Meson thermal masses at non-zero temperature

Sergio Chaves García-Mascaraque Simon Hands, Gert Aarts, Tim Burns, Benjamin Jaeger

Swansea University. FASTSUM collaboration

What happens to the mesons when the medium is heated up?

1. Objectives of the project

Study melting/deconfinement of mesonic groundstates M_0 as a function of temperature.

Can we extract information about symmetry restoration and degeneracies?

2. Overview of the project (1)

Thermal correlation functions $C(\tau)$

Regression analysis using spectral decomposition in periodic lattices (2)

Ground state mass M_o

- Various $T = \frac{1}{N_{\tau} a_{\tau}}$
- Various flavours
- Various operators

- Multistate analysis
- Variational fit windows

- Dependence $M_o(T)$?
- Symmetry restoration?

- (1). The results presented correspond to finite lattice spacing. No continuum limit taken
- (2). Difficult; states in spectrum are not described by simple delta-functions as $T\gg 0$

3. Setup of the project

(1). FASTSUM collaboration GEN2L ensembles

3. Setup of the project

Important lattice parameters (1)

$a_{\tau}[\text{fm}]$ (2)	a_s [fm]	$\zeta = a_s/a_{\tau}$	T_c [MeV] (3)	M_{π} [MeV]	N_s	$m_\pi { m L}$
0.0030(2)	0.01136(6)	3.453(6)	164(2)	236(2)	32	4.36

- (1). 2007.04188
- (2). $1/a_{\tau} = 5.997(34)$ [GeV]
- (3). Using inflection point of renormalised chiral condensate

4. Available mesons

Note:

- 1. No disconnected contributions calculated. We only have access to non-singlet flavour operators.
- 2. Local-local (ll) and smeared-smeared (ss) operators available. (1)

(1). 10.1103/PhysRevD.69.054501 ($\rho = 0.14$, isotropic, 2 steps)

5. Regression analysis (1)

Problems Solutions proposed

Data is heavily correlated at different au

Single-state fits only valid in narrow window

No previous prior knowledge on parameters

Fixing the fit window includes bias

Correlated fits

Multi-state regression

Parameter initialisation; M_{eff} and fits

Variable fit window *FW*

A fit window $FW(t_0, t_f)$ means that we fit using all *times* that fulfill $\tau \in FW(t_0, t_f) = [t_0, t_f]$

(1). Based on the procedure presented in 10.1103/PhysRevD.100.094510

6. Analysis at fixed window $FW(t_0, t_f)$

Define N_m models with different number of states

Perform N_m correlated fits

Compute Akaike for each model (AIC_c)

•
$$f_s(\tau; \vec{\theta}) =$$

$$\sum_{i=0}^{s} A_i \cosh(M_i(\tau - \frac{N_{\tau}}{2}))$$

$$\chi^2 = \sum_{\tau_i, \tau_j = t_0}^{t_f} R(\tau_i) \sigma_{ij}^{-1} R(\tau_j)$$

 Measures relative likelihood of data description among models

Use AIC_c to compute $M_0(FW)$ through weighted average

- No data is manually discarded
- More likely models will have more impact in result

Estimate errors in $M_0(FW)$

- Difficult task
- Computed using resampling of weighted average data

Residues: $R(\tau) = C(\tau) - f(\tau, \vec{\theta})$

(1). 10.1109/TAC.1974.1100705

7. Akaike Information Criterion (AIC_c)

8. Extraction of ground mass M_o

For each $FW[t_0, t_f]$ we do have an estimate of the ground mass

9. Pseudoscalar masses (γ_5)

10. Vector masses (γ_{μ})

11. $SU(2)_A$ related mesons

12. 2-point correlation functions

13. Using different sources (γ_5)

13. Using different sources (γ_{μ})

Above T_c defining M_0 is difficult

- Spectral functions are required
- Signal in QGP is (much) less reliable

1.

$SU(2)_A$ symmetry recovered above T_c

• $\rho(770)$ and $a_1(1260)$ become degenerate

2.

Minimal T dependence of M_0 in hadronic phase

3.

Local and smeared sources are not equivalent at high T

4.

14. Conclusions

Appendix: Axial plus masses $(\gamma_{\mu}\gamma_{5})$

Appendix: Scalar (I)

Appendix: $U(1)_A$ related mesons

