2+1 flavor fine lattice simulation at finite temperature with domain wall fermions

S. Aoki¹, Y. Aoki²(presenter), H. Fukaya³, S. Hashimoto⁴, I. Kanamori², T. Kaneko⁴, Y. Nakamura²

1: YITP, 2: R-CCS, 3: Osaka, 4: KEK

Lattice 2021 June 28, 2021

acknowledgements

- Codes used:
 - HMC
 - Grid / Regensburg \rightarrow poster by N. Meyer
 - Measurements:
 - BQCD
 - Bridge++ (Wilson multigrid on Fugaku → talk by I.Kanamori (Wed))
- MEXT program

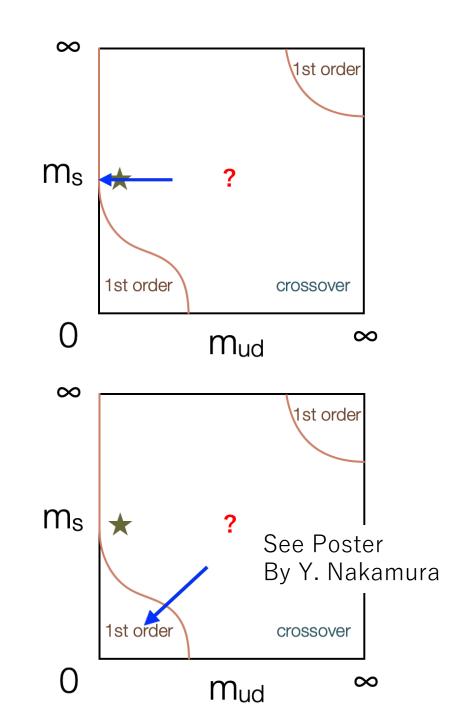
成果創出加速プログラム

Program for Promoting Researches on the Supercomputer Fugaku

- Simulation for basic science: from fundamental laws of particles to creation of nuclei
- Computers
 - Oakforest-PACS
 - Polaire and Grand Chariot at Hokkaido University
 - supercomputer Fugaku provided by the RIKEN Center for Computational Science
- Fugaku: software / performance \rightarrow plenary talk by Y. Nakamura (Fri)

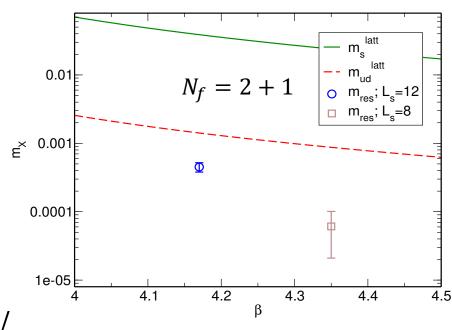
Intro

- N_f=2+1 thermodynamic property
 - through chiral symmetric formulation
 - Order of the transition
 - (pseudo) critical temperature
 - Location of the phase boundary
 - Near the physical point
- Chiral symmetric formulation
 - Ideal to treat flavor SU(2) and U(1)_A properly
 - Domain wall fermion (DWF) : practical choice
- DWF and chirality
 - Fine lattice needed
 - Aiming for a < 0.08 fm (eventually)
 - Current search domain: 0.08 < a < 0.12fm



N_f=2 Möbius DWF

- Lessons learned
 - Chiral symmetry important for discussing
 - chiral, U(1)_A problems
 - Reweighting to overlap essential
 - For reweighting to be successful for DW OV
 - Fine lattice needed (efficiency of reweighting): $a \leq 0.1$ fm
 - Smoothness of configuration & smallness of m_{res}
 - For reweighting to be successful in general
 - Large volume is problematic
 - It may not work for further finer lattices
- Expectation
 - Finer the lattice, smaller m_{res}
 - DWF itself eventually becomes good enough
 - Aiming fine lattice DWF simulation would help in any sense

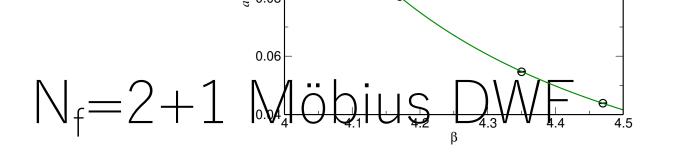


N_f=2 Möbius DWF

- Action
 - Tree-level improved Symanzik gauge
 - stout-smeared, scale-factor 2 Shamir
- So far studied
 - $U(1)_A$ and chiral symmetry
 - Topological charge
 - Chiral susceptibility \rightarrow Fukaya (poster)
- Simulation setup
 - Fix β
 - Fix N_t
 - Vary m

$N_{f} = 2 + 1$

- Action: same as $N_f=2$
- Simulation setup (we follow most of the simulations by now)
 - Fix *β*
 - Fix *N*_t
 - Fix m_s^{latt} near physical
 - Vary m_l^{latt}
 - Aiming to understand the role of chiral symmetry, $U(1)_A$, topology
 - See next talk by K. Suzuki
- \leftrightarrow fix physics and vary T in this study
 - Line of Constant Physics
 - Aiming to study the (pseudo) criticality w/ fixed physics

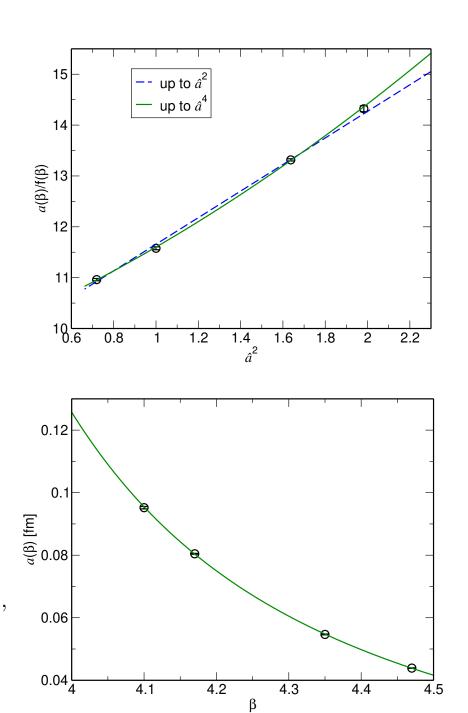


- $a(\beta)$
- Using
 - JLQCD T=0 lattices with t_0 meas.
 - *a*=0.080, 0.055, 0.044 fm (published)
 - *a*=0.095 fm (pilot study)
 - Parameterization of Edwards et al (1998)
 - $a = c_0 f(g^2)(1 + c_2 \hat{a}(g)^2 + c_4 \hat{a}(g)^4).$

•
$$\hat{a}(g)^2 \equiv [f(g^2)/f(g_0^2)]^2,$$

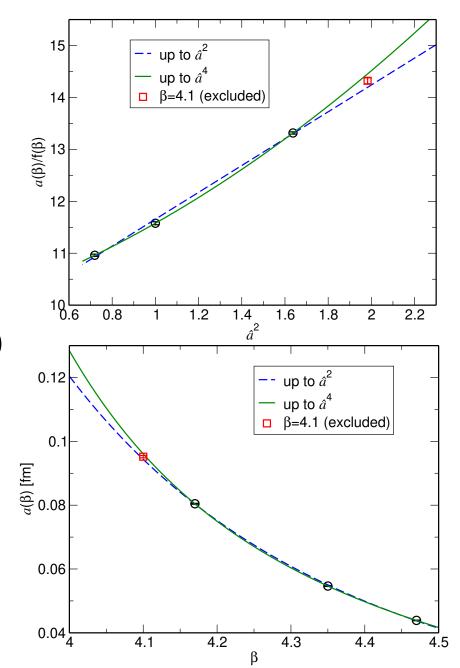
 $f(g^2) \equiv (b_0 g^2)^{-b_1/2b_0^2} \exp\left(-\frac{1}{2b_0 g^2}\right),$
 $b_0 = \frac{1}{(4\pi)^2} \left(11 - \frac{2}{3}N_f\right), \quad b_1 = \frac{1}{(4\pi)^4} \left(102 - \frac{38N_f}{3}\right)$

• Fit to \hat{a}^4 works well



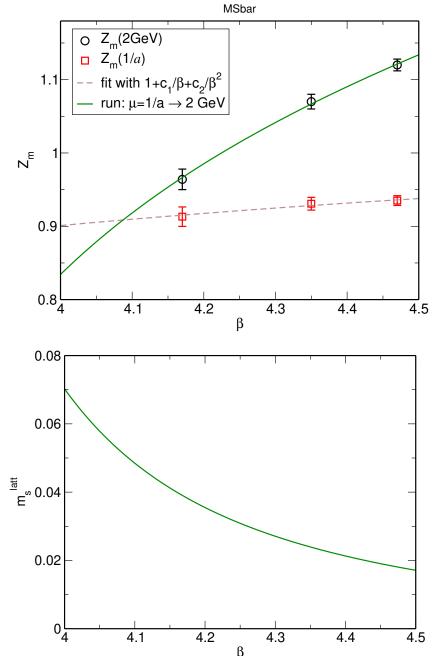
N_f=2+1 Möbius DWF

- $a(\beta)$ precision over the range
- Test excluding coarsest one
 - 1 % diff : fit <-> measurement @ β =4.1
 - Difference $O(\hat{a}^4) O(\hat{a}^2)$ fits: good measure of error (maybe overestimating)
- Full range fit
 - @ $\beta = 4.0$ error is ~ few %
 - The fit may be regarded as renormalized trajectory
 - Continuum limit will absorb the error



N_f=2+1 Möbius DWF LCP

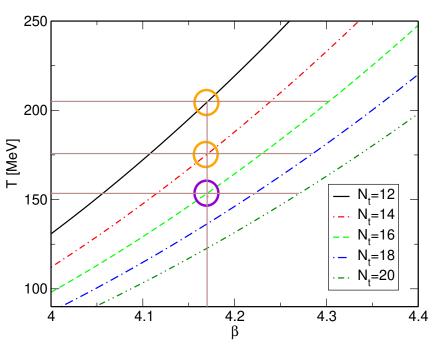
- Quark mass as function of β [fixed physics]
- We use quark mass input
 - $m_s = 92 MeV$ (MSb 2GeV)
 - $\frac{m_s}{m_{ud}} = 27.4$ (See for example FLAG 2019)
 - $m_q^R = Z_m \cdot (am_q^{latt}) \cdot a^{-1}(\beta)$
- Parameterizing $Z_m(\beta)$
 - Take $Z_m(2GeV)$ w/ NPR Tomii et al 2016
 - $Z_m(2GeV) \rightarrow Z_m(a^{-1})$ NNNLO pert.
 - No (large) $log(a\mu)$
 - Should behave like $1 + d_1g^2 + d_2g^4 + \cdots$
 - Fit $Z_m(a^{-1})$ with $1 + c_1\beta^{-1} + c_2\beta^{-2}$
 - $Z_m(a^{-1}) \rightarrow Z_m(2GeV)$ NNNLO pert.

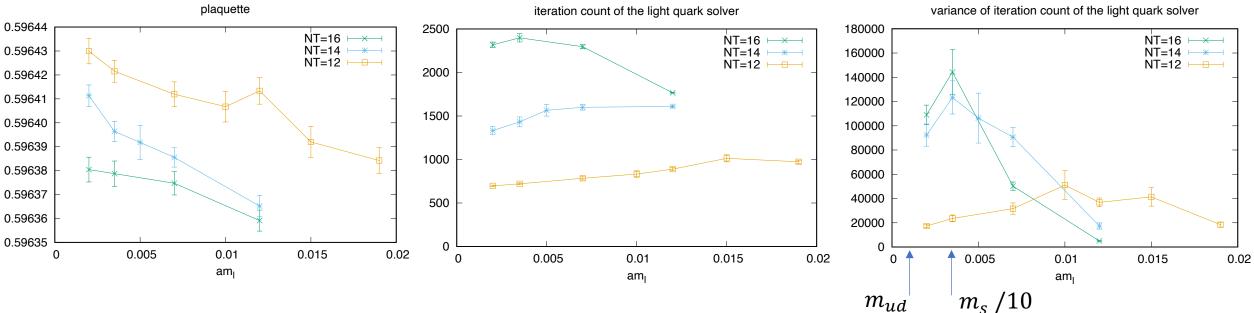


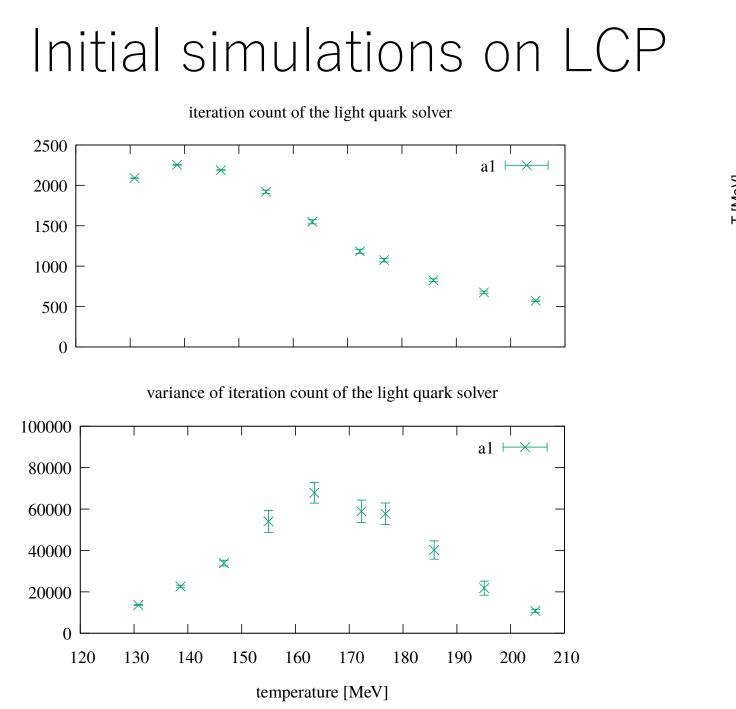
Simulation range

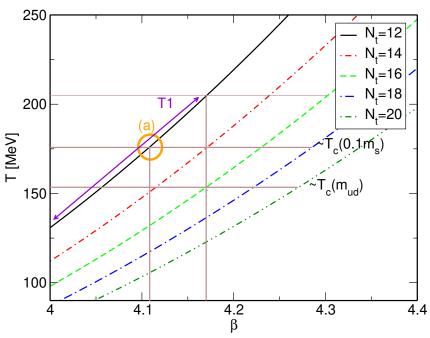
- $T \beta$ relation $T = 1/(aN_t)$
- Information from fixed β simulation

$$N_t = 12, 14$$
 $m \rightarrow 0$ study (next talk by K. Suzuki)
 $N_t = 16$: T ~ 150 MeV
 $N_s = 32, L_s = 12$
 $m_{ud}^{latt} = 0.0014, m_s^{latt} = 0.0388$



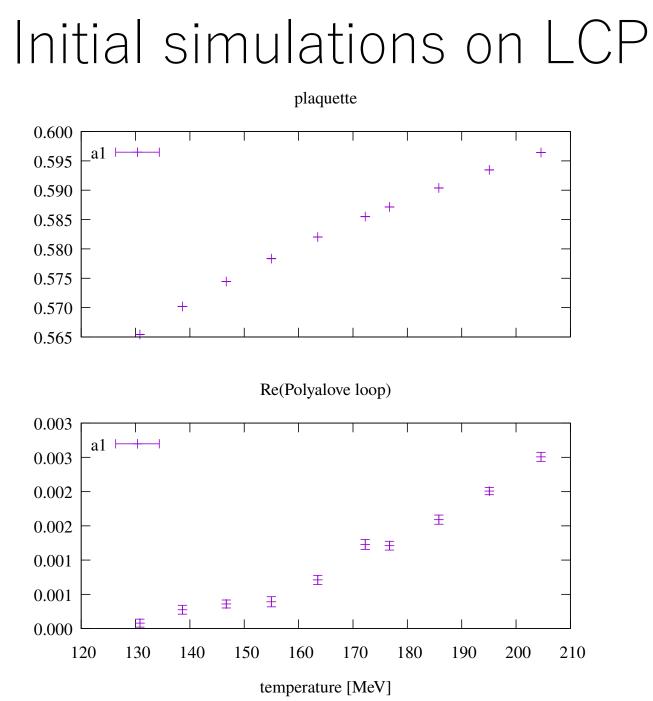


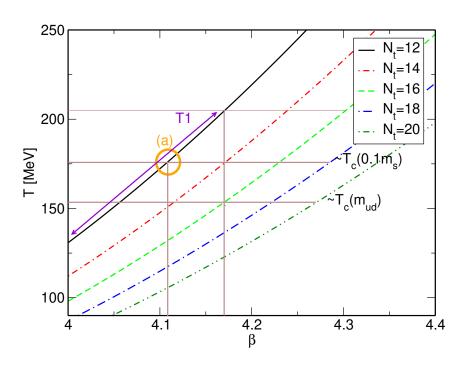




•
$$N_t = 12$$
 (T1)
• $m = 0.1m_s$ (a)

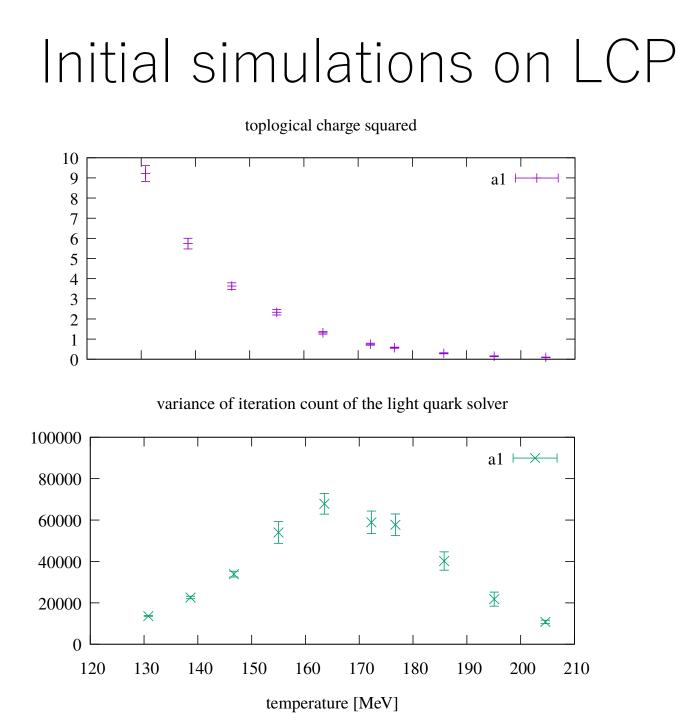
•
$$N_s = 24, L_s = 12$$

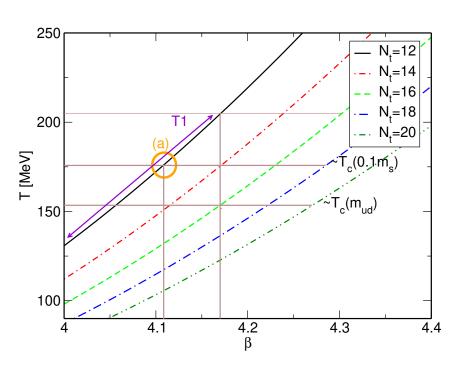




•
$$N_t = 12$$
 (T1)
• $m = 0.1m_s$ (a)

•
$$N_s = 24, L_s = 12$$





- $N_t = 12$ (T1) • $m = 0.1m_s$ (a)
- $N_s = 24, L_s = 12$

Summary and outlook

- Summary
 - Möbius DWF simulation for T>0 with $N_t\!\!\geq\!\!12$
 - \leftrightarrow N_t=8 by HotQCD (2012)
 - Along the Line of Constant Physics
 - First simulations with $m=0.1~m_s$, $N_s/N_t=2$
 - Underway using Fugaku
- Outlook
 - Statistics is increasing
 - Measurements esp, fermionic
 - Closer to physical mud
 - Another lattice spacing
 - Larger volume

Simulation plan

- T1-(a)
 - $N_t = 12$
 - $m = 0.1 m_s$
 - $N_s = 24, L_s = 12$
 - Now underway

- T2-(c)
 - $N_t = 16$
 - $m = 0.1 m_s$

•
$$N_s = 32, L_s = 12$$

• This is straight forward

- T1-(b)
 - $N_t = 12$
 - $m \simeq m_{ud}$
 - $N_s = 24, L_s = 12$
 - Mass tuning is necessary
 - $m_{res} \simeq m_{ud}$

