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Intro
• Nf=2+1 thermodynamic property 

• through chiral symmetric formulation
• Order of the transition
• (pseudo) critical temperature
• Location of the phase boundary
• Near the physical point

• Chiral symmetric formulation
• Ideal to treat flavor SU(2) and U(1)A properly
• Domain wall fermion (DWF) : practical choice

• DWF and chirality
• Fine lattice needed 
• Aiming for a < 0.08 fm (eventually)
• Current search domain:  0.08 < a < 0.12fm

?

?
See Poster
By Y. Nakamura



Nf=2 Möbius DWF
• Lessons learned
• Chiral symmetry important for discussing

• chiral, U(1)A problems
• Reweighting to overlap essential 
• For reweighting to be successful for DW - OV

• Fine lattice needed  (efficiency of reweighting):   𝑎 ≲ 0.1 fm
• Smoothness of configuration &  smallness of 𝑚!"#

• For reweighting to be successful in general
• Large volume is problematic
• It may not work for further finer lattices

• Expectation
• Finer the lattice, smaller 𝑚!"#
• DWF itself eventually becomes good enough
• Aiming fine lattice DWF simulation would help in any sense
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Nf=2 Möbius DWF
• Action
• Tree-level improved Symanzik gauge
• stout-smeared, scale-factor 2 Shamir

• So far studied
• U(1)A and chiral symmerty
• Topological charge
• Chiral susceptibility → Fukaya (poster)

• Simulation setup
• Fix 𝛽
• Fix 𝑁)
• Vary 𝑚



Nf=2+1
• Action: same as Nf=2
• Simulation setup (we follow most of the simulations by now)
• Fix 𝛽
• Fix 𝑁)
• Fix 𝑚#

*+)) near physical
• Vary 𝑚*

*+))

• Aiming to understand the role of chiral symmetry, U(1)A, topology
• See next talk by K. Suzuki

• ↔ fix physics and vary T in this study
• Line of Constant Physics
• Aiming to study the (pseudo) criticality w/ fixed physics



Nf=2+1 Möbius DWF
• 𝑎(𝛽)
• Using
• JLQCD T=0 lattices with 𝑡, meas.

• 𝑎=0.080, 0.055, 0.044 fm (published)
• 𝑎=0.095 fm (pilot study)

• Parameterization of Edwards et al (1998)
•
•

• Fit to #𝑎$ works well
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The c2 term is meant to absorb the lattice discretization error. But, in practice it is mostly
playing the role of absorbing the remnant RG scaling beyond two-loop, which can be seen in Fig. 2
where a/f(g2) is plotted. The variation from 11 to 13 is too large to be regarded as a discretization
error. Apart from the role of each terms one wants to check the e↵ectiveness of the formula by
looking at this figure. If the linearity is good we can use Eq. 1 to parameterize the lattice spacing.
It turns out that the linearity is marginally good. But, �2 is large. One may want to add c4â

4

term for a better interpolation.

a = c0f(g
2)(1 + c2â(g)

2 + c4â(g)
4). (5)

We shall adopt this parameterization up to â
4.

B. Quark mass

The strange and average up, down quark masses are well known. To obtain the line of constant
physics given the parameterization of the lattice spacing in the previous subsection, the strange
quark mass input is a simple and seemingly promising way. We use the relation,

m
R
q = Zmm

latt
q · a�1(�), (6)

and

m
latt
q = m

bare
q +mres, (7)

where m
bare
q is the quark mass (of flavor q) in the domain wall fermion action in lattice units and

mres is the residual quark mass due to a finite 5th dimension. We shall use MS scheme at the
renormalization scale µ = 2 GeV. We already have a(�) in Sec. IIA. Once a parameterization of
the quark mass renormalization factor Zm(�) is obtained, mlatt

q (�) may be computed.
We shall use the following numbers for the quark masses for the Nf = 2 + 1 physical point:

ms = 92 MeV (8)

ms/mud = 27.4, (9)

based on the FLAG2019 averages: ms = 92.0(1.1) and ms/mud = 27.42(12). For � � 4.17 the
residual mass is mres . 1 MeV, which is about the same size of the error in ms. Therefore we can
safely neglect the e↵ect of mres for the strange quark mass. The physical ud quark mass is larger
than the residual mass, mphys

ud > mres. However, the size is comparable.
We use Zm obtained for the three finer lattice spacings [2] and try to parameterize as a smooth

function of �. Fig. 3 shows Zm(�) and the interpolation through the data and using a method
described below, which can be extended to a bit of extrapolation to � values we may need.

Let us first determine Zm at the scale µ = a
�1 run from µ = 2 GeV, expecting the large log

e↵ect (log(aµ)) is removed. The running is performed using NNNLO in MS scheme. Resulting
Zm(a�1), which are shown as red squares, have less � dependence. One may expect polynomial in
g
2 works well to parameterize Zm(a�1). Near g2 ! 0 Zm(a�1) may be expanded as

Zm(a�1) = 1 + ĉ1g
2 + ĉ2g

4 + · · · . (10)

Therefore we adopt a fit which is an expansion in �
�1,

Zm(a�1) = 1 + c1�
�1 + c2�

�2
. (11)
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FIG. 1: Lattice spacing as a function of �.

really need to perform extra zero temperature simulations, which tends to be expensive compared
to the finite temperature simulations. Fig. 1 shows the results of the lattice spacing.

There is a method often used to parameterize the lattice spacing as a function of the gauge
coupling using two loop beta function and remnant lattice artifact proposed by SCRI:Edwards et
al [1]

a = c0f(g
2)(1 + c2â(g)

2), (1)

where

â(g)2 ⌘ [f(g2)/f(g20)]
2
, (2)

f(g2) ⌘ (b0g
2)�b1/2b20 exp

✓
� 1

2b0g2

◆
, (3)

b0 =
1

(4⇡)2

✓
11� 2

3
Nf

◆
, b1 =

1

(4⇡)4

✓
102�

38Nf

3

◆
, (4)

where g
2 = 6/�, Nf = 3, c0 and c2 are free parameters of the fit. We take the reference gauge

coupling g0 with beta value of the second finest lattice g
2
0 = 6/4.35. c0f(g2) is the scaling from

the two-loop beta function, which is scheme independent. Beyond two-loop, scheme dependence
generally appears and is not convenient for this purpose.
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FIG. 2: Lattice spacing divided by two-loop scaling as a function of an e↵ective lattice spacing squared.
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Nf=2+1 Möbius DWF
• 𝑎(𝛽) precision over the range
• Test excluding coarsest one
• 1 % diff : fit <-> measurement @𝛽=4.1
• Difference 𝑂('𝑎-) ‒ O('𝑎.) fits: good 

measure of error  (maybe overestimating)
• Full range fit 
• @ 𝛽 = 4.0 error is ~ few %
• The fit may be regarded as renormalized 

trajectory 
• Continuum limit will absorb the error
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Nf=2+1 Möbius DWF LCP
• Quark mass as function of β [fixed physics]
• We use quark mass input

• 𝑚! = 92 𝑀𝑒𝑉 (MSb 2GeV)
• ""
"#$

= 27.4 (See for example FLAG 2019)

• 𝑚#
$ = 𝑍" ⋅ (𝑎𝑚#

%&'') ⋅ 𝑎() 𝛽

• Parameterizing 𝑍! 𝛽
• Take 𝑍" 2𝐺𝑒𝑉 w/ NPR  Tomii et al 2016
• 𝑍" 2𝐺𝑒𝑉 → 𝑍"(𝑎()) NNNLO pert.

• No (large) log(𝑎𝜇)
• Should behave like 1 + 𝑑!𝑔" + 𝑑"𝑔# +⋯

• Fit 𝑍" 𝑎() with 1 + 𝑐)𝛽() + 𝑐*𝛽(*
• 𝑍" 𝑎() → 𝑍" 2𝐺𝑒𝑉 NNNLO pert.
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Simulation range
• 𝑇 − 𝛽 relation   𝑇 = 1/(𝑎𝑁$)
• Information from fixed 𝛽 simulation

• 𝑁) = 12, 14
• 𝑚 → 0 study (next talk by K. Suzuki) 

• 𝑁) = 16 :  𝑇 ∼ 150 𝑀𝑒𝑉
• 𝑁# = 32, 𝐿# = 12
• 𝑚/0

*+)) = 0.0014, 𝑚#
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1 Parameters and Trajectories

parameters:
Gauge β 4.17
strange ams 0.040
light aml 0.0020, 0.0035, 0.0050, 0.0070, 0.00100, 0.0120, 0.0150, 0.0190

(common) Ls 12
NS = 32, NT = 12, 14, 16

2 Simple Observables

Plaquette
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Figure 1: Plaquette vs. light quark mass (left) and susceptiblity of the plaquette (right).

Iteration Count of the Light Quark Solvers

Topological charge: Q2
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Figure 2: Iteration count of the light quark solver vs. light quark mass (left) and sus-
ceptiblity of the plaquette (right)
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right: NT = 16, 14, 12,
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Initial simulations on LCP

• 𝑁$ = 12 (T1)
• 𝑚 = 0.1𝑚' (a)
• 𝑁' = 24, 𝐿' = 12
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Initial simulations on LCP
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Initial simulations on LCP

• 𝑁$ = 12 (T1)
• 𝑚 = 0.1𝑚' (a)
• 𝑁' = 24, 𝐿' = 12
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Summary and outlook
• Summary
• Möbius DWF simulation for T>0 with Nt≥12

• ↔ Nt=8 by HotQCD (2012)
• Along the Line of Constant Physics
• First simulations with 𝑚 = 0.1 𝑚#, Ns/Nt=2

• Underway using Fugaku
• Outlook
• Statistics is increasing
• Measurements esp, fermionic
• Closer to physical mud
• Another lattice spacing
• Larger volume



Simulation plan
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• T2-(c)
• 𝑁) = 16
• 𝑚 = 0.1𝑚#
• 𝑁# = 32, 𝐿# = 12
• This is straight forward

• T1-(b)
• 𝑁) = 12
• 𝑚 ≃ 𝑚/0
• 𝑁# = 24, 𝐿# = 12
• Mass tuning is necessary

• 𝑚!"# ≃ 𝑚%&
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• T1-(a)
• 𝑁) = 12
• 𝑚 = 0.1𝑚#
• 𝑁# = 24, 𝐿# = 12
• Now underway


