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Motivation
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FIG. 1: (Color online) Schematic view of the charge separa-
tion along the system orbital momentum. The orientation of
the charge separation fluctuates in accord with the sign of the
topological charge. The direction of the orbital momentum L,
and that of the magnetic field B, is indicated by an arrow.

system orbital angular momentum, with negative par-
ticles flowing oppositely to the positive particles. The
magnetic field and the angular momentum are normal to
the plane containing the trajectories of the two collid-
ing ions. This plane, called the reaction plane, can be
found experimentally in each collision by observation of
the azimuthal distribution of produced particles in that
event.

FIG. 2: (Color online) Schematic view of the transverse plane
indicating the orientation of the reaction plane and particle
azimuths relative to that plane. The colliding nuclei are trav-
eling into and out of the figure.

When two heavy ions collide with a finite impact pa-
rameter, the probability for particles to be emitted in
a given azimuthal direction is often described with a
Fourier decomposition [17]:

dN↵

d�
/ 1 + 2v1,↵ cos(��) + 2 v2,↵ cos(2��) + ... ,(1)

where �� = (�� RP ) is the particle azimuthal direction
relative to the reaction plane, as shown in Fig. 2. v1 and
v2 are coe�cients accounting for the so-called directed
and elliptic flow, respectively, and ↵ indicates the parti-
cle type. They depend on the impact parameter of the
colliding nuclei, the particle type (⇡, K, p, ...), transverse
momentum (pt), and pseudorapidity (⌘) of the produced
particles. For collisions of identical nuclei, symmetry re-
quires v1 to be an odd function of rapidity and v2 to be
an even function of rapidity. Measurements (for a re-
view and references, see [18]) have found that, at RHIC,
v1 is quite small at mid-rapidity; typically, |v1| < 0.005
for �1 < ⌘ < +1. In contrast, v2 is found to be siz-
able and positive. In Au+Au collisions at

p
sNN= 200

GeV, for unidentified charged hadrons, v2 reaches 0.25
for pt ⇠ 3 GeV/c, and 0.06 when integrated over all pt.
Phenomenologically, the charge separation due to a do-

main with a given sign of the topological charge can be
described by adding P-odd sine terms to the Fourier de-
composition Eq. 1 [19]:

dN↵

d�
/ 1 + 2v1,↵ cos(��) + 2 v2,↵ cos(2��) + ...

+ 2a1,↵ sin(��) + 2 a2,↵ sin(2��) + ... , (2)

where the a parameters describe the P-violating e↵ect.
Equation 2 describes the azimuthal distribution of par-
ticles of a given transverse momentum and rapidity and,
like the flow coe�cients, a coe�cients depend on trans-
verse momentum and rapidity of the particles. In addi-
tion, they depend also on the rapidity (position) of the
domain. One expects that only particles close in rapidity
to the domain position are a↵ected. According to the
theory, the signs of a coe�cients vary following the fluc-
tuations in the domain’s topological charge. If the par-
ticle distributions are averaged over many events, then
these coe�cients will vanish because the distributions
are averaged over several domains with di↵erent signs
of the topological charge. However, the e↵ect of these
domains on charged particle correlations will not van-
ish in this average, as discussed below. In this analysis
we consider only the first harmonic coe�cient a1, which
is expected to account for most of the e↵ect although
higher harmonics determine the exact shape of the dis-
tribution. For brevity we will omit the harmonic number,
and write a↵ = a1,↵. The index ↵ takes only two values,
+ and �, for positively and negatively charged particles
respectively.
The e↵ects of local parity violation cannot be signifi-

cantly observed in a single event because of the statistical
fluctuations in the large number of particles, which are
not a↵ected by the P-violating fields. The average of a↵
over many events, ha↵i, must be zero. The observation
of the e↵ect is possible only via correlations, e.g. mea-
suring ha↵a�i with the average taken over all events in
a given event sample. The correlator ha↵a�i is, however,
a P-even quantity, and an experimental measurement of
this quantity may contain contributions from e↵ects un-
related to parity violation. The correlator ha↵a�i can be
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eB ⇠ O(10)m2
⇡
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LHC:

eB ⇠ O(1)m2
⇡

<latexit sha1_base64="ei9L4Lex5Dl2dJFAIn/P48JnMBM="></latexit>

A. Bzdak, etc., Phys. Rev. Lett. 110, 192301 (2013).
J. Bloczynski, etc., Phys. Lett. B 718, 1529-1535 (2013).

V. Skokov, etc., Int.J.Mod.Phys.A 24 (2009) 5925-5932

Heavy ion collision

Figure 10. The deconfinement transition temperature against the background magnetic field. The results
of our full lattice QCD simulations (white background) are complemented by the prediction (gray background)
based on the results corresponding to the B ! 1 limit and on the extrapolation of the light quark susceptibility
peak to high magnetic fields (see the text).

the case, note that by varying the anisotropy parameter , one can continuously deform the anisotropic
theory to usual pure gauge theory, as was demonstrated in Fig. 6. Furthermore, the isotropic pure
gauge theory can be thought of as QCD with infinitely heavy quarks and thus can be continuously
transformed into full QCD by increasing the inverse quark masses from zero to their physical values.
Thus, the transition we identified at B ! 1 is indeed the same deconfinement transition that occurs
at low magnetic fields.

Let us highlight that according to this discussion, having a decreasing deconfinement transition
temperature is actually natural to QCD. Furthermore, since the B ! 1 limit is independent of the
quark masses5, a similar reduction of Tc by the magnetic field should also take place in QCD with
heavier-than-physical quarks. However, in the latter case this reduction most probably follows an
initial increase in the transition temperature, cf. Refs. [5, 35]. Indeed, recent lattice results employing
overlap fermions and pion masses of about 500 MeV indicate inverse catalysis to occur around the
transition temperature at the magnetic field eB ⇡ 1.3 GeV2 [8].

Finally, we note that magnetic fields well above the strength (5.1) are predicted to be generated
during the electroweak phase transition in the early universe [36]. If these fields remain strong enough
until the QCD epoch, the emerging first-order phase transition might have several exciting consequences.
Via supercooling, bubbles of the confined phase can be formed as the temperature drops below Tc,
leading to large inhomogeneities, important for nucleosynthesis [37]. Collisions between the bubbles
can also lead to the emission of gravitational waves and, thus, leave an imprint on the primordial
gravitational spectrum [38]. An absence of such signals, in turn, would imply an upper limit for the
strength of the primordial magnetic fields.
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T-eB plane

①  Quantities to detect magnetic fields in Heavy-Ion collision 
②  Possible signatures for a critical end point in T-eB plane
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Conserved charge number fluctuations
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Z(T, V ) =

Z
[DU ] (detMs[U ])1/4 (detMu[U ])1/4 (detMd[U ])1/4 e�SG[U ]

Accessible 
from lattice calculation
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p

T 4
=

1

V T 3
lnZ (T, µu, µd, µs)

ˆ�uds
ijk =

@i+j+kp/T 4

@ (µu/T )
i @ (µd/T )

j @ (µs/T )
k

ˆ�BQS
ijk =

@i+j+kp/T 4

@ (µB/T )
i @ (µQ/T )

j @ (µS/T )
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�̂BQS
ijk =

@i+j+kp/T 4

@ (µB/T )
i @ (µQ/T )

j @ (µS/T )
k

���µB,Q,S = 0
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�̂uds
ijk =

@i+j+kp/T 4

@ (µu/T )
i @ (µd/T )

j @ (µs/T )
k

���µu,d,s = 0

HotQCD Collaboration Phys.Rev.D 86 (2012) 034509
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Ideal gas limit
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At eB=0: 
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p

T 4
=

8⇡2

45
+

X

f=u,d,s

3|qf |B
⇡2T 2

"
⇡2

12
+

µ̂2
f

4
+ 2

p
2|qf |B
T

1X

l=1

p
l

1X

k=1

(�1)k+1

k
cosh (kµ̂f )⇥K1

 
k
p
2|qf |Bl

T

!#

At eB=/=0: 

<latexit sha1_base64="L0kgVS6hA/VA4T/moHl80YZY8LM="></latexit>

p

T 4
=

8⇡2

45
+

7⇡2

20
+

X

f=u,d,s


1

2
µ̂2
f +

1

4⇡2
µ̂4
f

�
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"2 = m2 + |~p|2
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at eB 6= 0),

pM/B
c = ⌥

|qi|BT
2⇡2

siX

sz=�si

1X

l=0

Z 1

0

dpz ln
h
1⌥ e�(Ec�µi)/T

i
,

(5)

pM/B
n = ⌥

diT
2⇡2

Z 1

0

dp|~p|2 ln
h
1⌥ e�(En�µi)/T

i
, (6)

respectively. Here Ec =
p

p2z +m2
i + 2|qi|B(l + 1/2� sz)

and En =
p

m2
i + |~p|2 denote the energy levels of the

charged and neutral particles with momentum ~p =
(px, py, pz), respectively. qi, mi, si and di are the charge,
mass, spin and degeneracy factor of the particle i, B is
the magnitude of magnetic field pointing along the z di-
rection, l denotes the Landau levels, and µi = µBBi +
µQQi+µSSi with Bi, Qi and Si the baryon number, charge
and strangeness of the particle i, respectively. Here “+”
in “⌥”corresponds to the case for mesons (si is integer)
while “�” for baryons (si is half-integer).

After integrating out the momentum we arrive at the
analytical expressions of the pressure 1,

pM/B
c

T 4
=

|qi|B
2⇡2T 3

siX

sz=�si

1X

l=0

"0

1X

k=1

(±1)k+1 e
kµi/T

k
K1

✓
k"0
T

◆
,

(7)

pM/B
n

T 4
=

dim
2
i

2(⇡T )2

1X

k=1

(±1)k+1 e
kµi/T

k2
K2

✓
kmi

T

◆
, (8)

where

"0 =
q
m2

i + 2|qi|B(l + 1/2� sz) (9)

are the energy levels of charged particles with pz = 0, and
k is the sum index in the Taylor expansion series. K1 and
K2 are the first-order and second-order modified Bessel
functions of the second kind, respectively. For the charged
particle in the presence of a magnetic field, by taking
derivatives of Eq. 7 with respect to chemical potentials of
conserved charges and then setting ~µ = (µB, µQ, µS) = 0,
one arrives at

�X
2 =

B

2⇡2T

X

i

|qi|X
2
i

siX

sz=�si

1X

l=0

f("0),

�XY
11 =

B

2⇡2T

X

i

|qi|XiYi

siX

sz=�si

1X

l=0

f("0) ,

(10)

withX,Y = B,Q, S and f("0) = "0
P1

k=1(±1)k+1kK1

�
k"0
T

�
.

We remark here that Eq. 9 only holds true in the case
that charged hadrons can still be considered as point-like
particles in the magnetic field. As presented in Ref. [17]
energy levels of both ⇡+ and K� deviate from Eq. 9 at
eB & 0.3 GeV2. For simplicity we will thus consider only
the case when eB . 0.3 GeV2 in our current study. In
our HRG model treatment, we have incorporated all the
hadrons listed in the particle data group (PDG) [67] up
to the mass of 2.5 GeV.

1 Here we neglect the term arising from the vacuum energy,
as which receives no contributions to the fluctuations and cor-
relations of B, Q and S.

2.2 Ideal gas limit

In the high-temperature (free) limit, by following text-
books [68,69], pressure of QCD with three massless flavor
quarks in the nonzero magnetic field can be derived and
expressed as follows

p

T 4
=

8⇡2

45
+

X

f=u,d,s

3|qf |B

⇡2T 2

"
⇡2

12
+

µ̂2
f

4
+ pf (B)

#
, (11)

where

pf (B) = 2

p
2|qf |B

T

1X

l=1

p

l
1X

k=1

(�1)k+1

k
cosh (kµ̂f )⇥

K1

 
k
p

2|qf |Bl

T

!
,

(12)

qf denotes the electric charge of a quark flavor f and
µ̂f ⌘ µf/T . We remark here that unlike the case at eB =
0 the pressure of a free massless three flavor quark gas
with eB 6= 0 receives contributions from terms beyond
O(µ4

f ), and fluctuations and correlations of quarks which
are higher than the 4th order thus could survive in the
magnetized free gas. Here we focus on the 2nd order fluc-
tuations and correlations. By taking derivatives of Eq. 11
with respect to quark chemical potentials and then setting
µu,d,s = 0, one can get

�u
2

eB
=

4

⇡2

 
1

4
+ b̂

1X

l=1

p

2l
1X

k=1

(�1)k+1kK1

⇣
k b̂

p

2l
⌘!

,

(13)

�d,s
2

eB
=

2

⇡2

 
1

4
+ b̂

1X

l=1

p

l
1X

k=1

(�1)k+1kK1

⇣
k b̂

p

l
⌘!

,

(14)

�ud
11 = �us

11 = �ds
11 = 0. (15)

Here we use b̂ ⌘
p

2eB/3/T for brevity. Using Eq. 2,
the second-order fluctuations of and correlations among
net baryon number, electric charge and strangeness in the
high-temperature limit can then be expressed as follows

�B
2

eB
=

4

9⇡2

 
1

2
+b̂

1X

l=1

p

l
1X

k=1

(�1)k+1k

⇥

hp
2K1

⇣
k b̂

p

2l
⌘
+K1

⇣
k b̂

p

l
⌘i!

(16)

�Q
2

eB
=

4

9⇡2

 
5

4
+b̂

1X

l=1

p

l
1X

k=1

(�1)k+1k

⇥

h
4
p
2K1

⇣
k b̂

p

2l
⌘
+K1

⇣
k b̂

p

l
⌘i!

,

(17)
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pf (B) = 2

p
2 |qf |B
T

1X

l=1

p
l

1X

k=1

(�1)k+1

k
cosh (kµ̂f )⇥K1

 
k
p
2 |qf |Bl

T

!
eB≠0
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�S
2 = �s

2 , (18)

�BQ
11

eB
=

4

9⇡2

 
1

4
+b̂

1X

l=1

p

l
1X

k=1

(�1)k+1k

⇥

h
2
p
2K1

⇣
k b̂

p

2l
⌘
�K1

⇣
k b̂

p

l
⌘i!

,

(19)

�QS
11

eB
=

2

3⇡2

 
1

4
+b̂

1X

l=1

p

l
1X

k=1

(�1)k+1kK1

⇣
kb̂
p

l
⌘!

.

(20)

�BS
11 = ��QS

11 . (21)

It can be observed that all these fluctuations and cor-
relations divided by eB scale with

p
eB/T . From above

relations it can also be found that

�BS
11 /�

S
2 = ��QS

11 /�
S
2 = �

1

3
, (22)

which is the same as the case at zero magnetic field. The
following relations also hold true at both eB = 0 and
eB 6= 0 in the free limit

�d
2 = �s

2, �ud
11 = �us

11 = �us
11 = 0. (23)

In Table 1 we also list the values of the above quantities
in the case of

p
eB/T going to infinity in the free limit. For

Quantity Value
�u
2/eB 1/⇡2

�d/s/S
2 /eB 1/(2⇡2)

�ud
11 /eB = �us

11/eB = �ds
11/eB=0 0

�B
2 /eB 2/(9⇡2)

�Q
2 /eB 5/(9⇡2)

�BQ
11 /eB 1/(9⇡2)

�QS
11 /eB = ��BS

11 /eB = �S
2/3eB 1/(6⇡2)

Table 1. The second order fluctuations and correlations of B,
Q and S (u, d and s) divided by the magnetic field strength
eB in the ideal gas limit with

p
eB/T going to infinity.

comparison we also list here the high-temperature limits
of various fluctuations and correlations of B, Q and S for
massless three flavor quark gas at eB = 0 [64]

�B
2 = �QS

11 = ��BS
11 = �Q

2 /2 = �S
2/3 = 1/3,

�BQ
11 = 0 .

(24)

3 Lattice setup

The highly improved staggered quarks (HISQ) [70] and
a tree-level improved Symanzik gauge action, which have
been extensively used by the HotQCD collaboration [71],
were adopted in our current lattice simulations of Nf =
2+1 QCD in nonzero magnetic fields. The magnetic field

is introduced along the z direction, and is described by a
fixed factor uµ(n) of the U(1) field. uµ(n) can be expressed
as follows in the Landau gauge [19,72],

ux(nx, ny, nz, n⌧ ) =

(
exp[�iqa2BNxny] (nx = Nx � 1)

1 (otherwise)

uy(nx, ny, nz, n⌧ ) = exp[iqa2Bnx],

uz(nx, ny, nz, n⌧ ) = ut(nx, ny, nz, n⌧ ) = 1. (25)

Here the lattice size is denoted as (Nx, Ny, Nz, N⌧ ) and
coordinates as nµ = 0, · · · , Nµ � 1 (µ = x, y, z, ⌧). To
satisfy the quantization for all the quarks in the system,
the greatest common divisor of the electric charge of all
the quarks, i.e. |qd| = |qs| = e/3 with e the elementary
electric charge, is chosen in our simulation. In practice, the
strength of the magnetic field eB is expressed as follows

eB =
6⇡Nb

NxNy
a�2, (26)

where Nb 2 Z is the number of magnetic fluxes through
a unit area in the x-y plane. The periodic boundary con-
dition for U(1) links is applied for all directions except
for the x-direction, as shown in Eq.25. As limited by the
boundary condition, Nb is constrained in the range of
0  Nb < NxNy

4 . In our study N� ⌘ Nx = Ny = Nz. De-
tails about the implementation of magnetic fields in the
lattice QCD simulations using the HISQ action can be
found in Ref. [17], where similar procedures were adopted
at zero temperature.

Nb eB [GeV2] Nb eB [GeV2] N⌧ T [MeV] # conf.
0 0 16 0.836 6 280.9 O(4000)
1 0.052 20 1.045 8 210.8 O(5000)
2 0.104 24 1.255 10 168.5 O(5000)
3 0.157 32 1.673 12 140.4 O(5000)
4 0.209 40 2.09 14 120.4 O(5000)
6 0.314 48 2.510 16 105.3 O(6000)
8 0.418 - - 18 93.6 O(6000)
10 0.523 - - 24 70.2 O(1000)
12 0.627 - - 96 17.6 O(3000)

Table 2. Statistics, values of Nb and corresponding magnetic
field strength eB, and values ofN⌧ and corresponding tempera-
tures in the simulation. The lattice spacing is fixed to a ' 0.117
fm (a�1

' 1.685 GeV), pion mass at eB = 0 is M⇡ = 220.61(6)
MeV and the kaon decay constant is fK = 112.50(2) MeV [17].

In our lattice simulations, the strange quark mass is
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We remark here that Eq. 9 only holds true in the case
that charged hadrons can still be considered as point-like
particles in the magnetic field. As presented in Ref. [17]
energy levels of both ⇡+ and K� deviate from Eq. 9 at
eB & 0.3 GeV2. For simplicity we will thus consider only
the case when eB . 0.3 GeV2 in our current study. In
our HRG model treatment, we have incorporated all the
hadrons listed in the particle data group (PDG) [67] up
to the mass of 2.5 GeV.

1 Here we neglect the term arising from the vacuum energy,
as which receives no contributions to the fluctuations and cor-
relations of B, Q and S.

2.2 Ideal gas limit

In the high-temperature (free) limit, by following text-
books [68,69], pressure of QCD with three massless flavor
quarks in the nonzero magnetic field can be derived and
expressed as follows
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qf denotes the electric charge of a quark flavor f and
µ̂f ⌘ µf/T . We remark here that unlike the case at eB =
0 the pressure of a free massless three flavor quark gas
with eB 6= 0 receives contributions from terms beyond
O(µ4

f ), and fluctuations and correlations of quarks which
are higher than the 4th order thus could survive in the
magnetized free gas. Here we focus on the 2nd order fluc-
tuations and correlations. By taking derivatives of Eq. 11
with respect to quark chemical potentials and then setting
µu,d,s = 0, one can get
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Here we use b̂ ⌘
p

2eB/3/T for brevity. Using Eq. 2,
the second-order fluctuations of and correlations among
net baryon number, electric charge and strangeness in the
high-temperature limit can then be expressed as follows
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µQQi+µSSi with Bi, Qi and Si the baryon number, charge
and strangeness of the particle i, respectively. Here “+”
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are the energy levels of charged particles with pz = 0, and
k is the sum index in the Taylor expansion series. K1 and
K2 are the first-order and second-order modified Bessel
functions of the second kind, respectively. For the charged
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We remark here that Eq. 9 only holds true in the case
that charged hadrons can still be considered as point-like
particles in the magnetic field. As presented in Ref. [17]
energy levels of both ⇡+ and K� deviate from Eq. 9 at
eB & 0.3 GeV2. For simplicity we will thus consider only
the case when eB . 0.3 GeV2 in our current study. In
our HRG model treatment, we have incorporated all the
hadrons listed in the particle data group (PDG) [67] up
to the mass of 2.5 GeV.

1 Here we neglect the term arising from the vacuum energy,
as which receives no contributions to the fluctuations and cor-
relations of B, Q and S.
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In the high-temperature (free) limit, by following text-
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the magnitude of magnetic field pointing along the z di-
rection, l denotes the Landau levels, and µi = µBBi +
µQQi+µSSi with Bi, Qi and Si the baryon number, charge
and strangeness of the particle i, respectively. Here “+”
in “⌥”corresponds to the case for mesons (si is integer)
while “�” for baryons (si is half-integer).
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are the energy levels of charged particles with pz = 0, and
k is the sum index in the Taylor expansion series. K1 and
K2 are the first-order and second-order modified Bessel
functions of the second kind, respectively. For the charged
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We remark here that Eq. 9 only holds true in the case
that charged hadrons can still be considered as point-like
particles in the magnetic field. As presented in Ref. [17]
energy levels of both ⇡+ and K� deviate from Eq. 9 at
eB & 0.3 GeV2. For simplicity we will thus consider only
the case when eB . 0.3 GeV2 in our current study. In
our HRG model treatment, we have incorporated all the
hadrons listed in the particle data group (PDG) [67] up
to the mass of 2.5 GeV.

1 Here we neglect the term arising from the vacuum energy,
as which receives no contributions to the fluctuations and cor-
relations of B, Q and S.
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O(µ4

f ), and fluctuations and correlations of quarks which
are higher than the 4th order thus could survive in the
magnetized free gas. Here we focus on the 2nd order fluc-
tuations and correlations. By taking derivatives of Eq. 11
with respect to quark chemical potentials and then setting
µu,d,s = 0, one can get

�u
2

eB
=

4

⇡2

 
1

4
+ b̂

1X

l=1

p

2l
1X

k=1

(�1)k+1kK1

⇣
k b̂

p

2l
⌘!

,

(13)

�d,s
2

eB
=

2

⇡2

 
1

4
+ b̂

1X

l=1

p

l
1X

k=1

(�1)k+1kK1

⇣
k b̂

p

l
⌘!

,

(14)

�ud
11 = �us

11 = �ds
11 = 0. (15)

Here we use b̂ ⌘
p

2eB/3/T for brevity. Using Eq. 2,
the second-order fluctuations of and correlations among
net baryon number, electric charge and strangeness in the
high-temperature limit can then be expressed as follows

�B
2

eB
=

4

9⇡2

 
1

2
+b̂

1X

l=1

p

l
1X

k=1

(�1)k+1k

⇥

hp
2K1

⇣
k b̂

p

2l
⌘
+K1

⇣
k b̂

p

l
⌘i!

(16)

�Q
2

eB
=

4

9⇡2

 
5

4
+b̂

1X

l=1

p

l
1X

k=1

(�1)k+1k

⇥

h
4
p
2K1

⇣
k b̂

p

2l
⌘
+K1

⇣
k b̂

p

l
⌘i!

,

(17)

H.-T. Ding, S.-T. Li, Q. Shi, X.-D. Wang: Fluctuations and correlations of B, Q & S in a background magnetic field 3

at eB 6= 0),

pM/B
c = ⌥

|qi|BT
2⇡2

siX

sz=�si

1X

l=0

Z 1

0

dpz ln
h
1⌥ e�(Ec�µi)/T

i
,

(5)

pM/B
n = ⌥

diT
2⇡2

Z 1

0

dp|~p|2 ln
h
1⌥ e�(En�µi)/T

i
, (6)

respectively. Here Ec =
p

p2z +m2
i + 2|qi|B(l + 1/2� sz)

and En =
p

m2
i + |~p|2 denote the energy levels of the

charged and neutral particles with momentum ~p =
(px, py, pz), respectively. qi, mi, si and di are the charge,
mass, spin and degeneracy factor of the particle i, B is
the magnitude of magnetic field pointing along the z di-
rection, l denotes the Landau levels, and µi = µBBi +
µQQi+µSSi with Bi, Qi and Si the baryon number, charge
and strangeness of the particle i, respectively. Here “+”
in “⌥”corresponds to the case for mesons (si is integer)
while “�” for baryons (si is half-integer).

After integrating out the momentum we arrive at the
analytical expressions of the pressure 1,

pM/B
c

T 4
=

|qi|B
2⇡2T 3

siX

sz=�si

1X

l=0

"0

1X

k=1

(±1)k+1 e
kµi/T

k
K1

✓
k"0
T

◆
,

(7)

pM/B
n

T 4
=

dim
2
i

2(⇡T )2

1X

k=1

(±1)k+1 e
kµi/T

k2
K2

✓
kmi

T

◆
, (8)

where

"0 =
q
m2

i + 2|qi|B(l + 1/2� sz) (9)

are the energy levels of charged particles with pz = 0, and
k is the sum index in the Taylor expansion series. K1 and
K2 are the first-order and second-order modified Bessel
functions of the second kind, respectively. For the charged
particle in the presence of a magnetic field, by taking
derivatives of Eq. 7 with respect to chemical potentials of
conserved charges and then setting ~µ = (µB, µQ, µS) = 0,
one arrives at

�X
2 =

B

2⇡2T

X

i

|qi|X
2
i

siX

sz=�si

1X

l=0

f("0),

�XY
11 =

B

2⇡2T

X

i

|qi|XiYi

siX

sz=�si

1X

l=0

f("0) ,

(10)

withX,Y = B,Q, S and f("0) = "0
P1

k=1(±1)k+1kK1

�
k"0
T

�
.

We remark here that Eq. 9 only holds true in the case
that charged hadrons can still be considered as point-like
particles in the magnetic field. As presented in Ref. [17]
energy levels of both ⇡+ and K� deviate from Eq. 9 at
eB & 0.3 GeV2. For simplicity we will thus consider only
the case when eB . 0.3 GeV2 in our current study. In
our HRG model treatment, we have incorporated all the
hadrons listed in the particle data group (PDG) [67] up
to the mass of 2.5 GeV.

1 Here we neglect the term arising from the vacuum energy,
as which receives no contributions to the fluctuations and cor-
relations of B, Q and S.

2.2 Ideal gas limit

In the high-temperature (free) limit, by following text-
books [68,69], pressure of QCD with three massless flavor
quarks in the nonzero magnetic field can be derived and
expressed as follows
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qf denotes the electric charge of a quark flavor f and
µ̂f ⌘ µf/T . We remark here that unlike the case at eB =
0 the pressure of a free massless three flavor quark gas
with eB 6= 0 receives contributions from terms beyond
O(µ4

f ), and fluctuations and correlations of quarks which
are higher than the 4th order thus could survive in the
magnetized free gas. Here we focus on the 2nd order fluc-
tuations and correlations. By taking derivatives of Eq. 11
with respect to quark chemical potentials and then setting
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Here we use b̂ ⌘
p

2eB/3/T for brevity. Using Eq. 2,
the second-order fluctuations of and correlations among
net baryon number, electric charge and strangeness in the
high-temperature limit can then be expressed as follows
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eB=0

eB≠0

+ : mesons

-  : baryons

In our case, we incorporated all the hadrons listed in the PDG up to the mass of 2.5 GeV
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the magnitude of magnetic field pointing along the z di-
rection, l denotes the Landau levels, and µi = µBBi +
µQQi+µSSi with Bi, Qi and Si the baryon number, charge
and strangeness of the particle i, respectively. Here “+”
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After integrating out the momentum we arrive at the
analytical expressions of the pressure 1,

pM/B
c

T 4
=

|qi|B
2⇡2T 3

siX

sz=�si

1X

l=0

"0

1X

k=1

(±1)k+1 e
kµi/T

k
K1

✓
k"0
T

◆
,

(7)

pM/B
n

T 4
=

dim
2
i

2(⇡T )2

1X

k=1

(±1)k+1 e
kµi/T

k2
K2

✓
kmi

T

◆
, (8)

where
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q
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i + 2|qi|B(l + 1/2� sz) (9)

are the energy levels of charged particles with pz = 0, and
k is the sum index in the Taylor expansion series. K1 and
K2 are the first-order and second-order modified Bessel
functions of the second kind, respectively. For the charged
particle in the presence of a magnetic field, by taking
derivatives of Eq. 7 with respect to chemical potentials of
conserved charges and then setting ~µ = (µB, µQ, µS) = 0,
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We remark here that Eq. 9 only holds true in the case
that charged hadrons can still be considered as point-like
particles in the magnetic field. As presented in Ref. [17]
energy levels of both ⇡+ and K� deviate from Eq. 9 at
eB & 0.3 GeV2. For simplicity we will thus consider only
the case when eB . 0.3 GeV2 in our current study. In
our HRG model treatment, we have incorporated all the
hadrons listed in the particle data group (PDG) [67] up
to the mass of 2.5 GeV.

1 Here we neglect the term arising from the vacuum energy,
as which receives no contributions to the fluctuations and cor-
relations of B, Q and S.
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qf denotes the electric charge of a quark flavor f and
µ̂f ⌘ µf/T . We remark here that unlike the case at eB =
0 the pressure of a free massless three flavor quark gas
with eB 6= 0 receives contributions from terms beyond
O(µ4

f ), and fluctuations and correlations of quarks which
are higher than the 4th order thus could survive in the
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the magnitude of magnetic field pointing along the z di-
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k is the sum index in the Taylor expansion series. K1 and
K2 are the first-order and second-order modified Bessel
functions of the second kind, respectively. For the charged
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We remark here that Eq. 9 only holds true in the case
that charged hadrons can still be considered as point-like
particles in the magnetic field. As presented in Ref. [17]
energy levels of both ⇡+ and K� deviate from Eq. 9 at
eB & 0.3 GeV2. For simplicity we will thus consider only
the case when eB . 0.3 GeV2 in our current study. In
our HRG model treatment, we have incorporated all the
hadrons listed in the particle data group (PDG) [67] up
to the mass of 2.5 GeV.

1 Here we neglect the term arising from the vacuum energy,
as which receives no contributions to the fluctuations and cor-
relations of B, Q and S.

2.2 Ideal gas limit

In the high-temperature (free) limit, by following text-
books [68,69], pressure of QCD with three massless flavor
quarks in the nonzero magnetic field can be derived and
expressed as follows
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qf denotes the electric charge of a quark flavor f and
µ̂f ⌘ µf/T . We remark here that unlike the case at eB =
0 the pressure of a free massless three flavor quark gas
with eB 6= 0 receives contributions from terms beyond
O(µ4

f ), and fluctuations and correlations of quarks which
are higher than the 4th order thus could survive in the
magnetized free gas. Here we focus on the 2nd order fluc-
tuations and correlations. By taking derivatives of Eq. 11
with respect to quark chemical potentials and then setting
µu,d,s = 0, one can get
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Here we use b̂ ⌘
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We consider eB≤0.3GeV2, since π+ and K- deviate from the above equation at eB ≥0.3 GeV2 Take derivatives with 
respect to µ

Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001

H.T. Ding, S.T. Li, A. Tomiya, X.D. Wang and Y. Zhang,  Phys.Rev.D 104 (2021) 014505



8

Lattice Setup

T [MeV]
6 280 [0, 48] [0, 2.5]
8 210 [0, 48] [0, 2.5]
10 168 [0, 48] [0, 2.5]
12 140 [0, 48] [0, 2.5]
14 120 [0, 48] [0, 2.5]
16 105 [0, 48] [0, 2.5]
18 94 [0, 48] [0, 2.5]
24 70 [0, 48] [0, 2.5]
96 17 [0, 64] [0, 3.3]

Nb window

<latexit sha1_base64="vY/t4IlaNO/WuZSIz6GJscPko+M="></latexit>

eB window
⇥
GeV2

⇤

<latexit sha1_base64="uqPcyto89RC7/JXl9jqiz8Pvbns="></latexit>

4 H.-T. Ding, S.-T. Li, Q. Shi, X.-D. Wang: Fluctuations and correlations of B, Q & S in a background magnetic field

�S
2 = �s

2 , (18)

�BQ
11

eB
=

4

9⇡2

 
1

4
+b̂

1X

l=1

p

l
1X

k=1

(�1)k+1k

⇥

h
2
p
2K1

⇣
k b̂

p

2l
⌘
�K1

⇣
k b̂

p

l
⌘i!

,

(19)

�QS
11

eB
=

2

3⇡2

 
1

4
+b̂

1X

l=1

p

l
1X

k=1

(�1)k+1kK1

⇣
kb̂
p

l
⌘!

.

(20)

�BS
11 = ��QS

11 . (21)

It can be observed that all these fluctuations and cor-
relations divided by eB scale with

p
eB/T . From above

relations it can also be found that

�BS
11 /�

S
2 = ��QS

11 /�
S
2 = �

1

3
, (22)

which is the same as the case at zero magnetic field. The
following relations also hold true at both eB = 0 and
eB 6= 0 in the free limit

�d
2 = �s

2, �ud
11 = �us

11 = �us
11 = 0. (23)

In Table 1 we also list the values of the above quantities
in the case of

p
eB/T going to infinity in the free limit. For

Quantity Value
�u
2/eB 1/⇡2

�d/s/S
2 /eB 1/(2⇡2)

�ud
11 /eB = �us

11/eB = �ds
11/eB=0 0

�B
2 /eB 2/(9⇡2)

�Q
2 /eB 5/(9⇡2)

�BQ
11 /eB 1/(9⇡2)

�QS
11 /eB = ��BS

11 /eB = �S
2/3eB 1/(6⇡2)

Table 1. The second order fluctuations and correlations of B,
Q and S (u, d and s) divided by the magnetic field strength
eB in the ideal gas limit with

p
eB/T going to infinity.

comparison we also list here the high-temperature limits
of various fluctuations and correlations of B, Q and S for
massless three flavor quark gas at eB = 0 [64]

�B
2 = �QS

11 = ��BS
11 = �Q

2 /2 = �S
2/3 = 1/3,

�BQ
11 = 0 .

(24)

3 Lattice setup

The highly improved staggered quarks (HISQ) [70] and
a tree-level improved Symanzik gauge action, which have
been extensively used by the HotQCD collaboration [71],
were adopted in our current lattice simulations of Nf =
2+1 QCD in nonzero magnetic fields. The magnetic field

is introduced along the z direction, and is described by a
fixed factor uµ(n) of the U(1) field. uµ(n) can be expressed
as follows in the Landau gauge [19,72],

ux(nx, ny, nz, n⌧ ) =

(
exp[�iqa2BNxny] (nx = Nx � 1)

1 (otherwise)

uy(nx, ny, nz, n⌧ ) = exp[iqa2Bnx],

uz(nx, ny, nz, n⌧ ) = ut(nx, ny, nz, n⌧ ) = 1. (25)

Here the lattice size is denoted as (Nx, Ny, Nz, N⌧ ) and
coordinates as nµ = 0, · · · , Nµ � 1 (µ = x, y, z, ⌧). To
satisfy the quantization for all the quarks in the system,
the greatest common divisor of the electric charge of all
the quarks, i.e. |qd| = |qs| = e/3 with e the elementary
electric charge, is chosen in our simulation. In practice, the
strength of the magnetic field eB is expressed as follows

eB =
6⇡Nb

NxNy
a�2, (26)

where Nb 2 Z is the number of magnetic fluxes through
a unit area in the x-y plane. The periodic boundary con-
dition for U(1) links is applied for all directions except
for the x-direction, as shown in Eq.25. As limited by the
boundary condition, Nb is constrained in the range of
0  Nb < NxNy

4 . In our study N� ⌘ Nx = Ny = Nz. De-
tails about the implementation of magnetic fields in the
lattice QCD simulations using the HISQ action can be
found in Ref. [17], where similar procedures were adopted
at zero temperature.

Nb eB [GeV2] Nb eB [GeV2] N⌧ T [MeV] # conf.
0 0 16 0.836 6 280.9 O(4000)
1 0.052 20 1.045 8 210.8 O(5000)
2 0.104 24 1.255 10 168.5 O(5000)
3 0.157 32 1.673 12 140.4 O(5000)
4 0.209 40 2.09 14 120.4 O(5000)
6 0.314 48 2.510 16 105.3 O(6000)
8 0.418 - - 18 93.6 O(6000)
10 0.523 - - 24 70.2 O(1000)
12 0.627 - - 96 17.6 O(3000)

Table 2. Statistics, values of Nb and corresponding magnetic
field strength eB, and values ofN⌧ and corresponding tempera-
tures in the simulation. The lattice spacing is fixed to a ' 0.117
fm (a�1

' 1.685 GeV), pion mass at eB = 0 is M⇡ = 220.61(6)
MeV and the kaon decay constant is fK = 112.50(2) MeV [17].

In our lattice simulations, the strange quark mass is
fixed to its physical value mphy

s and the light quark masses
are chosen to be mphy

s /10, which correspond to a Gold-
stone pion massm⇡ ' 220 MeV at zero magnetic field [17].
To perform simulations at nonzero temperature extend-
ing from our study at zero temperature [17], we adopted a
fixed scale approach, i.e. fixed lattice spacing a ' 0.117 fm
in our simulations. Variation of temperatures are obtained
by varying the values of N⌧ as T = a�1/N⌧ . Values of N⌧

are chosen from 96 to 6 corresponding to values of temper-
ature ranging from zero temperature up to about 281 MeV
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of various fluctuations and correlations of B, Q and S for
massless three flavor quark gas at eB = 0 [64]

�B
2 = �QS

11 = ��BS
11 = �Q

2 /2 = �S
2/3 = 1/3,

�BQ
11 = 0 .

(24)

3 Lattice setup

The highly improved staggered quarks (HISQ) [70] and
a tree-level improved Symanzik gauge action, which have
been extensively used by the HotQCD collaboration [71],
were adopted in our current lattice simulations of Nf =
2+1 QCD in nonzero magnetic fields. The magnetic field

is introduced along the z direction, and is described by a
fixed factor uµ(n) of the U(1) field. uµ(n) can be expressed
as follows in the Landau gauge [19,72],

ux(nx, ny, nz, n⌧ ) =

(
exp[�iqa2BNxny] (nx = Nx � 1)

1 (otherwise)

uy(nx, ny, nz, n⌧ ) = exp[iqa2Bnx],

uz(nx, ny, nz, n⌧ ) = ut(nx, ny, nz, n⌧ ) = 1. (25)

Here the lattice size is denoted as (Nx, Ny, Nz, N⌧ ) and
coordinates as nµ = 0, · · · , Nµ � 1 (µ = x, y, z, ⌧). To
satisfy the quantization for all the quarks in the system,
the greatest common divisor of the electric charge of all
the quarks, i.e. |qd| = |qs| = e/3 with e the elementary
electric charge, is chosen in our simulation. In practice, the
strength of the magnetic field eB is expressed as follows

eB =
6⇡Nb

NxNy
a�2, (26)

where Nb 2 Z is the number of magnetic fluxes through
a unit area in the x-y plane. The periodic boundary con-
dition for U(1) links is applied for all directions except
for the x-direction, as shown in Eq.25. As limited by the
boundary condition, Nb is constrained in the range of
0  Nb < NxNy

4 . In our study N� ⌘ Nx = Ny = Nz. De-
tails about the implementation of magnetic fields in the
lattice QCD simulations using the HISQ action can be
found in Ref. [17], where similar procedures were adopted
at zero temperature.

Nb eB [GeV2] Nb eB [GeV2] N⌧ T [MeV] # conf.
0 0 16 0.836 6 280.9 O(4000)
1 0.052 20 1.045 8 210.8 O(5000)
2 0.104 24 1.255 10 168.5 O(5000)
3 0.157 32 1.673 12 140.4 O(5000)
4 0.209 40 2.09 14 120.4 O(5000)
6 0.314 48 2.510 16 105.3 O(6000)
8 0.418 - - 18 93.6 O(6000)
10 0.523 - - 24 70.2 O(1000)
12 0.627 - - 96 17.6 O(3000)

Table 2. Statistics, values of Nb and corresponding magnetic
field strength eB, and values ofN⌧ and corresponding tempera-
tures in the simulation. The lattice spacing is fixed to a ' 0.117
fm (a�1

' 1.685 GeV), pion mass at eB = 0 is M⇡ = 220.61(6)
MeV and the kaon decay constant is fK = 112.50(2) MeV [17].

In our lattice simulations, the strange quark mass is
fixed to its physical value mphy

s and the light quark masses
are chosen to be mphy

s /10, which correspond to a Gold-
stone pion massm⇡ ' 220 MeV at zero magnetic field [17].
To perform simulations at nonzero temperature extend-
ing from our study at zero temperature [17], we adopted a
fixed scale approach, i.e. fixed lattice spacing a ' 0.117 fm
in our simulations. Variation of temperatures are obtained
by varying the values of N⌧ as T = a�1/N⌧ . Values of N⌧

are chosen from 96 to 6 corresponding to values of temper-
ature ranging from zero temperature up to about 281 MeV

                                                     ,

a is fixed to 0.117 fm,

      window: (6, 96)


         T  window: (280 MeV, 17 MeV)

The       is fixed to 32,


eB window: (0, 2.5 GeV2)
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10 1 The path integral on the lattice

x x x x1 3 4 . . . . . . . x 1x 0 2 NT
x0

Fig. 1.1. A discretized path contributing in (1.37)

divide the Euclidean time interval T into NT steps of size ε (using periodic
boundary conditions). At each step we insert a variable xj which we integrate
from −∞ to +∞. The collection of values xj can be interpreted as a path
(compare Fig. 1.1) and the integral is over all possible paths. The integrand
is the exponential (1.37) of the Euclidean action for the discretized path.

In the next section we will develop a path integral representation for a
system much closer to our target theory QCD. We will consider a scalar
field theory. The technical steps of the construction – free case, infinitesimal
timesteps, Trotter formula – will be the same. However, since we are dealing
with a quantum field theory with many degrees of freedom, the calculation,
in particular the corresponding notation, will be a little bit more involved.

1.3 The path integral for a scalar field theory

We now derive the key equation (1.2) for a scalar field theory. Although this
is already a field theory, it has a simpler structure than QCD. This allows us
to focus on the central points of the derivation of the path integral for a field
theory without having to worry too much about technicalities. Although our
presentation is self contained we recommend [8, 9] for an introductory reading
about the canonical quantization of the scalar field, which is our starting point.

1.3.1 The Klein–Gordon field

Let us begin by recalling the classical action and equations of motion of the
scalar field in Minkowski space. We consider a real scalar field Φ(t,x). The
corresponding action S is an integral over space-time

S =
∫

dt d3x L (Φ(t,x) , ∂µΦ(t,x)) , (1.41)

with the Lagrangian density L given by

L(Φ, ∂µΦ) =
1
2

(∂µΦ)(∂µΦ) − m2

2
Φ2 − V (Φ)

=
1
2

Φ̇ 2 − 1
2

(∇Φ)2 − m2

2
Φ2 − V (Φ) . (1.42)

This is a system of coupled oscillators. We stress again that this expres-
sion is in Minkowski space, i.e., in the second step we used the metric

Path integral and Partition function has same structure
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as shown in Table. 2. The scale setting is adopted from the
HotQCD collaboration [71]. For most of each fixed N⌧ , we
have around 15 magnetic field flux Nb values chosen from
0 to 48. These correspond to the magnetic field eB rang-
ing from 0 to ⇠2.5 GeV2 as shown in the Table. 2 [17]. To
have small discretization errors for B, the magnetic field
implemented in the lattice simulations should be small in
lattice units, i.e. aqdB ⌧ 1 or Nb/N2

� ⌧ 1 [73]. In our
work, the largest number of magnetic fluxes Nmax

b = 48
resulting in Nmax

b /N2
� ⇡ 5%. Thus the discretization er-

rors for B should be small.
All configurations have been produced using the Ra-

tional Hybrid Monte Carlo (RHMC) algorithm and saved
by every 5 time units. The number of saved configura-
tions for each Nb at each temperature is listed in Tab. 2.
The fluctuations and correlations of conserved charges at
nonzero magnetic fields have been computed using the
random noise vector method with 102 random vectors on
each saved configuration.

We remark that the fixed scale approach is di↵erent
from the commonly adopted approach used in e.g. Ref. [19,
74–77] where lattice spacing a varies at fixed N⌧ to have
di↵erent temperatures, and has also been adopted in
quenched QCD [9] as well as full QCD [78]. In the fixed
scale approach we have the same value of a�1 at various
temperatures, and eB thus only varies withNb (cf. Eq. 26).
This is di↵erent from the commonly adopted approach,
where interpolations of lattice data at di↵erent T and Nb

are needed to have constant magnetic field strength in
physical units (e.g. GeV2) among di↵erent temperatures
as a varies with temperature [19, 77]. Comparing to the
state-of-the-art lattice computation of fluctuations of con-
served charges at zero magnetic field [74], the lattice spac-
ing adopted in our study is smaller than those on N⌧ = 6
lattices with T . 281 MeV, N⌧ = 8 lattices with T . 211
MeV, N⌧ = 10 lattices with T . 169 MeV, N⌧ = 12
lattices with T . 140 MeV and N⌧ = 16 lattices with
T . 105 MeV.

4 Results

4.1 Fluctuations and correlations of net baryon

number, electric charge and strangeness

We start by showing the fluctuations of and correlations
among conserved charges at zero temperature in Fig. 1. It
has been conjectured that there could be a superconduct-
ing phase induced by the strong magnetic field at zero
temperature [79], which can be signaled by the conden-
sation of vector meson ⇢. As ⇢ is a boson whose energy
levels obey the Bose-Einstein distribution, if any vanish-
ing energy level appears the fluctuations or correlations of
quantum numbers receiving contributions from charged
mesons would be divergent. However, as can be seen from
Fig. 1 there is no divergent behavior in �Q

2 and all other
fluctuations and correlations observed in the window of
the magnetic field we studied. This provides a shred of
indirect evidence that no superconducting phase exits at

eB . 3.5 GeV2, which is consistent with studies of hadron
spectrum at zero temperature in quenched [22] and full
QCD [17].
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Fig. 1. eB dependences of fluctuations of and correlations
among conserved charges at T=0. Here kaon decay constant
fK ' 112.5 MeV obtained in the current lattice setup [17] is
used to make quantities dimensionless. Hereafter M⇡ located
near the upper x-axis denotes the pion mass of 220 MeV at
eB = 0 in our lattice setup.

In our simulation M⇡(eB = 0) ' 220 MeV and the re-
sulting transition temperature at vanishing magnetic field
estimated via the O(4) scaling analyses and disconnected
chiral susceptibility [54,75,80] is Tpc(eB = 0) ⇡170 MeV.
To investigate the changes in degrees of freedom in QCD
around the transition temperature, we show in Fig. 2 the
temperature dependence of quadratic fluctuations of net
baryon number, electric charge and strangeness, i.e. �B

2 ,
�Q
2 , �

S
2 at various values of magnetic field strength eB.

For visibility we only show results at Nb = 0, 6, 12, 16,
24, 32, 40 and 48 which correspond to eB/M2

⇡(eB = 0) '
0, 6, 13, 17, 26, 34, 42 and 52, respectively. At zero mag-
netic field all the quadratic fluctuations of B, Q and S in-
crease as temperature increases, which is consistent with
previous studies [64, 74]. At low temperature and eB =
0, �B

2 , �Q
2 and �S

2 are dominated by the contributions
from nucleon, pions and kaons, respectively. As the mag-
netic field is turned on, these fluctuations start to increase
faster around the transition temperature, and most strik-
ingly they eventually develop a peak structure in strong
magnetic fields. It can be clearly seen that the inflection
points/peak locations of these quantities shift to lower
temperatures in stronger magnetic fields. This indicates
that changes in the baryon number, electric charge and
strangeness carrying degrees of freedom happen at lower
temperatures in stronger magnetic fields. At eB = 0 the
dissociation temperatures of nucleon, pion and kaon are
relevant to the chiral crossover transition temperature de-
termined from the chiral condensates and susceptibilities.
For instance, it has been suggested that the deconfinement
of strangeness happens at the chiral crossover transition
temperature at eB = 0 [47]. Thus the shifting of inflec-
tion points/peak locations of quantities shown in Fig. 2
to lower temperatures in stronger magnetic fields could
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as shown in Table. 2. The scale setting is adopted from the
HotQCD collaboration [71]. For most of each fixed N⌧ , we
have around 15 magnetic field flux Nb values chosen from
0 to 48. These correspond to the magnetic field eB rang-
ing from 0 to ⇠2.5 GeV2 as shown in the Table. 2 [17]. To
have small discretization errors for B, the magnetic field
implemented in the lattice simulations should be small in
lattice units, i.e. aqdB ⌧ 1 or Nb/N2

� ⌧ 1 [73]. In our
work, the largest number of magnetic fluxes Nmax

b = 48
resulting in Nmax
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� ⇡ 5%. Thus the discretization er-

rors for B should be small.
All configurations have been produced using the Ra-

tional Hybrid Monte Carlo (RHMC) algorithm and saved
by every 5 time units. The number of saved configura-
tions for each Nb at each temperature is listed in Tab. 2.
The fluctuations and correlations of conserved charges at
nonzero magnetic fields have been computed using the
random noise vector method with 102 random vectors on
each saved configuration.

We remark that the fixed scale approach is di↵erent
from the commonly adopted approach used in e.g. Ref. [19,
74–77] where lattice spacing a varies at fixed N⌧ to have
di↵erent temperatures, and has also been adopted in
quenched QCD [9] as well as full QCD [78]. In the fixed
scale approach we have the same value of a�1 at various
temperatures, and eB thus only varies withNb (cf. Eq. 26).
This is di↵erent from the commonly adopted approach,
where interpolations of lattice data at di↵erent T and Nb

are needed to have constant magnetic field strength in
physical units (e.g. GeV2) among di↵erent temperatures
as a varies with temperature [19, 77]. Comparing to the
state-of-the-art lattice computation of fluctuations of con-
served charges at zero magnetic field [74], the lattice spac-
ing adopted in our study is smaller than those on N⌧ = 6
lattices with T . 281 MeV, N⌧ = 8 lattices with T . 211
MeV, N⌧ = 10 lattices with T . 169 MeV, N⌧ = 12
lattices with T . 140 MeV and N⌧ = 16 lattices with
T . 105 MeV.

4 Results

4.1 Fluctuations and correlations of net baryon

number, electric charge and strangeness

We start by showing the fluctuations of and correlations
among conserved charges at zero temperature in Fig. 1. It
has been conjectured that there could be a superconduct-
ing phase induced by the strong magnetic field at zero
temperature [79], which can be signaled by the conden-
sation of vector meson ⇢. As ⇢ is a boson whose energy
levels obey the Bose-Einstein distribution, if any vanish-
ing energy level appears the fluctuations or correlations of
quantum numbers receiving contributions from charged
mesons would be divergent. However, as can be seen from
Fig. 1 there is no divergent behavior in �Q

2 and all other
fluctuations and correlations observed in the window of
the magnetic field we studied. This provides a shred of
indirect evidence that no superconducting phase exits at
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spectrum at zero temperature in quenched [22] and full
QCD [17].

Fig. 1. eB dependences of fluctuations of and correlations
among conserved charges at T=0. Here kaon decay constant
fK ' 112.5 MeV obtained in the current lattice setup [17] is
used to make quantities dimensionless. Hereafter M⇡ located
near the upper x-axis denotes the pion mass of 220 MeV at
eB = 0 in our lattice setup.

In our simulation M⇡(eB = 0) ' 220 MeV and the re-
sulting transition temperature at vanishing magnetic field
estimated via the O(4) scaling analyses and disconnected
chiral susceptibility [54,75,80] is Tpc(eB = 0) ⇡170 MeV.
To investigate the changes in degrees of freedom in QCD
around the transition temperature, we show in Fig. 2 the
temperature dependence of quadratic fluctuations of net
baryon number, electric charge and strangeness, i.e. �B

2 ,
�Q
2 , �

S
2 at various values of magnetic field strength eB.

For visibility we only show results at Nb = 0, 6, 12, 16,
24, 32, 40 and 48 which correspond to eB/M2

⇡(eB = 0) '
0, 6, 13, 17, 26, 34, 42 and 52, respectively. At zero mag-
netic field all the quadratic fluctuations of B, Q and S in-
crease as temperature increases, which is consistent with
previous studies [64, 74]. At low temperature and eB =
0, �B

2 , �Q
2 and �S

2 are dominated by the contributions
from nucleon, pions and kaons, respectively. As the mag-
netic field is turned on, these fluctuations start to increase
faster around the transition temperature, and most strik-
ingly they eventually develop a peak structure in strong
magnetic fields. It can be clearly seen that the inflection
points/peak locations of these quantities shift to lower
temperatures in stronger magnetic fields. This indicates
that changes in the baryon number, electric charge and
strangeness carrying degrees of freedom happen at lower
temperatures in stronger magnetic fields. At eB = 0 the
dissociation temperatures of nucleon, pion and kaon are
relevant to the chiral crossover transition temperature de-
termined from the chiral condensates and susceptibilities.
For instance, it has been suggested that the deconfinement
of strangeness happens at the chiral crossover transition
temperature at eB = 0 [47]. Thus the shifting of inflec-
tion points/peak locations of quantities shown in Fig. 2
to lower temperatures in stronger magnetic fields could

No evidence (     is not divergent) for a 
superconducting phase at T=0 is found
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as shown in Table. 2. The scale setting is adopted from the
HotQCD collaboration [71]. For most of each fixed N⌧ , we
have around 15 magnetic field flux Nb values chosen from
0 to 48. These correspond to the magnetic field eB rang-
ing from 0 to ⇠2.5 GeV2 as shown in the Table. 2 [17]. To
have small discretization errors for B, the magnetic field
implemented in the lattice simulations should be small in
lattice units, i.e. aqdB ⌧ 1 or Nb/N2

� ⌧ 1 [73]. In our
work, the largest number of magnetic fluxes Nmax

b = 48
resulting in Nmax

b /N2
� ⇡ 5%. Thus the discretization er-

rors for B should be small.
All configurations have been produced using the Ra-

tional Hybrid Monte Carlo (RHMC) algorithm and saved
by every 5 time units. The number of saved configura-
tions for each Nb at each temperature is listed in Tab. 2.
The fluctuations and correlations of conserved charges at
nonzero magnetic fields have been computed using the
random noise vector method with 102 random vectors on
each saved configuration.

We remark that the fixed scale approach is di↵erent
from the commonly adopted approach used in e.g. Ref. [19,
74–77] where lattice spacing a varies at fixed N⌧ to have
di↵erent temperatures, and has also been adopted in
quenched QCD [9] as well as full QCD [78]. In the fixed
scale approach we have the same value of a�1 at various
temperatures, and eB thus only varies withNb (cf. Eq. 26).
This is di↵erent from the commonly adopted approach,
where interpolations of lattice data at di↵erent T and Nb

are needed to have constant magnetic field strength in
physical units (e.g. GeV2) among di↵erent temperatures
as a varies with temperature [19, 77]. Comparing to the
state-of-the-art lattice computation of fluctuations of con-
served charges at zero magnetic field [74], the lattice spac-
ing adopted in our study is smaller than those on N⌧ = 6
lattices with T . 281 MeV, N⌧ = 8 lattices with T . 211
MeV, N⌧ = 10 lattices with T . 169 MeV, N⌧ = 12
lattices with T . 140 MeV and N⌧ = 16 lattices with
T . 105 MeV.

4 Results

4.1 Fluctuations and correlations of net baryon

number, electric charge and strangeness

We start by showing the fluctuations of and correlations
among conserved charges at zero temperature in Fig. 1. It
has been conjectured that there could be a superconduct-
ing phase induced by the strong magnetic field at zero
temperature [79], which can be signaled by the conden-
sation of vector meson ⇢. As ⇢ is a boson whose energy
levels obey the Bose-Einstein distribution, if any vanish-
ing energy level appears the fluctuations or correlations of
quantum numbers receiving contributions from charged
mesons would be divergent. However, as can be seen from
Fig. 1 there is no divergent behavior in �Q

2 and all other
fluctuations and correlations observed in the window of
the magnetic field we studied. This provides a shred of
indirect evidence that no superconducting phase exits at

eB . 3.5 GeV2, which is consistent with studies of hadron
spectrum at zero temperature in quenched [22] and full
QCD [17].
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near the upper x-axis denotes the pion mass of 220 MeV at
eB = 0 in our lattice setup.

In our simulation M⇡(eB = 0) ' 220 MeV and the re-
sulting transition temperature at vanishing magnetic field
estimated via the O(4) scaling analyses and disconnected
chiral susceptibility [54,75,80] is Tpc(eB = 0) ⇡170 MeV.
To investigate the changes in degrees of freedom in QCD
around the transition temperature, we show in Fig. 2 the
temperature dependence of quadratic fluctuations of net
baryon number, electric charge and strangeness, i.e. �B

2 ,
�Q
2 , �

S
2 at various values of magnetic field strength eB.

For visibility we only show results at Nb = 0, 6, 12, 16,
24, 32, 40 and 48 which correspond to eB/M2

⇡(eB = 0) '
0, 6, 13, 17, 26, 34, 42 and 52, respectively. At zero mag-
netic field all the quadratic fluctuations of B, Q and S in-
crease as temperature increases, which is consistent with
previous studies [64, 74]. At low temperature and eB =
0, �B

2 , �Q
2 and �S

2 are dominated by the contributions
from nucleon, pions and kaons, respectively. As the mag-
netic field is turned on, these fluctuations start to increase
faster around the transition temperature, and most strik-
ingly they eventually develop a peak structure in strong
magnetic fields. It can be clearly seen that the inflection
points/peak locations of these quantities shift to lower
temperatures in stronger magnetic fields. This indicates
that changes in the baryon number, electric charge and
strangeness carrying degrees of freedom happen at lower
temperatures in stronger magnetic fields. At eB = 0 the
dissociation temperatures of nucleon, pion and kaon are
relevant to the chiral crossover transition temperature de-
termined from the chiral condensates and susceptibilities.
For instance, it has been suggested that the deconfinement
of strangeness happens at the chiral crossover transition
temperature at eB = 0 [47]. Thus the shifting of inflec-
tion points/peak locations of quantities shown in Fig. 2
to lower temperatures in stronger magnetic fields could
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temperatures with eB 6= 0. This is exactly what can be
seen from the middle panel of Fig. 4. At eB = 0 the ratio
(2�QS

11 ��BS
11 )/�

S
2 is unity at all four temperatures and then

starts to decrease as the magnetic field grows and finally
has to approach to unity after a turning point. Similarly
as observed from the top panel of Fig. 4 the ratio changes
more rapidly as a function of eB at lower temperatures.
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Fig. 4. Isospin symmetry breaking e↵ects manifested in �u
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2

(top), (2�QS
11 ��BS

11 )/�
S
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11 ��BS
11 )/�

BQ
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tom). The dash-dotted lines in all the plots represent the ideal
gas limits and dashed lines denote results in the isospin sym-
metric case.

On the other hand Eq. 28 holds at any temperature
with eB = 0, however, it does not hold true any more with
eB 6= 0 in the ideal gas limit. In the ideal gas limit, where
the correlations among u, d and s vanish, 2�BQ

11 � �BS
11

equals to (4�u
2 � �d

2)/9 while �B
2 = (�u

2 + 2�d
2)/9. In the

ideal gas limit with
p
eB/T ! 1 the ratio of (2�BQ

11 �

�BS
11 )/�

B
2 thus approaches to 7/4 as �u

2 = 2�d
2 (cf. Ta-

ble 1). Values of (2�BQ
11 � �BS

11 )/�
B
2 at eB = 0 and in the

high-temperature limit with
p
eB/T ! 1 thus suggest a

monotonous increasing behavior of the ratio as a function
of eB. This, however, is only the case for two highest tem-
peratures of 211 and 281 MeV, as seen from the bottom
panel of Fig. 4. For lower temperatures, i.e. 169 and 140
MeV, the free limit is approached from above and the ra-
tio thus develops a weak non-monotonous behavior as a
function of eB. We remark that isospin symmetry break-
ing e↵ects are mostly manifested at lower temperatures in
all three quantities shown in Fig. 4.

In the heavy-ion collisions the strength of the mag-
netic field produced in the initial collisions is about 0� 0.6
GeV2 [83]. This corresponds to 0 � 12M2

⇡(eB = 0) with
M⇡(eB = 0) ' 220 MeV in our lattice setup. To probe
isospin symmetry breaking e↵ects experimentally, one in
principle could look at �u

2/�
d
2 expressed in the terms of

quadratic fluctuations and correlations of B, Q and S (cf.
Eq. 4). However, precise measurements of right hands of
Eq. 4 in heavy-ion collision experiments could be di�cult.
As can be observed in Fig. 4 the deviation from the isospin
symmetric case is even larger in (2�BQ

11 � �BS
11 )/�

B
2 than

in �u
2/�

d
2. For instance at eB ' 0.5 GeV2, the former de-

viation is about 50% while the latter is about 80%. Thus
this could render (2�BQ

11 ��BS
11 )/�

B
2 a useful probe for the

isospin symmetry breaking 2.

4.3 Comparisons to Hadron Resonance Gas model &

high-temperature free limit

At low temperatures and zero magnetic fields QCD ther-
modynamics can be well described by the hadron reso-
nance gas model [42]. In the nonzero magnetic fields, the
situation becomes complex as the hadron spectra are mod-
ified by the magnetic field. It has been found that ener-
gies of charged particles, e.g. ⇡+,�(K+,�) obey the lowest
Landau-level (cf. Eq. 9) only at eB . 0.31 GeV2 and then
turn out to deviate from the the lowest Landau-level and
finally decrease at eB & 0.5 GeV2, while those of neu-
tral particles, e.g. neutral pion decreases as eB grows in
full QCD [17]. Since the eB-dependence of neutral parti-
cles’ masses (besides ⇡0, K0, neutron, ⌃0 and ⌅0 [17,23,
84–86]) have not been studied yet in lattice QCD com-
putations, we thus focus on the fluctuations and correla-
tions involving electric charge Q, �BQ

11 , �Q
2 and �QS

11 which
receive no contributions from neutral particles. On the
other hand, the energy of charged hadron obeys the low-
est Landau-level as shown in Eq. 9 at eB . 0.31 GeV2,
in which we have 4 values of eB at each temperature. We
thus focus on the comparison with HRG results in the case
of eB . 0.31 GeV2.

In Fig. 5 we show lattice data of �QS
11 /T

2(left), �Q
2 /T

2

(middle) and �BQ
11 /T 2 (right) as functions of temperature

at various values of eB with Nb = 0, 1, 2, 3 and 4 cor-
responding to eB/M2

⇡ = 0 and eB/M2
⇡ ' 1, 2, 3 and

2 One can also construct quantities without �S
2 to reflect the

isospin symmetry breaking, e.g. (�Q
2 �2�BQ

11 )/(�Q
2 +�BQ

11 ), and
0.5(2�B

2 � �BQ
11 )/(�B

2 + �BQ
11 ). Both of these two quantities ap-

proach to �d
2/�

u
2 in the high-temperature limit.
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temperatures with eB 6= 0. This is exactly what can be
seen from the middle panel of Fig. 4. At eB = 0 the ratio
(2�QS

11 ��BS
11 )/�

S
2 is unity at all four temperatures and then

starts to decrease as the magnetic field grows and finally
has to approach to unity after a turning point. Similarly
as observed from the top panel of Fig. 4 the ratio changes
more rapidly as a function of eB at lower temperatures.
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On the other hand Eq. 28 holds at any temperature
with eB = 0, however, it does not hold true any more with
eB 6= 0 in the ideal gas limit. In the ideal gas limit, where
the correlations among u, d and s vanish, 2�BQ
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11

equals to (4�u
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2)/9 while �B
2 = (�u

2 + 2�d
2)/9. In the

ideal gas limit with
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eB/T ! 1 the ratio of (2�BQ
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2 thus approaches to 7/4 as �u

2 = 2�d
2 (cf. Ta-

ble 1). Values of (2�BQ
11 � �BS

11 )/�
B
2 at eB = 0 and in the

high-temperature limit with
p
eB/T ! 1 thus suggest a

monotonous increasing behavior of the ratio as a function
of eB. This, however, is only the case for two highest tem-
peratures of 211 and 281 MeV, as seen from the bottom
panel of Fig. 4. For lower temperatures, i.e. 169 and 140
MeV, the free limit is approached from above and the ra-
tio thus develops a weak non-monotonous behavior as a
function of eB. We remark that isospin symmetry break-
ing e↵ects are mostly manifested at lower temperatures in
all three quantities shown in Fig. 4.

In the heavy-ion collisions the strength of the mag-
netic field produced in the initial collisions is about 0� 0.6
GeV2 [83]. This corresponds to 0 � 12M2

⇡(eB = 0) with
M⇡(eB = 0) ' 220 MeV in our lattice setup. To probe
isospin symmetry breaking e↵ects experimentally, one in
principle could look at �u

2/�
d
2 expressed in the terms of

quadratic fluctuations and correlations of B, Q and S (cf.
Eq. 4). However, precise measurements of right hands of
Eq. 4 in heavy-ion collision experiments could be di�cult.
As can be observed in Fig. 4 the deviation from the isospin
symmetric case is even larger in (2�BQ
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2 than
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2. For instance at eB ' 0.5 GeV2, the former de-

viation is about 50% while the latter is about 80%. Thus
this could render (2�BQ

11 ��BS
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2 a useful probe for the

isospin symmetry breaking 2.

4.3 Comparisons to Hadron Resonance Gas model &

high-temperature free limit

At low temperatures and zero magnetic fields QCD ther-
modynamics can be well described by the hadron reso-
nance gas model [42]. In the nonzero magnetic fields, the
situation becomes complex as the hadron spectra are mod-
ified by the magnetic field. It has been found that ener-
gies of charged particles, e.g. ⇡+,�(K+,�) obey the lowest
Landau-level (cf. Eq. 9) only at eB . 0.31 GeV2 and then
turn out to deviate from the the lowest Landau-level and
finally decrease at eB & 0.5 GeV2, while those of neu-
tral particles, e.g. neutral pion decreases as eB grows in
full QCD [17]. Since the eB-dependence of neutral parti-
cles’ masses (besides ⇡0, K0, neutron, ⌃0 and ⌅0 [17,23,
84–86]) have not been studied yet in lattice QCD com-
putations, we thus focus on the fluctuations and correla-
tions involving electric charge Q, �BQ

11 , �Q
2 and �QS

11 which
receive no contributions from neutral particles. On the
other hand, the energy of charged hadron obeys the low-
est Landau-level as shown in Eq. 9 at eB . 0.31 GeV2,
in which we have 4 values of eB at each temperature. We
thus focus on the comparison with HRG results in the case
of eB . 0.31 GeV2.

In Fig. 5 we show lattice data of �QS
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2(left), �Q
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(middle) and �BQ
11 /T 2 (right) as functions of temperature
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temperatures with eB 6= 0. This is exactly what can be
seen from the middle panel of Fig. 4. At eB = 0 the ratio
(2�QS

11 ��BS
11 )/�

S
2 is unity at all four temperatures and then

starts to decrease as the magnetic field grows and finally
has to approach to unity after a turning point. Similarly
as observed from the top panel of Fig. 4 the ratio changes
more rapidly as a function of eB at lower temperatures.
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On the other hand Eq. 28 holds at any temperature
with eB = 0, however, it does not hold true any more with
eB 6= 0 in the ideal gas limit. In the ideal gas limit, where
the correlations among u, d and s vanish, 2�BQ
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p
eB/T ! 1 the ratio of (2�BQ

11 �

�BS
11 )/�

B
2 thus approaches to 7/4 as �u

2 = 2�d
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ble 1). Values of (2�BQ
11 � �BS

11 )/�
B
2 at eB = 0 and in the

high-temperature limit with
p
eB/T ! 1 thus suggest a

monotonous increasing behavior of the ratio as a function
of eB. This, however, is only the case for two highest tem-
peratures of 211 and 281 MeV, as seen from the bottom
panel of Fig. 4. For lower temperatures, i.e. 169 and 140
MeV, the free limit is approached from above and the ra-
tio thus develops a weak non-monotonous behavior as a
function of eB. We remark that isospin symmetry break-
ing e↵ects are mostly manifested at lower temperatures in
all three quantities shown in Fig. 4.

In the heavy-ion collisions the strength of the mag-
netic field produced in the initial collisions is about 0� 0.6
GeV2 [83]. This corresponds to 0 � 12M2
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modynamics can be well described by the hadron reso-
nance gas model [42]. In the nonzero magnetic fields, the
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Landau-level (cf. Eq. 9) only at eB . 0.31 GeV2 and then
turn out to deviate from the the lowest Landau-level and
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tral particles, e.g. neutral pion decreases as eB grows in
full QCD [17]. Since the eB-dependence of neutral parti-
cles’ masses (besides ⇡0, K0, neutron, ⌃0 and ⌅0 [17,23,
84–86]) have not been studied yet in lattice QCD com-
putations, we thus focus on the fluctuations and correla-
tions involving electric charge Q, �BQ
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2 and �QS

11 which
receive no contributions from neutral particles. On the
other hand, the energy of charged hadron obeys the low-
est Landau-level as shown in Eq. 9 at eB . 0.31 GeV2,
in which we have 4 values of eB at each temperature. We
thus focus on the comparison with HRG results in the case
of eB . 0.31 GeV2.
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be consistent with a decreasing transition temperature in
larger eB as determined from light quark chiral conden-
sates and the strange quark number susceptibility [19].

On the other hand, it can also be observed from Fig. 2
that the peak height becomes higher in a stronger mag-
netic field. This suggests that the baryon, electric charge
and strangeness carrying degree of freedom changes more
rapidly across the transition in the stronger magnetic field.
The higher peak and faster increasing around the transi-
tion temperature observed in the quadratic fluctuations
of B, Q and S is consistent with the finding that the
strength of transition becomes larger in a stronger mag-
netic field [20,81]. This may signal the approach to a pos-
sible critical end point in the phase diagram in the T -eB
plane as suggested from Ref. [81].

We also show the quadratic correlation among B, Q
and S in Fig. 3. �BQ

11 , which denotes the correlation be-
tween baryon number and electric charge, is dominated
by the contribution from protons at low temperature and
goes to zero in the high-temperature limit with vanishing
quark masses. It thus naturally develops a peak struc-
ture already at zero magnetic field [82], which can also
be observed in our current study. At nonzero magnetic
fields, the peak structure in �BQ

11 becomes more striking
and the peak location also shifts to lower temperatures in
the stronger magnetic field. ��BS

11 and �QS
11 , as shown in

the middle and right panel of Fig. 3, respectively, possess
similar features as seen in �B,Q,S

2 .

4.2 Isospin symmetry breaking e↵ects at nonzero

magnetic fields

In our lattice simulation, the up and down quark masses
are degenerate at eB = 0. Since up and down quarks have
di↵erent electric charge, the isospin symmetry is obviously
broken once the magnetic field is turned on. As seen from
the top panel of Fig. 4 the ratio of up to down quark
number susceptibility, �u

2/�
d
2, is unity at all temperatures

at eB = 0, and becomes larger than 1 at eB 6= 0. As
in the ideal gas limit with

p
eB/T ! 1 �u

2/�
d
2 equals

to 2, it is expected that �u
2/�

d
2 increases from 1 towards

2 as eB grows. Results shown in the top panel of Fig. 4
are consistent with this expectation. It is also interesting
to see that �u

2/�
d
2 increases faster at lower temperatures.

This suggests that the isospin symmetry is broken more
seriously at lower temperatures at a fixed value of eB.

We further investigate the isospin symmetry break-
ing e↵ects at the level of B, Q and S. At eB = 0 due
to the isospin symmetry of up and down quarks, the six
quadratic fluctuations and correlations of B,Q and S are
not independent and constrained by the following two re-
lations as �us

11 = �ds
11

2�QS
11 � �BS

11 = �S
2 , (27)

2�BQ
11 � �BS

11 = �B
2 . (28)

As a consequence of Eq. 22, Eq. 27 also holds true in the
ideal gas limit with eB 6= 0. (2�QS

11 ��BS
11 )/�

S
2 thus equals

to unity at all temperatures with eB = 0 and at high
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be consistent with a decreasing transition temperature in
larger eB as determined from light quark chiral conden-
sates and the strange quark number susceptibility [19].

On the other hand, it can also be observed from Fig. 2
that the peak height becomes higher in a stronger mag-
netic field. This suggests that the baryon, electric charge
and strangeness carrying degree of freedom changes more
rapidly across the transition in the stronger magnetic field.
The higher peak and faster increasing around the transi-
tion temperature observed in the quadratic fluctuations
of B, Q and S is consistent with the finding that the
strength of transition becomes larger in a stronger mag-
netic field [20,81]. This may signal the approach to a pos-
sible critical end point in the phase diagram in the T -eB
plane as suggested from Ref. [81].

We also show the quadratic correlation among B, Q
and S in Fig. 3. �BQ

11 , which denotes the correlation be-
tween baryon number and electric charge, is dominated
by the contribution from protons at low temperature and
goes to zero in the high-temperature limit with vanishing
quark masses. It thus naturally develops a peak struc-
ture already at zero magnetic field [82], which can also
be observed in our current study. At nonzero magnetic
fields, the peak structure in �BQ

11 becomes more striking
and the peak location also shifts to lower temperatures in
the stronger magnetic field. ��BS

11 and �QS
11 , as shown in

the middle and right panel of Fig. 3, respectively, possess
similar features as seen in �B,Q,S

2 .

4.2 Isospin symmetry breaking e↵ects at nonzero

magnetic fields

In our lattice simulation, the up and down quark masses
are degenerate at eB = 0. Since up and down quarks have
di↵erent electric charge, the isospin symmetry is obviously
broken once the magnetic field is turned on. As seen from
the top panel of Fig. 4 the ratio of up to down quark
number susceptibility, �u

2/�
d
2, is unity at all temperatures

at eB = 0, and becomes larger than 1 at eB 6= 0. As
in the ideal gas limit with

p
eB/T ! 1 �u

2/�
d
2 equals

to 2, it is expected that �u
2/�

d
2 increases from 1 towards

2 as eB grows. Results shown in the top panel of Fig. 4
are consistent with this expectation. It is also interesting
to see that �u

2/�
d
2 increases faster at lower temperatures.

This suggests that the isospin symmetry is broken more
seriously at lower temperatures at a fixed value of eB.

We further investigate the isospin symmetry break-
ing e↵ects at the level of B, Q and S. At eB = 0 due
to the isospin symmetry of up and down quarks, the six
quadratic fluctuations and correlations of B,Q and S are
not independent and constrained by the following two re-
lations as �us

11 = �ds
11

2�QS
11 � �BS

11 = �S
2 , (27)

2�BQ
11 � �BS

11 = �B
2 . (28)

As a consequence of Eq. 22, Eq. 27 also holds true in the
ideal gas limit with eB 6= 0. (2�QS

11 ��BS
11 )/�

S
2 thus equals

to unity at all temperatures with eB = 0 and at high
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be consistent with a decreasing transition temperature in
larger eB as determined from light quark chiral conden-
sates and the strange quark number susceptibility [19].

On the other hand, it can also be observed from Fig. 2
that the peak height becomes higher in a stronger mag-
netic field. This suggests that the baryon, electric charge
and strangeness carrying degree of freedom changes more
rapidly across the transition in the stronger magnetic field.
The higher peak and faster increasing around the transi-
tion temperature observed in the quadratic fluctuations
of B, Q and S is consistent with the finding that the
strength of transition becomes larger in a stronger mag-
netic field [20,81]. This may signal the approach to a pos-
sible critical end point in the phase diagram in the T -eB
plane as suggested from Ref. [81].

We also show the quadratic correlation among B, Q
and S in Fig. 3. �BQ

11 , which denotes the correlation be-
tween baryon number and electric charge, is dominated
by the contribution from protons at low temperature and
goes to zero in the high-temperature limit with vanishing
quark masses. It thus naturally develops a peak struc-
ture already at zero magnetic field [82], which can also
be observed in our current study. At nonzero magnetic
fields, the peak structure in �BQ

11 becomes more striking
and the peak location also shifts to lower temperatures in
the stronger magnetic field. ��BS

11 and �QS
11 , as shown in

the middle and right panel of Fig. 3, respectively, possess
similar features as seen in �B,Q,S

2 .

4.2 Isospin symmetry breaking e↵ects at nonzero

magnetic fields

In our lattice simulation, the up and down quark masses
are degenerate at eB = 0. Since up and down quarks have
di↵erent electric charge, the isospin symmetry is obviously
broken once the magnetic field is turned on. As seen from
the top panel of Fig. 4 the ratio of up to down quark
number susceptibility, �u

2/�
d
2, is unity at all temperatures

at eB = 0, and becomes larger than 1 at eB 6= 0. As
in the ideal gas limit with

p
eB/T ! 1 �u

2/�
d
2 equals

to 2, it is expected that �u
2/�

d
2 increases from 1 towards

2 as eB grows. Results shown in the top panel of Fig. 4
are consistent with this expectation. It is also interesting
to see that �u

2/�
d
2 increases faster at lower temperatures.

This suggests that the isospin symmetry is broken more
seriously at lower temperatures at a fixed value of eB.

We further investigate the isospin symmetry break-
ing e↵ects at the level of B, Q and S. At eB = 0 due
to the isospin symmetry of up and down quarks, the six
quadratic fluctuations and correlations of B,Q and S are
not independent and constrained by the following two re-
lations as �us

11 = �ds
11

2�QS
11 � �BS

11 = �S
2 , (27)

2�BQ
11 � �BS

11 = �B
2 . (28)

As a consequence of Eq. 22, Eq. 27 also holds true in the
ideal gas limit with eB 6= 0. (2�QS

11 ��BS
11 )/�

S
2 thus equals

to unity at all temperatures with eB = 0 and at high
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Fig. 2. Temperature dependence of quadratic fluctuations of B,Q, S at various values of Nb. The corresponding values of eB
can be found in Table 2. From left to right: �B

2 /T
2, �Q
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2, �S

2/T
2. Bands denote the spline fits to data.
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be consistent with a decreasing transition temperature in
larger eB as determined from light quark chiral conden-
sates and the strange quark number susceptibility [19].

On the other hand, it can also be observed from Fig. 2
that the peak height becomes higher in a stronger mag-
netic field. This suggests that the baryon, electric charge
and strangeness carrying degree of freedom changes more
rapidly across the transition in the stronger magnetic field.
The higher peak and faster increasing around the transi-
tion temperature observed in the quadratic fluctuations
of B, Q and S is consistent with the finding that the
strength of transition becomes larger in a stronger mag-
netic field [20,81]. This may signal the approach to a pos-
sible critical end point in the phase diagram in the T -eB
plane as suggested from Ref. [81].

We also show the quadratic correlation among B, Q
and S in Fig. 3. �BQ

11 , which denotes the correlation be-
tween baryon number and electric charge, is dominated
by the contribution from protons at low temperature and
goes to zero in the high-temperature limit with vanishing
quark masses. It thus naturally develops a peak struc-
ture already at zero magnetic field [82], which can also
be observed in our current study. At nonzero magnetic
fields, the peak structure in �BQ

11 becomes more striking
and the peak location also shifts to lower temperatures in
the stronger magnetic field. ��BS

11 and �QS
11 , as shown in

the middle and right panel of Fig. 3, respectively, possess
similar features as seen in �B,Q,S

2 .

4.2 Isospin symmetry breaking e↵ects at nonzero

magnetic fields

In our lattice simulation, the up and down quark masses
are degenerate at eB = 0. Since up and down quarks have
di↵erent electric charge, the isospin symmetry is obviously
broken once the magnetic field is turned on. As seen from
the top panel of Fig. 4 the ratio of up to down quark
number susceptibility, �u

2/�
d
2, is unity at all temperatures

at eB = 0, and becomes larger than 1 at eB 6= 0. As
in the ideal gas limit with

p
eB/T ! 1 �u

2/�
d
2 equals

to 2, it is expected that �u
2/�

d
2 increases from 1 towards

2 as eB grows. Results shown in the top panel of Fig. 4
are consistent with this expectation. It is also interesting
to see that �u

2/�
d
2 increases faster at lower temperatures.

This suggests that the isospin symmetry is broken more
seriously at lower temperatures at a fixed value of eB.

We further investigate the isospin symmetry break-
ing e↵ects at the level of B, Q and S. At eB = 0 due
to the isospin symmetry of up and down quarks, the six
quadratic fluctuations and correlations of B,Q and S are
not independent and constrained by the following two re-
lations as �us

11 = �ds
11

2�QS
11 � �BS

11 = �S
2 , (27)

2�BQ
11 � �BS

11 = �B
2 . (28)

As a consequence of Eq. 22, Eq. 27 also holds true in the
ideal gas limit with eB 6= 0. (2�QS

11 ��BS
11 )/�

S
2 thus equals

to unity at all temperatures with eB = 0 and at high
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be consistent with a decreasing transition temperature in
larger eB as determined from light quark chiral conden-
sates and the strange quark number susceptibility [19].

On the other hand, it can also be observed from Fig. 2
that the peak height becomes higher in a stronger mag-
netic field. This suggests that the baryon, electric charge
and strangeness carrying degree of freedom changes more
rapidly across the transition in the stronger magnetic field.
The higher peak and faster increasing around the transi-
tion temperature observed in the quadratic fluctuations
of B, Q and S is consistent with the finding that the
strength of transition becomes larger in a stronger mag-
netic field [20,81]. This may signal the approach to a pos-
sible critical end point in the phase diagram in the T -eB
plane as suggested from Ref. [81].

We also show the quadratic correlation among B, Q
and S in Fig. 3. �BQ

11 , which denotes the correlation be-
tween baryon number and electric charge, is dominated
by the contribution from protons at low temperature and
goes to zero in the high-temperature limit with vanishing
quark masses. It thus naturally develops a peak struc-
ture already at zero magnetic field [82], which can also
be observed in our current study. At nonzero magnetic
fields, the peak structure in �BQ

11 becomes more striking
and the peak location also shifts to lower temperatures in
the stronger magnetic field. ��BS

11 and �QS
11 , as shown in

the middle and right panel of Fig. 3, respectively, possess
similar features as seen in �B,Q,S

2 .

4.2 Isospin symmetry breaking e↵ects at nonzero

magnetic fields

In our lattice simulation, the up and down quark masses
are degenerate at eB = 0. Since up and down quarks have
di↵erent electric charge, the isospin symmetry is obviously
broken once the magnetic field is turned on. As seen from
the top panel of Fig. 4 the ratio of up to down quark
number susceptibility, �u

2/�
d
2, is unity at all temperatures

at eB = 0, and becomes larger than 1 at eB 6= 0. As
in the ideal gas limit with

p
eB/T ! 1 �u

2/�
d
2 equals

to 2, it is expected that �u
2/�

d
2 increases from 1 towards

2 as eB grows. Results shown in the top panel of Fig. 4
are consistent with this expectation. It is also interesting
to see that �u

2/�
d
2 increases faster at lower temperatures.

This suggests that the isospin symmetry is broken more
seriously at lower temperatures at a fixed value of eB.

We further investigate the isospin symmetry break-
ing e↵ects at the level of B, Q and S. At eB = 0 due
to the isospin symmetry of up and down quarks, the six
quadratic fluctuations and correlations of B,Q and S are
not independent and constrained by the following two re-
lations as �us

11 = �ds
11

2�QS
11 � �BS

11 = �S
2 , (27)

2�BQ
11 � �BS

11 = �B
2 . (28)

As a consequence of Eq. 22, Eq. 27 also holds true in the
ideal gas limit with eB 6= 0. (2�QS

11 ��BS
11 )/�

S
2 thus equals

to unity at all temperatures with eB = 0 and at high
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be consistent with a decreasing transition temperature in
larger eB as determined from light quark chiral conden-
sates and the strange quark number susceptibility [19].

On the other hand, it can also be observed from Fig. 2
that the peak height becomes higher in a stronger mag-
netic field. This suggests that the baryon, electric charge
and strangeness carrying degree of freedom changes more
rapidly across the transition in the stronger magnetic field.
The higher peak and faster increasing around the transi-
tion temperature observed in the quadratic fluctuations
of B, Q and S is consistent with the finding that the
strength of transition becomes larger in a stronger mag-
netic field [20,81]. This may signal the approach to a pos-
sible critical end point in the phase diagram in the T -eB
plane as suggested from Ref. [81].

We also show the quadratic correlation among B, Q
and S in Fig. 3. �BQ

11 , which denotes the correlation be-
tween baryon number and electric charge, is dominated
by the contribution from protons at low temperature and
goes to zero in the high-temperature limit with vanishing
quark masses. It thus naturally develops a peak struc-
ture already at zero magnetic field [82], which can also
be observed in our current study. At nonzero magnetic
fields, the peak structure in �BQ

11 becomes more striking
and the peak location also shifts to lower temperatures in
the stronger magnetic field. ��BS

11 and �QS
11 , as shown in

the middle and right panel of Fig. 3, respectively, possess
similar features as seen in �B,Q,S

2 .

4.2 Isospin symmetry breaking e↵ects at nonzero

magnetic fields

In our lattice simulation, the up and down quark masses
are degenerate at eB = 0. Since up and down quarks have
di↵erent electric charge, the isospin symmetry is obviously
broken once the magnetic field is turned on. As seen from
the top panel of Fig. 4 the ratio of up to down quark
number susceptibility, �u

2/�
d
2, is unity at all temperatures

at eB = 0, and becomes larger than 1 at eB 6= 0. As
in the ideal gas limit with

p
eB/T ! 1 �u

2/�
d
2 equals

to 2, it is expected that �u
2/�

d
2 increases from 1 towards

2 as eB grows. Results shown in the top panel of Fig. 4
are consistent with this expectation. It is also interesting
to see that �u

2/�
d
2 increases faster at lower temperatures.

This suggests that the isospin symmetry is broken more
seriously at lower temperatures at a fixed value of eB.

We further investigate the isospin symmetry break-
ing e↵ects at the level of B, Q and S. At eB = 0 due
to the isospin symmetry of up and down quarks, the six
quadratic fluctuations and correlations of B,Q and S are
not independent and constrained by the following two re-
lations as �us

11 = �ds
11

2�QS
11 � �BS

11 = �S
2 , (27)

2�BQ
11 � �BS

11 = �B
2 . (28)

As a consequence of Eq. 22, Eq. 27 also holds true in the
ideal gas limit with eB 6= 0. (2�QS

11 ��BS
11 )/�

S
2 thus equals

to unity at all temperatures with eB = 0 and at high

eB
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Fig. 5. Comparisons of �QS
11 /T 2 (left), �Q

2 /T
2 (middle) and �BQ

11 /T 2 (right) with results obtained from the HRG model and
ideal gas limit. The dashed lines having the same colors as the lattice data denote corresponding HRG results using hadron
spectrum obtained from PDG [67], while the solid lines represent the corresponding free limits at each value of eB. For visibility
the solid lines are plotted starting from di↵erent temperature values.

Fig. 6. Ratios to corresponding ideal gas limits as a function of
p
eB/T . Top: �B

2 /�
B,free
2 , �Q

2 /�
Q,free
2 and �S

2/�
S,free
2 from left

to right. Bottom: �BQ,free
11 /�BQ

11 , �BS
11 /�

BS,free
11 and �QS

11 /�QS,free
11 from left to right.

4, respectively. Also shown are the results obtained from
HRG (cf. Eq. 10) 3 denoted as dashed lines, and from
ideal gas limit (cf. Eqs. 20, 17 and 19) denoted as solid
lines. It can be seen from the left panel of Fig. 5 that
�QS
11 , which is dominated by charged kaons at low tem-

peratures, is almost eB independent within the current
eB window at T . 281 MeV4. On the other hand, the
HRG results, which grow exponentially from zero, also
show mild eB-dependence and give a good description of

3 Here in the HRG calculations we adopt the PDG hadron
spectrum except that at eB = 0 masses of pion, kaon and
⇢ determined in our current lattice setup are used instead of
those listed in PDG.

4 The eB-dependence seen at T ' 70 MeV could be due
to the statistics-hungry nature of the observables at low tem-
perature and insu�cient statistics we have in the simulation,
similar in the cases of �Q

2 and �BQ
11 .

the lattice data of �QS
11 at T . 169 MeV. The lattice data

of �Q
2 has slightly larger eB-dependence compared to �QS

11
only at T ' 169 MeV. This might be understood that
the pion masses are more a↵ected compared to kaons by
the magnetic field [17]. As at eB = 0 �Q

2 is dominated
by charged pions at low temperatures and the pion spec-
trum is strongly a↵ected by the taste symmetry violation
in the staggered formalism, here in the HRG computation
of �Q

2 we adopt the corresponding root-mean-squared pion
mass instead of the Goldstone pion mass. It can be seen
from the middle panel of Fig. 5 that the HRG results start
to have considerable eB-dependences already at T & 140
MeV, and they can only describe the lattice data reason-
ably well at T . 140 MeV.

In the right panel of Fig. 5 it can be seen that the lat-
tice data of �BQ

11 possess the largest eB-dependence among
the three observables considered here, i.e. significant ef-
fects induced by eB are clearly shown already at T & 140
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11 /T 2 (right) with results obtained from the HRG model and
ideal gas limit. The dashed lines having the same colors as the lattice data denote corresponding HRG results using hadron
spectrum obtained from PDG [67], while the solid lines represent the corresponding free limits at each value of eB. For visibility
the solid lines are plotted starting from di↵erent temperature values.
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peratures, is almost eB independent within the current
eB window at T . 281 MeV4. On the other hand, the
HRG results, which grow exponentially from zero, also
show mild eB-dependence and give a good description of

3 Here in the HRG calculations we adopt the PDG hadron
spectrum except that at eB = 0 masses of pion, kaon and
⇢ determined in our current lattice setup are used instead of
those listed in PDG.

4 The eB-dependence seen at T ' 70 MeV could be due
to the statistics-hungry nature of the observables at low tem-
perature and insu�cient statistics we have in the simulation,
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2 is dominated
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trum is strongly a↵ected by the taste symmetry violation
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mass instead of the Goldstone pion mass. It can be seen
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to have considerable eB-dependences already at T & 140
MeV, and they can only describe the lattice data reason-
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In the right panel of Fig. 5 it can be seen that the lat-
tice data of �BQ
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Fig. 7. �B
2 /�

S
2 (left), �B

2 /�
QS
11 (middle) and �3�BS

11 /�S
2 (right) as a function of eB. The dashed lines denote the ideal gas limits

at eB = 0 while the solid lines denote the ideal gas limits with
p
eB/T ! 1.

MeV. This might be due to the complex eB dependence of
charged baryons [23]. The HRG results for �BQ

11 , similar as
those for �Q

11 and �QS
11 , increase exponentially in tempera-

ture from zero to higher values and start to be nonzero at
lower temperatures as eB grows. Thus the description of
HRG to both �BQ

11 and �Q
2 breaks down at lower temper-

atures as eB grows. This is consistent with the fact that
the transition temperature becomes lower with larger eB
as HRG is supposed to describe the lattice data only in
the low-temperature phase of QCD.

In Fig. 5 �QS
11 /T

2, �Q
2 /T

2 and �BQ
11 /T 2 are observed

to approach to the ideal gas limit as temperature and eB
become larger. As discussed in Section 2.2 the quadratic
fluctuations and correlations of B, Q and S scale withp
eB/T in the high-temperature limit, we show in Fig. 6

the five quadratic fluctuations and correlations of B, Q
and S divided by their corresponding values in the free
limit as function of

p
eB/T (cf. Eqs. 16-21), and for �BQ

11 ,

we rather show �BQ,free
11 /�BQ

11 as �BQ
11 = 0 in the ideal

gas limit at eB = 0. One can clearly see that all the six
ratios approach to 1 as

p
eB/T grows at all four di↵er-

ent temperatures, and the ratios increase faster at lower
temperatures. The former observation can be understood
as the temperature divided by Tpc(eB) becomes larger in
the stronger magnetic fields since the transition tempera-
ture Tpc(eB) reduces as eB grows. The latter observation
could be mainly because at a lower temperature, e.g. T =
140 MeV, the degree of freedom in the system changes
dramatically from confined hadron phase to deconfined
quark-gluon plasma phase, while at the high temperature,
e.g. T & 211 MeV, the system is already in the deconfined
quark-gluon plasma phase at eB = 0, and is just pushed
deeper into the deconfined phase with increasing eB. The
other interesting observation is that all the fluctuations
and correlations of B, Q and S at all temperatures ex-
cept �BQ

11 approach to the free limit from below. �BQ
11 , on

the other hand, approach to the free limit from above at
T =169, 211 and 281 MeV, and firstly approach its free
limit from above and then from below at T = 140 MeV.
This might be explained as vanishing B-Q correlation in
the high-temperature limit at eB = 0 and the complex
baryon spectrum in the magnetic field.

In Fig. 7 we show ratios of �B
2 /�

S
2 (left), �B

2 /�
QS
11 (mid-

dle) and �3�BS
11 /�S

2 (right) as function of eB in the phe-
nomenologically interesting temperature region T & 140
MeV. �B

2 /�
S
2 equals to 1/3 in the ideal gas limit at eB =

0, while it increases to 4/9 in the ideal gas limit with
p
eB/T ! 1. At eB = 0 �B

2 /�
S
2 approaches the ideal gas

limit from above in the current temperature window. As
the magnetic field is turned on, �B

2 /�
S
2 at T = 281 MeV in-

creases slowly as eB grows and tends to approach the ideal
gas limit with

p
eB/T ! 1 from the above as well. As

temperature becomes lower �B
2 /�

S
2 increases faster in eB

and develops a non-monotonous behavior in eB at the two
lowest temperatures. And at a lower temperature �B

2 /�
S
2

also starts to decrease at a smaller value of eB. Similar
features can also be observed in �B

2 /�
QS
11 .

The ratio of baryon-strangeness correlation to
strangeness fluctuation, �3�BS

11 /�
S
2 , as shown in the right

panel of Fig. 7,is also of interest. The free limit of�3�BS
11 /�

S
2 ,

no matter whether the magnetic field is present or not, is
always 1. At T = 281 MeV, �3�BS

11 /�
S
2 already equals

to 1 at eB = 0, and the presence of magnetic field thus
does not bring any change to this quantity. At lower tem-
peratures, i.e. T < 281 MeV, where �3�BS

11 /�
S
2 < 1 at

eB=0, the presence of magnetic field thus brings the ratio
up towards to 1. Similar as learned before from Fig. 6,
�B
2 /�

S
2 and �B

2 /�
QS
11 , �3�BS

11 /�
S
2 has the most significant

eB�dependence at the lowest temperature. This suggests
that the magnetic field fosters the transition, which is con-
sistent with the fact that the transition temperature re-
duces as eB grows. In particular, even at T =140 MeV
�3�BS

11 /�
S
2 can be induced to its free limit with eB & 2

GeV2, while �B
2 /�

S
2 and �B

2 /�
BS
11 are about 60% and 80%

away from the free limit, respectively.

As discussed in previous subsection, eB produced in
heavy-ion collision experiments can reach up to ⇠12M2

⇡ .
At eB ⇠ 0.5 GeV2 (Nb = 10) for instance, the ratios of
�B
2 /�

S
2 divided by its value at eB = 0 are about 2.7 and

1.5 at T = 140 and 169 MeV, respectively. For �3�BS
11 /�

S
2

the ratios are about 1.8 at T = 140 MeV and 1.2 at T =
169 MeV. The change of �B

2 /�
QS
11 at eB ⇠ 0.5 GeV2 as

compared to the case of eB = 0 is most significant, i.e.
the ratios are about 4 at T =140 MeV and 1.8 at T =169
MeV.
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the ratios are about 4 at T =140 MeV and 1.8 at T =169
MeV.
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Fig. 7. �B
2 /�

S
2 (left), �B

2 /�
QS
11 (middle) and �3�BS

11 /�S
2 (right) as a function of eB. The dashed lines denote the ideal gas limits

at eB = 0 while the solid lines denote the ideal gas limits with
p
eB/T ! 1.

MeV. This might be due to the complex eB dependence of
charged baryons [23]. The HRG results for �BQ

11 , similar as
those for �Q

11 and �QS
11 , increase exponentially in tempera-

ture from zero to higher values and start to be nonzero at
lower temperatures as eB grows. Thus the description of
HRG to both �BQ

11 and �Q
2 breaks down at lower temper-

atures as eB grows. This is consistent with the fact that
the transition temperature becomes lower with larger eB
as HRG is supposed to describe the lattice data only in
the low-temperature phase of QCD.

In Fig. 5 �QS
11 /T

2, �Q
2 /T

2 and �BQ
11 /T 2 are observed

to approach to the ideal gas limit as temperature and eB
become larger. As discussed in Section 2.2 the quadratic
fluctuations and correlations of B, Q and S scale withp
eB/T in the high-temperature limit, we show in Fig. 6

the five quadratic fluctuations and correlations of B, Q
and S divided by their corresponding values in the free
limit as function of

p
eB/T (cf. Eqs. 16-21), and for �BQ

11 ,

we rather show �BQ,free
11 /�BQ

11 as �BQ
11 = 0 in the ideal

gas limit at eB = 0. One can clearly see that all the six
ratios approach to 1 as

p
eB/T grows at all four di↵er-

ent temperatures, and the ratios increase faster at lower
temperatures. The former observation can be understood
as the temperature divided by Tpc(eB) becomes larger in
the stronger magnetic fields since the transition tempera-
ture Tpc(eB) reduces as eB grows. The latter observation
could be mainly because at a lower temperature, e.g. T =
140 MeV, the degree of freedom in the system changes
dramatically from confined hadron phase to deconfined
quark-gluon plasma phase, while at the high temperature,
e.g. T & 211 MeV, the system is already in the deconfined
quark-gluon plasma phase at eB = 0, and is just pushed
deeper into the deconfined phase with increasing eB. The
other interesting observation is that all the fluctuations
and correlations of B, Q and S at all temperatures ex-
cept �BQ

11 approach to the free limit from below. �BQ
11 , on

the other hand, approach to the free limit from above at
T =169, 211 and 281 MeV, and firstly approach its free
limit from above and then from below at T = 140 MeV.
This might be explained as vanishing B-Q correlation in
the high-temperature limit at eB = 0 and the complex
baryon spectrum in the magnetic field.

In Fig. 7 we show ratios of �B
2 /�

S
2 (left), �B

2 /�
QS
11 (mid-

dle) and �3�BS
11 /�S

2 (right) as function of eB in the phe-
nomenologically interesting temperature region T & 140
MeV. �B

2 /�
S
2 equals to 1/3 in the ideal gas limit at eB =

0, while it increases to 4/9 in the ideal gas limit with
p
eB/T ! 1. At eB = 0 �B

2 /�
S
2 approaches the ideal gas

limit from above in the current temperature window. As
the magnetic field is turned on, �B

2 /�
S
2 at T = 281 MeV in-

creases slowly as eB grows and tends to approach the ideal
gas limit with

p
eB/T ! 1 from the above as well. As

temperature becomes lower �B
2 /�

S
2 increases faster in eB

and develops a non-monotonous behavior in eB at the two
lowest temperatures. And at a lower temperature �B

2 /�
S
2

also starts to decrease at a smaller value of eB. Similar
features can also be observed in �B

2 /�
QS
11 .

The ratio of baryon-strangeness correlation to
strangeness fluctuation, �3�BS

11 /�
S
2 , as shown in the right

panel of Fig. 7,is also of interest. The free limit of�3�BS
11 /�

S
2 ,

no matter whether the magnetic field is present or not, is
always 1. At T = 281 MeV, �3�BS

11 /�
S
2 already equals

to 1 at eB = 0, and the presence of magnetic field thus
does not bring any change to this quantity. At lower tem-
peratures, i.e. T < 281 MeV, where �3�BS

11 /�
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2 < 1 at

eB=0, the presence of magnetic field thus brings the ratio
up towards to 1. Similar as learned before from Fig. 6,
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11 , �3�BS

11 /�
S
2 has the most significant

eB�dependence at the lowest temperature. This suggests
that the magnetic field fosters the transition, which is con-
sistent with the fact that the transition temperature re-
duces as eB grows. In particular, even at T =140 MeV
�3�BS

11 /�
S
2 can be induced to its free limit with eB & 2

GeV2, while �B
2 /�

S
2 and �B

2 /�
BS
11 are about 60% and 80%

away from the free limit, respectively.

As discussed in previous subsection, eB produced in
heavy-ion collision experiments can reach up to ⇠12M2

⇡ .
At eB ⇠ 0.5 GeV2 (Nb = 10) for instance, the ratios of
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2 /�
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2 divided by its value at eB = 0 are about 2.7 and
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the ratios are about 1.8 at T = 140 MeV and 1.2 at T =
169 MeV. The change of �B

2 /�
QS
11 at eB ⇠ 0.5 GeV2 as

compared to the case of eB = 0 is most significant, i.e.
the ratios are about 4 at T =140 MeV and 1.8 at T =169
MeV.
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quark-gluon plasma phase at eB = 0, and is just pushed
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T =169, 211 and 281 MeV, and firstly approach its free
limit from above and then from below at T = 140 MeV.
This might be explained as vanishing B-Q correlation in
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2 , as shown in the right

panel of Fig. 7,is also of interest. The free limit of�3�BS
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2 ,

no matter whether the magnetic field is present or not, is
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2 already equals

to 1 at eB = 0, and the presence of magnetic field thus
does not bring any change to this quantity. At lower tem-
peratures, i.e. T < 281 MeV, where �3�BS
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2 < 1 at
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up towards to 1. Similar as learned before from Fig. 6,
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QS
11 , �3�BS
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2 has the most significant

eB�dependence at the lowest temperature. This suggests
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sistent with the fact that the transition temperature re-
duces as eB grows. In particular, even at T =140 MeV
�3�BS
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2 can be induced to its free limit with eB & 2

GeV2, while �B
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S
2 and �B
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11 are about 60% and 80%

away from the free limit, respectively.

As discussed in previous subsection, eB produced in
heavy-ion collision experiments can reach up to ⇠12M2

⇡ .
At eB ⇠ 0.5 GeV2 (Nb = 10) for instance, the ratios of
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2 divided by its value at eB = 0 are about 2.7 and

1.5 at T = 140 and 169 MeV, respectively. For �3�BS
11 /�

S
2

the ratios are about 1.8 at T = 140 MeV and 1.2 at T =
169 MeV. The change of �B

2 /�
QS
11 at eB ⇠ 0.5 GeV2 as

compared to the case of eB = 0 is most significant, i.e.
the ratios are about 4 at T =140 MeV and 1.8 at T =169
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MeV. This might be due to the complex eB dependence of
charged baryons [23]. The HRG results for �BQ

11 , similar as
those for �Q

11 and �QS
11 , increase exponentially in tempera-

ture from zero to higher values and start to be nonzero at
lower temperatures as eB grows. Thus the description of
HRG to both �BQ

11 and �Q
2 breaks down at lower temper-

atures as eB grows. This is consistent with the fact that
the transition temperature becomes lower with larger eB
as HRG is supposed to describe the lattice data only in
the low-temperature phase of QCD.

In Fig. 5 �QS
11 /T

2, �Q
2 /T

2 and �BQ
11 /T 2 are observed

to approach to the ideal gas limit as temperature and eB
become larger. As discussed in Section 2.2 the quadratic
fluctuations and correlations of B, Q and S scale withp
eB/T in the high-temperature limit, we show in Fig. 6

the five quadratic fluctuations and correlations of B, Q
and S divided by their corresponding values in the free
limit as function of

p
eB/T (cf. Eqs. 16-21), and for �BQ

11 ,

we rather show �BQ,free
11 /�BQ

11 as �BQ
11 = 0 in the ideal

gas limit at eB = 0. One can clearly see that all the six
ratios approach to 1 as

p
eB/T grows at all four di↵er-

ent temperatures, and the ratios increase faster at lower
temperatures. The former observation can be understood
as the temperature divided by Tpc(eB) becomes larger in
the stronger magnetic fields since the transition tempera-
ture Tpc(eB) reduces as eB grows. The latter observation
could be mainly because at a lower temperature, e.g. T =
140 MeV, the degree of freedom in the system changes
dramatically from confined hadron phase to deconfined
quark-gluon plasma phase, while at the high temperature,
e.g. T & 211 MeV, the system is already in the deconfined
quark-gluon plasma phase at eB = 0, and is just pushed
deeper into the deconfined phase with increasing eB. The
other interesting observation is that all the fluctuations
and correlations of B, Q and S at all temperatures ex-
cept �BQ

11 approach to the free limit from below. �BQ
11 , on

the other hand, approach to the free limit from above at
T =169, 211 and 281 MeV, and firstly approach its free
limit from above and then from below at T = 140 MeV.
This might be explained as vanishing B-Q correlation in
the high-temperature limit at eB = 0 and the complex
baryon spectrum in the magnetic field.

In Fig. 7 we show ratios of �B
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11 (mid-
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0, while it increases to 4/9 in the ideal gas limit with
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2 approaches the ideal gas

limit from above in the current temperature window. As
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creases slowly as eB grows and tends to approach the ideal
gas limit with

p
eB/T ! 1 from the above as well. As

temperature becomes lower �B
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2 increases faster in eB

and develops a non-monotonous behavior in eB at the two
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S
2

also starts to decrease at a smaller value of eB. Similar
features can also be observed in �B

2 /�
QS
11 .

The ratio of baryon-strangeness correlation to
strangeness fluctuation, �3�BS

11 /�
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2 , as shown in the right

panel of Fig. 7,is also of interest. The free limit of�3�BS
11 /�
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2 ,

no matter whether the magnetic field is present or not, is
always 1. At T = 281 MeV, �3�BS
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S
2 already equals

to 1 at eB = 0, and the presence of magnetic field thus
does not bring any change to this quantity. At lower tem-
peratures, i.e. T < 281 MeV, where �3�BS
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2 < 1 at

eB=0, the presence of magnetic field thus brings the ratio
up towards to 1. Similar as learned before from Fig. 6,
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S
2 and �B
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QS
11 , �3�BS

11 /�
S
2 has the most significant

eB�dependence at the lowest temperature. This suggests
that the magnetic field fosters the transition, which is con-
sistent with the fact that the transition temperature re-
duces as eB grows. In particular, even at T =140 MeV
�3�BS
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2 can be induced to its free limit with eB & 2

GeV2, while �B
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S
2 and �B
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11 are about 60% and 80%

away from the free limit, respectively.

As discussed in previous subsection, eB produced in
heavy-ion collision experiments can reach up to ⇠12M2

⇡ .
At eB ⇠ 0.5 GeV2 (Nb = 10) for instance, the ratios of
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S
2 divided by its value at eB = 0 are about 2.7 and

1.5 at T = 140 and 169 MeV, respectively. For �3�BS
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2

the ratios are about 1.8 at T = 140 MeV and 1.2 at T =
169 MeV. The change of �B
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compared to the case of eB = 0 is most significant, i.e.
the ratios are about 4 at T =140 MeV and 1.8 at T =169
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as HRG is supposed to describe the lattice data only in
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11 = 0 in the ideal

gas limit at eB = 0. One can clearly see that all the six
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140 MeV, the degree of freedom in the system changes
dramatically from confined hadron phase to deconfined
quark-gluon plasma phase, while at the high temperature,
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the high-temperature limit at eB = 0 and the complex
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the ratios are about 4 at T =140 MeV and 1.8 at T =169
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Summary and outlook

A possible Z(2) second order phase transition at 
sufficiently high eB 
The study at finite eB with physical pion mass is in 
progress 

No superconducting phase is found in our eB 
window 
eB fosters the phase transition 
At lower T, as eB grows, the degree of freedom 
changes faster 
Several quantities might be useful to probe eB in 
Heavy ion collision experiments


