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The Goal : Singularities in the QCD phase diagram
I The QCD phase diagram remains one of the more

important open problems in HEP. QCD being strongly
interacting is best studied using non-perturbative tools.

I Lattice QCD is currently one of those tools - but it only
works at zero chemical potential (µB=0).

I Standard MC simulations fail at µB > 0 as the fermion
determinant becomes complex.

Figure: conjectured QCD phase diagram 1

1left : TIFR-TH-14-11 arXiv:1404.3294 and right : Bielefeld (taken from
C.Schmidt)
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Current methods to probe the QCD phase diagram on the
Lattice

I Taylor expansion about µB=0. Simulations get harder for
computing higher cumulants. [ Allton, et.al Bielefeld-Swansea (2002)]

I Analytic continuation from simulations at imaginary µB. (No
sign problem in this regime!) [de Forcrand, Philipsen (2002)], [D’Elia and Lombardo,

(2002)]

I Recently new methods of resummation have appeared
* [Mondal et.al arXiv:2106.03165],
* [Gokce Basar arXiv:2105.08080],
* [Karthein, et.al Eur. Phys. J. Plus 136, 621 (2021)]
* [Attila Pásztor et.al Phys. Rev. D 103, 034511] (also based on Padé -

similar approach but different goal)

Our approach can be thought of as a combination of the
Taylor expansion and analytic continuation methods.
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The motivation

I In the Taylor expansion approach at µB = 0 we have to live
with low order cumulants.

I Also, when sampling at imaginary µ, it gets harder to extract
the signal when sampling higher cumulants, the result of
which is that we have information of low order Taylor
series but at multiple points on the Im[µB] axis.

The idea is to use these Tayor coefficients to build a (rational)
Padé approximant.
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The motivation

I It is no surprise that for some classes of functions - given
the same information - a rational function approximates better
than a polynomial. This can be seen very easily for functions
with poles, branch cuts etc.

I But an even more important motivation is the recovery of
singularities of a function using rational functions.

Padé approx [10/10]

Exact function :
2. μ+1.
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Can we do better? : Multi-Point Padé approximants

I The traditional single point Padé usually requires many
Taylor coefficients even to get a small order rational function!

f (x) =
L∑

i=0
ci x i +O(xL+1) ≈ Rm

n (x) = P(x)
1 + Q(x) =

m∑
i=0

ai x i

1 +
n∑

j=1
bj x j

I Multiple (even low order!) Taylor expansions give us a
multi-point Padé approximant!

* Linear solver (approximation through order type) (Parma)
* Generalised χ2 - ( Parma)
* Remez algorithm (Bielefeld)
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Some examples of success :

Figure: Thirring (0+1D)[F.dR.,K.Z.,S.S.,Phys.Rev.D 103 (2021) 3, 034513]

[15/15]Single Pade about 0

[10/10]Multi pt Padé ,μ∈[0,4]
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Figure: Left: multi-point vs single Padé approximating the function. (Middle) :
Reconstruction of the analytic poles by the multi-point Padé and Bottom (Right) :
and by the single point Padé
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and by the single point Padé
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Observations on multi-point Padé (MP) based on
numerical experiments

I Poles and other singularities obtained from an MP is
interval sensitive2. This means that, even though the closest
singularity is usually observed with this approach - we maybe
more (or less) sensitive to certain zeroes or poles depending
on where we sample the Taylor coefficients.

I Padé theory dictates that a genuine pole of the function
will remain stable when changing order of the Padé.
While this is true for clean data (functions without noise) -
the picture changes when we introduce noise. [Essentials of
Padé approximants - G.A Baker]

I In the presence of noise we are still sensitive to the closest
singularity w.r.t. the axis we expand about. The only catch
being that now the pole moves about roughly in an
elipse the size of the magnitude of error introduced .

2plots of test functions in backup slides
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A small note on spurious poles...

It is not uncommon in Padé approximations to encounter
spurious poles - even when approximating clean data - but
these are not all that harmful! They come in mainly the
following three forms :

* Exactly cancelling pairs of zeroes and poles of the
rational function - so no need to worry!

* Isolated poles which move about wildly while changing
order - usually move away to infinity when increasing order
(eg If simulate an analytic function)

* Simulating noisy data on the other hand can lead to a
zero-pole structure in which the genuine pole is quasi-stable
and moreover the “exactly-cancelling” zero-pole pairs
don’t exactly cancel anymore! The separation between
them is of the order of the magnitude of error introduced!
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2+1 flav LQCD with imaginary µ

I The idea is to take 2+1 QCD at imaginary chemical potential,
to see if we can gain information about its singularity
structure in the complex µB plane.

I The partition function gets a non-trivial periodicity
(Roberge-Weiss symmetry): Z (µB + i2πT ) = Z (µB)

I The partition also has an additional charge conjugation
symmtery under : µB → −µB

I At µB = iπT there is an expectation of a first order phase
transition at all temperatures above the Roberge-Weiss
critical end point TRW . [A. Roberge and N. Weiss, Nuc.
Phys B275 (1986) 734]
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2+1 flav LQCD with imaginary µ

I Since the (imaginary) baryon density is expected to become
discontinuos above T > TRW [Borsanyi et al, J. High Energ.
Phys. 2018, 205 (2018)],the physical observable we are
interested to study is the baryon number density µ̂B = µB/T :

χ1
B(T , µ̂B) = nB(T , µ̂B)

T 3 = ∂(p(T , µ̂B)/T 4)
∂µ̂B

I Because of the symmetries of the partition function mentioned
above - χ1

B(T , µ̂B) is an odd, periodic function of µB/T
when continued to imaginary chemical potential .

I Taylor expansions were obtained upto O((µB/T )4) at various
µB values shown below.Also, HISQ action was used with
ms/ml = 27 and µB

3 = µ` = µs and TRW =201 MeV 3

3J.Goswami, F.Karsch, A.Lahiri, M.Neumann and C.Schmidt, PoS CORFU2018 (2019), 162
doi:10.22323/1.347.0162 [arXiv:1905.03625 [hep-lat]].
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Our Lattice setup

N3
σ × Nτ T [MeV4]

243 × 4 160 167.38 176 186.26 201
num confs 5550 6000 (12K) ∼ 2500 2500 5000 (11K)

363 × 6 125 145
num confs 5280 8000

Figure: Left : χ1B and Right : χ2B for Nτ=4 plotted as fiunctions of µ and T

4A.Bazavov, T.Bhattacharya, M.Cheng, C.DeTar, H.T.Ding, S.Gottlieb, R.Gupta, P.Hegde, U.M.Heller and
F.Karsch, et al. Phys. Rev. D 85 (2012), 054503 doi:10.1103/PhysRevD.85.054503
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Higher order cumulants for Nτ=4

Figure: Left : χ3B and Right : Zoomed χ3B for Nτ=4 plotted as fiunctions of µ and T

Figure: Left : χ4B and Right : Zoomed χ4B for Nτ=4 plotted as fiunctions of µ and T
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Cumulant measurments for Nτ=6, Nσ=36

Figure: Nτ = 6 cumulants - better statistics needed!
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Singularity structure for RW point Nτ=4

Figure: Zero-Pole structure from Multi-point Padé in the interval µ ∈ [0,2πι]



17/25

Figure: Zero-Pole structure for TRW from Multi-point Padé in the interval µ ∈ [0,2πι]
for varying choices of points
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How the approximations look like for Nτ=4 to extract
errorbars

Figure: Approximations for Nτ =4.TOP (L) : Rational approx. to Imag baryon number density, TOP (R) : the
corresponding analytic continuation at Re[µB/T ], BOTTOM : Free energy profile from the integration of rational
functions at 3 temperatures.
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Bootstrapping the poles with Gaussian noise for Nτ = 4
data
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Figure: LEFT : Results from our approach , RIGHT : Complex Singularities [Gábor
András Almási et.al Phys. Rev. D 100, 016016 – Published 29 July 2019]
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Bootstrapping the poles with Gaussian noise for Nτ = 4
data
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Conclusions and Outlook
I We saw the power of Padé approximants to recognize

singularities - and also differentiate between the types of
singularities. Moreover, if we are stuck in a scenario with less
Taylor coefficients but at multiple points in an interval, a
Multi-Padé provides a good approximation for the
function and also a good estimate of the singularities in
that interval.

I In studying QCD at imaginary chemical potential, we seem
to find the signature of the RW singularity using
(“stable”)poles of the Padé approximant. Other
singularities (Tpc) need further investigation. More on the scaling
of these poles in the next talk by G. Nicotra.

I The runs (generation and measurements codes) were
performed between Marconi100 (Cineca Bologna, ISCRA C
project and INFN computing time) by K.Zambello in Parma
and Jülich Supercomputing Centre (JSC) (Germany) by the
Bielefeld group.

***********end***********
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BACK-UP SLIDES!!
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Interval dependence of multi-point Padé
Pade [10/10]
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Thirring without errors
I The reconstruction of the line of singularities present in the

1D Thirring model as we increase the order of the
approximation. It can be seen that with increasing order the
Padé reconstructs more singularities progressively.
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Thirring with errors
Performing the exercise above with identical sets of points but now
with data that has 1% error on values and 10% error on the first
derivatives we get the following picture. It seems that the Padé is
able to reconstruct only the closest singularities faithfully. (This is
in agreement wit George Bakers book.)
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So how bad is the situation?
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Figure: Sensitivity to the closest pole even in the presence of errors! Left : 1% noise
on values and 10% noise on 1st der and Right : 5% noise on values and 15% noise on
1st der for [4/4] Padé
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Figure: Sensitivity to the closest pole even in the presence of errors! Left : 1% noise
on values and 10% noise on 1st der and Right : 5% noise on values and 15% noise on
1st der for [6/6] Padé
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