,i} \left(\operatorname{Tr} \phi(x)^2 - \operatorname{Tr} \phi(x) U_i(x) \phi(x+i) U_i^{\dagger}(x) \right)$ $+ a^3 \sum \left(m_L^2 \operatorname{Tr} \phi^2 + \lambda_3 (\operatorname{Tr} \phi^2)^2 \right), \quad \text{where } \beta = \frac{4}{a q_2^2}.$
- ► Letting $\Pi_{+} = \frac{1}{2}(\mathbb{1} + \phi/\sqrt{\phi^2})$, a U(1) link variable can be projected out as $u_i(x) = \prod_+(x) U_i(x) \prod_+(x+i).$
- of beyond the Standard Model theories involving electroweak triplet scalars. ► The phase structure depends on two dimensionless ratios,
 - $x = \frac{\lambda_3}{q_2^2}$ and $y = \frac{m_3^2}{q_2^4}$, where g_3 is the gauge coupling in 3D.
 - We focus on x = 0.35, for which the confinement-Higgs transition is of the crossover type [1].
- ▶ The monopoles give a mass to the photon-like excitation. Semi-classically [2]

$$M_{\gamma}^2 \sim \frac{n}{\pi g_3^2}, \qquad n \sim \frac{m_W^{7/2}}{g_3} \exp\left[-\frac{4\pi m_W}{g_3^2}f(\lambda_3/g_3^2)\right]$$

where n is the monopole number density that counts only widely separated monopoles, and f(z) an $\mathcal{O}(1)$ function.

The associated field-strength tensor provides a meaningful definition of the magnetic field B_i on the lattice [3].

► The magnetic monopole number density, as measured in e.g. [4], is

$$n = \frac{1}{V} \frac{g_3 a^{\frac{1}{2}}}{4\pi} \sum_{x,i} \left| B(x+i) - B_i(x) \right|$$

However, it is ultraviolet divergent due to short-lived monopole-antimonopole pairs. We renormalize it with gradient flow of the fields.

The gradient flow transforms fields towards saddle point configurations of the action, removing ultraviolet fluctuations through smoothing [5]. The smoothing radius ξ in 3D is related to the flow time t by $\xi = \sqrt{6t}$.

Snapshots of the system at different stages of gradient flow

- The smoothing leaves only widely separated monopole-antimonopole pairs (red and blue dots). Higgs field isosurfaces are shown in green.
- Full movie available at https://www2.helsinki.fi/fi/unitube/video/50be6eb8-3266-432d-a8db-3f7f6d47de4e.

Number density of monopole gas from gradient flow

Monopoles become heavier as the Higgs condensate grows, and the monopole density drops rapidly.

We measure the photon mass using a blocked correlator at non-vanishing mo-mentum. The photon is almost massless deep in the Higgs regime, where the

Mass of photon-like excitation

Left: Higgs field expectation value, converted to continuum MS.

Right: renormalized monopole density at different spacings, suggesting well-behaved $a \rightarrow 0$ limit.

► The monopoles are screened from each other at long distances. The lattice needs to be relatively big to capture this effect.

Key results: The monopole density renormalized with gradient flow has a finite continuum limit and is correlated as expected with the Higgs condensate.

monopole gas is dilute.

Key results: The photon mass squared is proportional to the monopole density, in accordance with semi-classical expectations. Furthermore, this relationship holds in the crossover region where perturbation theory cannot be relied upon. The proportionality constant depends on how much gradient flow cooling is applied.

References

M. Laine, K. Rummukainen and Kajantie, |1| K. Μ. Shaposhnikov, Nucl. Phys. B 503, 357-384 (1997) [2] A. M. Polyakov, *Nucl. Phys. B* **120**, 429-458 (1977) [3] A. Rajantie, *JHEP* **01** 088 (2006) [4] A. Hart, O. Philipsen, J. D. Stack and M. Teper, *Phys. Lett. B* **396**, 217-224 (1997) [5] M. Lüscher, *JHEP* **08** 071 (2010)