

Chromo-electric and chromo-magnetic correlators at high temperature from gradient flow

The 38th International Symposium on Lattice Field Theory Julian Frederic Mayer-Steudte

In collaboration with

Nora Brambilla (TUM) Viljami Leino (TUM) Péter Petreczky (BNL) Antonio Vairo (TUM)

Garching, 30th of July 2021

1

1 Physical Background

2 Discretization of G_E and G_B

Analysis and results

Julian Frederic Mayer-Steudte | Chromo-electric and -magnetic correlators from gradient flow | 30/07/2021

Background: Heavy Quark Diffusion

Quark Gluon Plasmas can be probed in heavy ion collisions
 HQ momentum is changed by random kicks from the medium

 Brownian motion: Follows Langevin dynamics

$$\dot{\mathbf{p}} - \eta \mathbf{p} = \mathbf{f}(t)$$

$$\langle f_i(t) \rangle = 0, \ \langle f_i(t') f_j(t) \rangle = \kappa \delta_{ij} \delta(t - t') \qquad \eta \approx \frac{\kappa}{2MT} \left(1 - \frac{5T}{2M} \right)$$

Deriving from the force-force correlator in a Heavy Quark expansion: (Bouttefeux and Laine JHEP12(2020))

$$\begin{split} G_E &= -\frac{\sum_i \operatorname{Tr} \langle U(\beta;\tau) g E_i(\tau) U(\tau;0) g E_i(0) \rangle}{3 \operatorname{Tr} \langle U(\beta;0) \rangle} \\ G_B &= \frac{\sum_i \operatorname{Tr} \langle U(\beta;\tau) g B_i(\tau) U(\tau;0) g B_i(0) \rangle}{3 \operatorname{Tr} \langle U(\beta;0) \rangle} \end{split}$$

Background: Heavy Quark Diffusion

Spectral analysis:

$$G_{E/B}(\tau) = \int_0^\infty \frac{\mathrm{d}\omega}{\pi} \rho_{E/B}(\omega) \frac{\cosh\left(\frac{\beta}{2} - \tau\right)\omega}{\sinh\frac{\beta\omega}{2}}$$
$$\kappa_{E/B} = \lim_{\omega \to 0} \frac{2T\rho_{E/B}(\omega)}{\omega}$$

Total heavy quark momentum coefficient:

$$\kappa_{\rm tot} \approx \kappa_E + \frac{2}{3} \langle \mathbf{v}^2 \rangle \kappa_B, \ \langle \mathbf{v}^2 \rangle \sim T/M$$

Determination of G_E and G_B requires non-perturbative calculations

Physical Background

- **2** Discretization of G_E and G_B
- Analysis and results

Discretization of G_E and G_B

The chromo electric and magnetic correlators:

$$G_E(\tau) = -\frac{1}{3} \sum_{i=1}^{3} \frac{\langle \text{ReTr}[U(\beta,\tau)E_i(\tau)U(\tau,0)E_i(0)] \rangle}{\langle \text{ReTr}[U(\beta,0)] \rangle}$$
$$G_B(\tau) = \frac{1}{3} \sum_{i=1}^{3} \frac{\langle \text{ReTr}[U(\beta,\tau)B_i(\tau)U(\tau,0)B_i(0)] \rangle}{\langle \text{ReTr}[U(\beta,0)] \rangle}$$

Discretising the *E*-field insertion: (Caron-Huot and Laine JHEP(2009))

$$E_i(\tau, \mathbf{x}) = U_i(\tau, \mathbf{x})U_4(\tau, \mathbf{x} + a\hat{\mathbf{e}}_i) - U_4(\tau, \mathbf{x})U_i(\tau, \mathbf{x} + a\hat{\mathbf{e}}_4)$$

Discretising the *B*-field insertion:

$$B_i(\tau, \mathbf{x}) = \epsilon_{ijk} U_j(\tau, \mathbf{x}) U_k(\tau, \mathbf{x} + a\hat{\mathbf{e}}_j)$$

Finite extent of E and B field requires "renormalization"

Julian Frederic Mayer-Steudte | Chromo-electric and -magnetic correlators from gradient flow | 30/07/2021 4

Discretization of G_E and G_B

- 1 Physical Background
- 2 Discretization of G_E and G_B
- 3 Analysis and results

ТШ

Analysis: Lattice setup

Using quenched lattices

Lattice parameters:

N_{*}	N_{\star}	ß	Name	N_s	N_t	β	N _{conf}
	1.1		1 COM	48	16	14.443	990
48	16	6.872	990	48	20	14 635	990
48	20	7.044	990	40	20	14,700	1500
48	24	7.192	1500	48	24	14.792	1500
56	20	7 2 2 1	1320	56	28	14.925	1950
50	20	1.521	1520	68	34	15.093	1170
(a) $T = 1.5T_c$				(b) $T = 10^4 T_c$			

Lattice configurations produced with heat bath and overrelaxation algorithmflowtime evolving with Symanzik flow, flow-time range:

$$a \le \sqrt{8\tau_F} \le \frac{\tau - a}{3}$$

Normalize the correlators with $G^{\text{norm}} = rac{G^{\text{LO}}_{\text{latt}(\tau,\tau_F)}}{g^2 C_F} o G^{\text{latt}}/G^{\text{norm}}$

Julian Frederic Mayer-Steudte | Chromo-electric and -magnetic correlators from gradient flow | 30/07/2021 6

Analysis: Continuum limit

Analysis: Continuum limit

Analysis: Zero-flowtime limit $T = 1.5T_c$

G_E: perform $\tau_F \rightarrow 0$ limit extrapolation

■ G_B : no $\tau_F \rightarrow 0$ limit due to non-trivial anomalous dimension of G_B (Laine JHEP (2021))

different behavior for G_E and G_B : G_E increases for $\tau_F \rightarrow 0$ G_B decreases for $\tau_F \rightarrow 0$

Analysis: Zero-flowtime limit $T = 10^4 T_c$

G_E: perform $\tau_F \to 0$ limit extrapolation

■ G_B : no $\tau_F \rightarrow 0$ limit due to non-trivial anomalous dimension of G_B (Laine JHEP (2021))

different behavior for G_E and G_B : G_E increases for $\tau_F \rightarrow 0$ G_B decreases for $\tau_F \rightarrow 0$

Results: G_E

(Altenkort et al. Physical Review D(2021)) (Brambilla et al. Physical Review D(2020))

 $au_F
ightarrow 0$ reproduces previous results for both, T = 1.5 Tc and $T = 10^4 T_c$

Results: G_B

complete new results for the Chromo-magnetic correlator

G_B almost τ_F -independent for $\tau T \ge 0.25$ at T = 1.5Tcand for $\tau \ge 0.3$ at $T = 10^4 Tc$

Thank you for your attention!

Analysis: Chromo magnetic correlator

How does the Chromo magnetic correlator behave under gradient flow?

Linear behaviour of the correlators up to the maximum flowtime limit

G_B exhibits a wider flow-independent range

Analysis: Chromo magnetic correlator

How does the Chromo magnetic correlator behave under gradient flow?

- G_E breaks down beyond the maximum flowtime limit
- \square G_B still exhibits a flow-independent range beyond the limit
- Different behaviour might be caused by the anomalous dimension of *G*_B (Mikko Laine JHEP (2021))