2+1 flavor fine lattice simulation at finite temperature with domain wall fermions

S. Aoki¹, Y. Aoki²(presenter), H. Fukaya³, S. Hashimoto⁴, I. Kanamori², T. Kaneko⁴, Y. Nakamura²

1: YITP, 2: R-CCS, 3: Osaka, 4: KEK

Lattice 2021 June 28, 2021

acknowledgements

- Codes used:
	- HMC
		- Grid / Regensburg \rightarrow poster by N. Meyer
	- Measurements:
		- BQCD
		- Bridge++ (Wilson multigrid on Fugaku \rightarrow talk by I.Kanamori (Wed))
- MEXT program

成果創出加速プログラム

Program for Promoting Researches on the Supercomputer Fugaku

- Simulation for basic science: from fundamental laws of particles to creation of nuclei
- Computers
	- Oakforest-PACS
	- Polaire and Grand Chariot at Hokkaido University
	- supercomputer Fugaku provided by the RIKEN Center for Computational Science
- Fugaku: software / performance \rightarrow plenary talk by Y. Nakamura (Fri)

Intro

- $N_f=2+1$ thermodynamic property
	- through chiral symmetric formulation
	- Order of the transition
	- (pseudo) critical temperature
	- Location of the phase boundary
	- Near the physical point
- Chiral symmetric formulation
	- Ideal to treat flavor SU(2) and U(1)_A properly
	- Domain wall fermion (DWF) : practical choice
- DWF and chirality
	- Fine lattice needed
	- Aiming for $a < 0.08$ fm (eventually)
	- Current search domain: $0.08 < a < 0.12$ fm

N_f=2 Möbius DWF

- Lessons learned
	- Chiral symmetry important for discussing
		- chiral, $U(1)_{A}$ problems
	- Reweighting to overlap essential
	- For reweighting to be successful for DW OV
		- Fine lattice needed (efficiency of reweighting): $a \le 0.1$ fm
		- Smoothness of configuration & smallness of m_{res}
	- For reweighting to be successful in general
		- Large volume is problematic
		- It may not work for further finer lattices
- Expectation
	- Finer the lattice, smaller m_{res}
	- DWF itself eventually becomes good enough
	- Aiming fine lattice DWF simulation would help in any sense

N_f=2 Möbius DWF

- Action
	- Tree-level improved Symanzik gauge
	- stout-smeared, scale-factor 2 Shamir
- So far studied
	- $U(1)_{A}$ and chiral symmerty
	- Topological charge
	- Chiral susceptibility \rightarrow Fukaya (poster)
- Simulation setup
	- Fix β
	- Fix N_t
	- Vary m

$N_f = 2 + 1$

- Action: same as $N_f=2$
- Simulation setup (we follow most of the simulations by now)
	- Fix β
	- Fix N_t
	- Fix m^{latt}_s near physical
	- Vary m_l^{latt}
	- Aiming to understand the role of chiral symmetry, $U(1)_A$, topology
	- See next talk by K. Suzuki
- $\bullet \leftrightarrow$ fix physics and vary T in this study
	- Line of Constant Physics
	- Aiming to study the (pseudo) criticality w/ fixed physics

- $a(\beta)$
- \bullet Using \bullet the finite temperature simulations. \bullet
- JLQCD T=0 lattices with t_0 meas. \blacksquare If \cap \cap \top \cap \cap lattices with typace $c \to c$ coupling two loops by loop by $c \to c$. The remainder $c \to c$ is the set of $c \to c$. The scale $c \to c$
- $a = 0.080, 0.055, 0.044$ fm (published) $\frac{18.6}{0.6}$ $\frac{0.8}{10.6}$
- \cdot $a=0.095$ fm (pilot study)
- Parameterization of Edwards et al (1998) α 0.000 iiii (pilot study)
a Dexempeterization of Edwards at al (1000)
	- $a = c_0 f(g^2)(1 + c_2 \hat{a}(g)^2 + c_4 \hat{a}(g))$

•
$$
\hat{a}(g)^2 \equiv [f(g^2)/f(g_0^2)]^2
$$
,
\n $f(g^2) \equiv (b_0 g^2)^{-b_1/2b_0^2} \exp\left(-\frac{1}{2b_0 g^2}\right)$,
\n $b_0 = \frac{1}{(4\pi)^2} \left(11 - \frac{2}{3}N_f\right)$, $b_1 = \frac{1}{(4\pi)^4} \left(102 - \frac{38N_f}{3}\right)$,
\n $b_0 = \frac{1}{(4\pi)^2} \left(11 - \frac{2}{3}N_f\right)$, $b_1 = \frac{1}{(4\pi)^4} \left(102 - \frac{38N_f}{3}\right)$,
\n $b_0 = \frac{1}{(4\pi)^2} \left(11 - \frac{2}{3}N_f\right)$

• Fit to \hat{a}^4 works well • Fit to \hat{a}^4 works well physical the parameterization of the parameterization of the strange in coupling *g*⁰ with beta value of the second finest lattice *g*²

$N_f = 2 + 1$ Möbius DWF

- $a(\beta)$ precision over the range
- Test excluding coarsest one
	- 1 % diff : fit <-> measurement $@B=4.1$
	- Difference $O(\hat{a}^4) O(\hat{a}^2)$ fits: good measure of error (maybe overestimating)
- Full range fit
	- $\omega \beta = 4.0$ error is \sim few %
	- The fit may be regarded as renormalized trajectory
		- Continuum limit will absorb the error

Nf =2+1 Möbius DWF LCP

- Quark mass as function of β [fixed physics]
- We use quark mass input
	- $m_s = 92 \text{ MeV}$ (MSb 2GeV)
	- $\mathcal{m}_\mathcal{S}^S$ m_{ud} $= 27.4$ (See for example FLAG 2019)
	- $m_q^R = Z_m \cdot (am_q^{latt}) \cdot a^{-1} (\beta)$
- Parameterizing $Z_m(\beta)$
	- Take $Z_m(2 GeV)$ w/ NPR Tomii et al 2016
	- $Z_m(2GeV) \rightarrow Z_m(a^{-1})$ NNNLO pert.
		- No (large) $log(a\mu)$
		- Should behave like $1 + d_1 g^2 + d_2 g^4 + \cdots$
	- Fit $Z_m(a^{-1})$ with $1 + c_1\beta^{-1} + c_2\beta^{-2}$
	- $Z_m(a^{-1}) \rightarrow Z_m(2 \text{GeV})$ NNNLO pert.

Simulation range 1 Parameters and Trajectories

- $T \beta$ relation $T = 1/(aN_t)$ Gauge β 4.17 \bullet T – β relation T = 1/(aN,
- Information from fixed β simulation $\ln f_0$ american fugue fixed Q_0 , i.e. $\ln f_1$ o.o. \bullet imonitation from fixed ρ s
- $N_t = 12, 14$ • $m \rightarrow 0$ study (next talk by K. Suzuki) • $N_t = 16$: $T \sim 150 \; MeV$ • $N_s = 32, L_s = 12$
	- $m_{ud}^{latt} = 0.0014$, $m_s^{latt} = 0.0388$

$$
\bullet N_t = 12 \qquad (\text{T1})
$$

$$
\bullet m = 0.1 m_s \quad \text{(a)}
$$

•
$$
N_s = 24
$$
, $L_s = 12$

•
$$
N_t = 12
$$
 (T1)
\n• $m = 0.1m_s$ (a)

•
$$
N_s = 24
$$
, $L_s = 12$

Summary and outlook

- Summary
	- Möbius DWF simulation for $T>0$ with $N_t\geq 12$
		- \leftrightarrow N_t=8 by HotQCD (2012)
	- Along the Line of Constant Physics
	- First simulations with $m = 0.1 m_s$, $N_s/N_t = 2$
		- Underway using Fugaku
- Outlook
	- Statistics is increasing
	- Measurements esp, fermionic
	- Closer to physical mud
	- Another lattice spacing
	- Larger volume

Simulation plan

- $T1-(a)$
	- $N_t = 12$
	- $m = 0.1 m_s$
	- $N_s = 24$, $L_s = 12$
	- Now underway
- $T2-(c)$
	- $N_t = 16$
	- $m = 0.1 m_s$

•
$$
N_s = 32, L_s = 12
$$

• This is straight forward

- $T1-(b)$
	- $N_t = 12$
	- $m \simeq m_{ud}$
	- $N_s = 24$, $L_s = 12$
	- Mass tuning is necessary
		- $m_{res} \simeq m_{ud}$

