
(2+1+1)-flavor QCD equation of state on coarse lattices
Alexei Bazavov1, Peter Petreczky2, Johannes Heinrich Weber3

1 Michigan State University, 2 Brookhaven National Loaboratory, 3 Humboldt-Universität zu Berlin

(2+1+1)-flavor QCD equation of state on coarse lattices
Alexei Bazavov1, Peter Petreczky2, Johannes Heinrich Weber3

1 Michigan State University, 2 Brookhaven National Loaboratory, 3 Humboldt-Universität zu Berlin

Nuclear Matter equation of state on the lattice

The quark-gluon plasma (QGP), the high-temperature phase of bulk nuclear matter, has been studied in ultra-
relativistic heavy-ion collision (HIC) experiments at RHIC (BNL), LHC (CERN) for many years, and will be
probed after their upgrades and in future experiments such as FAIR (GSI) and NICA (JINR), too. At vanishing
baryon density the transition between the hadron gas and the QGP takes place as a broad chiral crossover
around a temperature of Tpc = 156.5(1.5) MeV at the physical point [1]. The thermodynamic properties of
QGP are given in terms of its equation of state (EoS), which has been studied extensively on the lattice in pure
gauge theory (without sea quarks) [2], or with 2+1 dynamical flavors (i.e. light quarks in the isopin limit, and a
physical strange quark) of sea quarks [3, 4, 5]; after clearing up discrepancies between early lattice calculations
due to a poorly controlled continuum limit, good agreement was achieved in (2+1)-flavor QCD.
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Figure 1: The EoS in (2+1)-flavor [5] or (2+1+1)-flavor lattice QCD [6] differs at T & 400 MeV; it is still about 10% below ideal
gas limit at T & 1 GeV.

Heavy quarks are negligible in nuclei. Instead, they are produced in hard processes during early stages of the
HIC. Future HIC experiments at larger

√
s will lead to higher temperature and copious production of charm.

Thus, it is urgent to include dynamical charm quarks on the lattice. Heavy quarks are challenging due to the
large discretization errors associated with their mass, see e.g. the difficulty of the continuum limit for moments of
pseudoscalar charmonium correlators [7]. At T & 2Tpc the previously dominant gluon contribution and the light
or strange quark contributions die down rapidly, whereas the contribution from charm quarks catches
up as thermal scales, i.e. πT , approach its mass (MS: mc(mc, Nf = 4) = 1.2735(35) GeV [8]).
Charm quarks dominate the EoS before weak coupling becomes reliable, see Fig. 1.

Although results in (2+1+1)-flavor QCD (i.e. with a charm sea) have been obtained already some time
ago [6], no independent cross-check through a calculation using another discretization for the charm
sea is available yet. We report on an ongoing (2+1+1)-flavor QCD study [9, 10] with highly improved
staggered quark (HISQ) action [11] optimized for controlling heavy-quark mass discretization effects.

Lattice setup, action parameters and scale setting

Any lattice calculation of the EoS is computationally demanding. In the traditional approach that we follow,
i.e. the integral method, both T > 0 and T = 0 ensembles with high statistics are needed at each bare
gauge coupling to cancel UV divergences. We use coarse T > 0 lattices with aspect ratio Nσ/Nτ = 4 and
temporal extent Nτ = 6 or 8; the temperature is set as T = 1/(aNτ ). The data set is anchored to a
set of existing, high statistics MILC ensembles [12] at T = 0 along the line of constant physics (LCP) with a
light quark mass ml = ms/5, i.e. mπ ≈ 300 MeV in the continuum limit. We combine HISQ [11] with a
tadpole one-loop improved gauge action. HISQ suppresses taste exchanges and diminishes mass splittings in the
pion sector; this improves the approach to the continuum limit at low temperatures. HISQ is O(a2)-improved
at tree-level due the Naik (three-link) term, which improves scaling at high temperatures [5], and contains a
mass-dependent correction εN for the charm quark [11], which reproduces the correct charm dispersion
relation at tree-level up to O((amc)4).

We compute the static energy at T = 0 to set the lattice spacing a using the scale r1 ' 0.31 fm [13]. Strange
and charm quark masses are tuned to physical values by using masses of π, K, and the spin average of ηc
and J/ψ. The tadpole factor defined from the trace of the plaquette u0 =

〈
Tr Up/3

〉1/4 is determined during
thermalization of the T = 0 ensembles.
We cover a window of T ∈ [149, 967] MeV with Nτ = 6 and T ∈ [136, 725] MeV with Nτ = 8.

Trace anomaly and vacuum subtraction

In the traditional approach the EoS can be obtained from the trace of the energy-momentum tensor (EMT),
Θµµ = ε− 3p, where ε or p are energy density or pressure. Θµµ is related to the partition function as

Θµµ

T 4 = −T
V

d lnZ
d ln a

, Z =
∫
DUDψ̄Dψ e−Sg−Sf . (1)

The temperature-independent divergences of any individual contribution X to Θµµ due to mixing with the
identity operator can be removed by subtracting the vacuum result for this operator X , i.e.

∆(X) = 〈X〉τ − 〈X〉0 . (2)

The vacuum-subtracted trace anomaly is given in terms of the basic ingredients of the action,
Θµµ

T 4 = −Rβ(β)
∆(Sg) + Ru(β)∆


dSg
du0


 + Rβ(β)Rms(β)

[
2ml∆(ψ̄lψl) + ms∆(ψ̄sψs)

]

+ Rβ(β)Rmc(β)
mc∆(ψ̄cψc) + RεN (β)∆

ψ̄c

dMc

dεN

ψc


 , (3)

after the lattice spacing derivatives have been rephrased in terms of β functions and action parameter derivatives.
Changes of the lattice spacing and the action parameters along the LCP are controlled by lattice β-functions:

Rβ(β) = T
dβ
dT

= −adβ
da

= (r1/a)(β)

d(r1/a)(β)

dβ


−1

, (4)

Rmq(β) = 1
amq(β)

damq(β)
dβ

for q = s, c , Ru(β) = β
du0(β)

dβ
, Rε(β) = dεN (β)

dβ
. (5)

Lattice β functions

We have determined the β-functions by fitting the data to the following Ansätze. For the lattice spacing:

r1
a

(β) = c
(0)
r f (β) + c

(2)
r (10/β)f3(β)

1 + d
(2)
r (10/β)f2(β)

, (6)

and for the strange or charm quark masses (q = s, c):

amq(β) = c
(0)
q f (β) + c

(2)
q (10/β)f3(β)

1 + d
(2)
q (10/β)f2(β)


20b0
β


4
9
. (7)

We use the Nf = 3 two-loop β-function,

f (β) =

10b0
β


−b1/(2b20)

exp (−β/20b0), (8)

and checked that the Nf = 4 β-function would produce statistically consistent results in Eqs. (6) and (7).

To obtain the β derivatives in Eq. (5), we fit u0 with u0(β) = c1 + c2e−d1β and εN with a polynomial in β.

Numerical results

The gauge configurations are generated with the RHMC algorithm. At zero temperature we save lat-
tices every 5 or 6 and at finite temperature every 10 molecular dynamics time units (TU). The statistics
for the Nτ = 6 and 8 ensembles is reaching for most of them 100 thousand TUs. After calculat-
ing the trace anomaly we interpolate it with splines and then evaluate the pressure via the integral
method. In Figs. 2 and 3 we compare the pressure in (2+1+1)-flavor QCD along the line of constant
physics mπ ≈ 300 MeV with the pressure in (2+1)-flavor QCD along the line of constant physics
mπ ≈ 160 MeV [5]. Note that due to the difference in the pion mass the (2+1+1)-flavor pressure is below
the (2+1)-flavor pressure at low temperatures where the contribution of the charm quark is still negligible.
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Figure 2: Pressure as function of temperature on Nτ = 6 lattices for (2+1)- and (2+1+1)-flavor QCD. The errors are purely
statistical.
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Figure 3: Pressure as function of temperature on Nτ = 8 lattices for (2+1)- and (2+1+1)-flavor QCD. The errors are purely
statistical.

References

[1] A. Bazavov et al. Chiral crossover in QCD at zero and non-zero chemical potentials. Phys. Lett. B, 795:15–21, 2019.

[2] Leonardo Giusti and Michele Pepe. Equation of state of the SU(3) Yang–Mills theory: A precise determination from a moving frame. Phys. Lett. B, 769:385–390, 2017.

[3] Szabocls Borsanyi, Zoltan Fodor, Christian Hoelbling, Sandor D. Katz, Stefan Krieg, and Kalman K. Szabo. Full result for the QCD equation of state with 2+1 flavors. Phys. Lett. B, 730:99–104,
2014.

[4] A. Bazavov et al. Equation of state in ( 2+1 )-flavor QCD. Phys. Rev. D, 90:094503, 2014.

[5] A. Bazavov, P. Petreczky, and J. H. Weber. Equation of State in 2+1 Flavor QCD at High Temperatures. Phys. Rev. D, 97(1):014510, 2018.

[6] Sz. Borsanyi et al. Calculation of the axion mass based on high-temperature lattice quantum chromodynamics. Nature, 539(7627):69–71, 2016.

[7] Peter Petreczky and Johannes Heinrich Weber. Strong coupling constant from moments of quarkonium correlators revisited. 12 2020.

[8] Javad Komijani, Peter Petreczky, and Johannes Heinrich Weber. Strong coupling constant and quark masses from lattice QCD. Prog. Part. Nucl. Phys., 113:103788, 2020.

[9] A. Bazavov et al. Towards a QCD Equation of State with 2 + 1 + 1 Flavors using the HISQ Action. PoS, LATTICE2012:071, 2012.

[10] A. Bazavov et al. Update on the 2+1+1 Flavor QCD Equation of State with HISQ. PoS, LATTICE2013:154, 2014.

[11] E. Follana, Q. Mason, C. Davies, K. Hornbostel, G. P. Lepage, J. Shigemitsu, H. Trottier, and K. Wong. Highly improved staggered quarks on the lattice, with applications to charm physics. Phys.
Rev. D, 75:054502, 2007.

[12] A. Bazavov et al. B- and D-meson leptonic decay constants from four-flavor lattice QCD. Phys. Rev. D, 98(7):074512, 2018.

[13] R. Sommer. A New way to set the energy scale in lattice gauge theories and its applications to the static force and alpha-s in SU(2) Yang-Mills theory. Nucl. Phys. B, 411:839–854, 1994.

Acknowledgements

The simulations have been carried out at NERSC and at the ICER of Michigan State University. This work
is supported by the US Department of Energy, Office of Science, Office of Nuclear Physics: (i) Through the
Contract No. DE-SC0012704; (ii) Through the Scientific Discovery through Advanced Computing (ScIDAC)
award “Computing the Properties of Matter with Leadership Computing Resources”; (iii) Through the NSF
award PHY-1812332. J.H.W.’s research was also funded by Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – Projektnummer 417533893/GRK2575 “Rethinking Quantum Field Theory”.

Johannes H. Weber (johannes.weber@physik.hu-berlin.de) The 38th International Symposium on Lattice Field Theory


