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Three key interrelated questions

What is the physical reason finite density QCD is hard? 

There is a fundamental change in the system where the transfer matrix no longer 
has real eigenvalues and orthogonal eigenvectors. This behavior is associated with 
a generalized PT symmetry, and non-Hermitian behavior. The sign problem is a 
manifestation of this change, but need not be present.


What new phenomena occur at finite density? 

Spectral positivity is lost, and patterned phases may emerge. Computational 
complexity, e.g. NP-hardness, is associated with the complex structure of 
equilibrium states.


How do we know simulations are getting the physics right? 

Tractable models with known properties obtained via simulation and analytical 
methods provide key tests of proposed new methods.
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The sign problem and  symmetryPT

• PT symmetry is motivated by the  field theory associated with the 
Yang-Lee edge singularity


• In PT-symmetric QM models,   and  while 
 and   so  is invariant.


• Eigenvalues of  are real or in conjugate pairs:




• If all eigenvalues are real, system is equivalent to a Hermitian 
Hamiltonian

iϕ3

P : x → − x p → − p
T : t → − t i → − i ix3

H
HPT E⟩ = PTH E⟩ = PTE E⟩ = E*PT E⟩
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H = p2 − (ix)N (N real)

Bender and Boettcher, PRL 80 (1998) 5243-5246

• Eigenvalues of the transfer matrix are real or in conjugate pairs:

• If all eigenvalues of the transfer matrix are real, system is equivalent to 

a conventional lattice model under a similarity transformation

• Spectral positivity is violated if the transfer matrix has complex 

eigenvalues.

• Real representations always exist, but are not always positive

PT Symmetry and Quantum Mechanics 

PT Symmetry and Lattice Field Theory

Meisinger and Ogilvie, 1208.5077

Bender, 0501052 



Finite density QCD and related models have a generalized PT symmetry

S = − J∑
⟨jk⟩

(Tr Pj Tr P+
k + Tr P+

j Tr Pk) − H∑
j

(eβμTr Pj + e−βμTr P+)

• Model exhibits Svetitsky-Jaffe universality. 

• The nearest-neighbor interaction induced by plaquettes

• The complex magnetic term due to heavy quarks at finite density


• Spin model has a  symmetry, a generalized   symmetry:

• Charge conjugation : 

• Complex conjugation :  

•  is invariant under  symmetry.

CK PT
C P → P*

K aP → a*P*
S CK

A prototypical Polyakov loop spin model at finite density



An algorithm for simulating PT-symmetric field theories based on duality

S(χ) = ∑
x

[ 1
2

(∂μχ(x))2 + V(χ(x)) − ih(x)χ(x)]

exp [−
1
2 (∂μχ(x))

2] = ∫ dπμ(x)exp [ 1
2

πμ(x)2 + iπμ(x)∂μχ(x)]
exp [−V (χ (x))] = ∫ dχ̃(x)exp [−Ṽ (χ̃ (x)) + iχ̃(x)χ(x)]

Dual weight positivity implies not only 
that standard lattice simulation 
methods can be be applied but also 
that mean field theory and other 
analytical methods can be used.

V(χ)* = V(−χ) symmetry:PT

S̃ = ∑
x

[ 1
2

π2
μ(x) + Ṽ(∂ ⋅ π(x) − h(x))]

If dual weight positivity holds 
             

the functional integral is manifestly positive and the 
dual action  is simulatable by standard methods.

w̃[ χ̃(x)] ≡ exp [−Ṽ( χ̃(x))] ≥ 0

S̃



Disorder Lines and Sinusoidal Modulation

Disorder lines mark the boundary between 
exponential decay of propagators and 
sinusoidally-modulated exponential 
decay. The appearance of disorder lines 
and regions of sinusoidal modulation 
follows directly in -symmetric theories 
from the existence of conjugate 
eigenvalue pairs

PT
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Ogilvie and Medina, 1811.11112 

LE(ϕ, χ) =
1
2 (∇ϕ)2 +

1
2 (∇χ)2 +

1
2

m2
ϕϕ2 +

1
2

m2
χ χ2 − igϕχ

Simple mass mixing model

The first suggestion that oscillatory 
behavior might be observed in finite 
density QCD was made by Apoorva 
Patel (1111.0177, 1210.5907), 
based on his flux tube model, which 
is a real form of the complex  
spin model.

Z(3)



Disorder lines and sinusoidal modulation in finite-density QCD
The evidence for sinusoidally-modulated exponential decay in finite-density QCD is good:

TrP TrP

eβμ

TrP† TrP†

e-βμ
Nishimura, Ogilvie and Pangeni, 1512.09131

Phenomenological models such as Polyakov-
Nambu-Jona Lasinio (PNJL) models

Nishimura, Ogilvie and Pangeni 1401.7982, 
1411.4959

Strong-coupling lattice expansions

Akerlund and de Forcrand, 1602.02925
Simulation and mean field theory for Z(3)



Pattern Formation                                                       (Schindler et al. 1906.07288)

• Complex action 

      


• Nonlocal real action (“attractive vs. repulsive” forces) 

      


• Local real action (simulated form) 

      


• Higher derivative expansion (Lifshitz mechanism for pattern formation) 

       

L(ϕ, χ) =
1
2

(∇μϕ)2 +
1
2

(∇μ χ)2 +
1
2

m2
χ χ2 − igϕχ + λ(ϕ2 − v2)2 + hϕ

Seff = ∑
x

[ 1
2

(∂μϕ(x))2 + λ(ϕ2 − v2)2 + hϕ] +
g2

2 ∑
x,y

ϕ(x)Δ(x − y)ϕ(y)

S̃ = ∑
x

1
2

[∇μϕ(x)]2 +
1
2

π2
μ(x) + (∇ ⋅ π − gϕ)2

2m2
χ

+ λ(ϕ2 − v2)2 + hϕ

Seff ≈ ∑
x

[ 1
2

(∂μϕ(x))2 + λ(ϕ2 − v2)2 + hϕ] +
g2

2m2
χ ∑

x [ϕ(x)2 −
1

m2
χ

(∂μϕ(x))2]

Equivalent forms of the Yukawa-frustrated  actionϕ4



Z(N) spin models and pattern formation

Chiral  Devil’s FlowerZ(3) ℋ = −
J
2 ∑

⟨jν⟩
(zjz*j+ ̂ν + z*j zj+ ̂ν)Basic model

Chemical potential

Chiral Z(N) model ⇒ e2πiΔ/Nzjz*
j+ ̂d

+ e−2πiΔ/Nz*j zj+ ̂d

The chiral model has an intricate low-temperature (large J) structure with patterned phases. These may be 
commensurate or incommensurate, depending on d. Lattice duality maps between classes of Hamiltonians, 
complex and real, with non-Hermitian transfer matrices. The 2d case is clear: we are looking at the universality 
class of 2d Z(N) parafermions and the patterned behavior in the chiral model corresponds to states with nonzero 
N-ality realized as kinks.

Yeomans and Fisher, 1984

J → J̃ =
N2

4π2J
μ → μ̃ = −

2πiJμ
N

The Villain action Z(N) model has a simple dual form in all d.

⇒ eμzjz*
j+ ̂d

+ e−μz*j zj+ ̂d

Meisinger and Ogilvie, 1306.1495, 1311.5515



Conclusions

• Mass mixing models (1811.11112)

• Yukawa-frustrated  model (1906.07288, 

Schindler’s talk)

• Heavy-fermion QCD-like models (Schindler’s talk)

• Universality class of  (Schindler, Schindler and 

Ogilvie, in progress)

• Non-unitary minimal conformal models (see 

Dotsenko and Fateev, 1984)


• Affine Toda models (see Hollowood, 1992)

•  models (see also Fring et al. 2004.00723, 

2006.02718, 2007.15425, 2103.13519)

• Time-dependent phenomena in heavy-ion physics 

(1906.07288; in progress)

• Connection to mesonic Lifshitz instabilities and chiral 

spirals (in progress; see also Pisarski, 2005.00045)

ϕ4

iϕ3

SU(N)

• There is a fundamental change in the system where the transfer matrix no longer has real eigenvalues 
and orthogonal eigenvectors. This behavior is associated with a generalized PT symmetry, and non-
Hermitian behavior. The sign problem is a manifestation of this change, but need not be present.


• Spectral positivity is lost, and patterned phases may emerge. Computational complexity, e.g. NP-
hardness, is associated with the complex structure of equilibrium states.


• Tractable models with known properties obtained via simulation and analytical methods provide key 
tests of proposed new methods.

Finite density QCD? Not yet, but here is a snapshot of our pipeline:



Computational complexity
The well-known work of Troyer and Wiese (PRL 2005) shows that 
the sign problem of fermionic many-body systems is NP-hard by 
showing its equivalence to finding the ground state of a random-
bond Ising model

It has been proposed that scalar field theory models with long-range 
interactions (Schmalian and Wolynes, PRL 2001) and higher-derivative 
interactions (Westfahl et al, Chem. Phys. Lett 2002) can model glassy 
behavior, a prototypical NP-hard problem.

Computational complexity in such systems has its origins in the complexity 
of the ground states and equilibrium states of the systems, in particular in 
spatial structure.

Seff = ∑
x

[ 1
2

(∂μϕ(x))2 + λ(ϕ2 − v2)2 + hϕ] +
g2

2 ∑
x,y

ϕ(x)Δ(x − y)ϕ(y) Δ̃(k) =
1
k2


