Lattice 2021

Excited J^{--} resonances from meson-meson scattering at the SU(3) flavor point in lattice QCD.

CHRIS JOHNSON

-

_

Experimental Status

The lightest vector ($J^{PC} = 1^{--}$) mesons are the ρ (770), ω (782), ϕ (1020)

States are well understood in e⁺e⁻ annihilation due to their narrow widths and little background into decay into simple states like $\pi\pi$, $\pi\pi\pi$, KK.

 ω and ϕ states separated via decay channels $\pi\pi\pi$ vs $K\bar{K}$ (OZI)

Excited light vector mesons (I=1)

The $\rho(1450)$ and the $\rho(1700)$

Excited light vector mesons (I=0)

The $\omega(1420)$, $\omega(1650)$, and the $\phi(1680)$

A Place to start

Presence of two states in 1^{--} from quark model it is natural to interpret these states as a radial excitation in S-wave $[2^3S_1]$, and an orbital excitation in D-wave $[^3D_1]$ (or some linear combination of the two).

 $\ell = 0$ $\ell = 1$ What the PDG says: $\ell = 2$ Isovector : $\rho(1450), \rho(1700), \rho_3(1690)$ Isoscalar: $\omega(1420), \omega(1650), \omega_3(1670) / \phi(1680), \phi_3(1850)$.

Lattice:
$$C_{ij}(t) = \sum_{\alpha} \langle 0 | O_i | \alpha \rangle \langle \alpha | O_j | 0 \rangle e^{-E_{\alpha}t}$$

J. J. Dudek, R. G. Edwards, P. Guo, and C. E. Thomas (Hadron Spectrum), Phys. Rev. D88, 094505 (2013), arXiv:1309.2608 [hep-lat].

Outline

These J^{--} states are resonances which can be accessed from scattering amplitudes. $t \sim \frac{g^2}{s - s_0} \qquad \sqrt{s_0} = m_R + \frac{i}{2}\Gamma_R$

Finite-volume spectrum \leftrightarrow scattering amplitude (2 \rightarrow 2)

$$\det\left[1 + i\rho(E) \cdot \mathbf{t}(E) \cdot \left(\mathbf{1} + i\mathcal{M}(E,L)\right)\right] = 0$$
$$\mathbf{t}^{-1}(E) = \mathbf{K}^{-1}(E) - i\rho(E) \qquad \qquad \rho_i = \frac{2k_i}{E}$$

Compute correlation functions on the lattice to obtain finite-volume spectrum.

$$\Rightarrow C_{ij}(t) = \sum_{\alpha} \langle 0 | O_i | \alpha \rangle \langle \alpha | O_j | 0 \rangle e^{-E_{\alpha}t}$$

SU(3) Flavor Ensembles

 J^{--} excited mesons at the SU(3) flavor point in the singlet representation

Advantages:

 \Rightarrow Heavier light quark masses allow us to probe higher energy regions:

first three-particle threshold gets moved higher up

resonant states at lighter quark masses feature as stable particles

 \Rightarrow Fewer channels (ex. $\pi, K, \overline{K}, \eta$ are all just η^8)

(Hadron Spectrum), Phys. Rev. D88, 094505 (2013), arXiv:1309.2608 [hep-lat].

J. J. Dudek, R. G. Edwards, P. Guo, and C. E. Thomas

(Hadron Spectrum), Phys. Rev. D88, 094505 (2013), arXiv:1309.2608 [hep-lat].

 $J^P = (1,3,...)^-$

Three resonances in a single irrep. $\Rightarrow \rho\{^{3}2S_{1}\}, \rho\{^{3}D_{1}\}, \rho\{^{3}D_{3}\}$

 $\{2\}\eta^{\mathbf{s}}_{{}_{[011]}}\omega^{\mathbf{s}}_{{}_{[011]}}$

Very dense in energy levels.

Parameterization

J=2 dynamically coupled in P- and F-waves

Can handle this with the K-matrix $t^{-1} = K^{-1} + K^{-1}$

$$K_{J=2} = \begin{bmatrix} ({}^{3}P_{2}|{}^{3}P_{2}) & ({}^{3}P_{2}|{}^{3}F_{2}) \\ ({}^{3}P_{2}|{}^{3}F_{2}) & ({}^{3}F_{2}|{}^{3}F_{2}) \end{bmatrix}$$

J=3 Breit-Wigner parameterization

S, J=2,3

$$K_{ij} \rightarrow (2k_i)^{\ell} K_{ij}^{\ell\ell'} (2k_j)^{\ell'} \quad \ell = 0 \qquad 1^+$$

$$I \qquad \qquad \ell = 1 \qquad (0, 1, 2)^-$$

$$\ell = 2 \qquad (1, 2, 3)^+$$

$$\ell = 3 \qquad (2, 3, 4)^-$$

$$\dots \qquad \dots$$

$$I(s) = I(s_0) - \frac{s - s_0}{\pi} \int_{s_{thr}}^{\infty} \frac{\rho(s')}{(s' - s_0)(s' - s - i\epsilon)}$$

$$\operatorname{Im} I = -\rho$$

$\eta^8 \omega^8$ elastic scattering in 2^-

$$K_{J=2} = \frac{1}{m_R^2 - s} \begin{bmatrix} g_P^2 & g_P g_F \\ g_P g_F & g_F^2 \end{bmatrix} + \begin{bmatrix} \gamma_{PP} & \gamma_{PF} \\ \gamma_{PF} & \gamma_{FF} \end{bmatrix}^{P}$$

$$K_{J=3} = \frac{g_F^2}{m_R^2 - s}$$

0.6

 $m = 0.4322(15) \cdot a_t^{-1}$ $[1 \ 0.31]$ 0.290.19 $0.13 \ -0.37$ 0.310.07 $g_P = 0.753(37)$ $0.48 \quad 0.07 \quad -0.23$ $1 \ -0.08 \ -0.70$ 0.040.4 $g_F = -4.13(29) \cdot a_t^2$ $1 \quad 0.21 \ -0.15 \ -0.18 \ -0.01 \ -0.12$ J=2 $\gamma_{PP} = 0.1(33) \cdot a_t^2$ $1 \ -0.34 \ -0.34 \ -0.16 \ \ 0.23$ $1 \ -0.23 \ -0.03 \ -0.05$ $\gamma_{PF} = -110(17) \cdot a_t^4$ 0.2 0.02 $\gamma_{FF} = 143(322) \cdot a_t^6$ 0.051 $1 \ -0.04$ $m = 0.4341(9) \cdot a_t^{-1}$ J = 3 $g = 4.85(28) \cdot a_t^2$ 1 $\chi^2 / N_{\rm dof} = \frac{120.3}{91-8} = 1.45$

$\eta^8 \omega^8$ elastic scattering in 1^{--}

$$K_{J=1} = \frac{g_{a}^{2}}{m_{a}^{2} - s} + \frac{g_{b}^{2}}{m_{b}^{2} - s} + \gamma$$

$$m_{a} = 0.3881(14) \cdot a_{t}^{-1}$$

$$g_{a} = 1.46(10)$$

$$m_{b} = 0.4242(17) \cdot a_{t}^{-1}$$

$$g_{b} = -0.36(13)$$

$$\gamma = 20.9(86) \cdot a_{t}^{2}$$

$$\begin{bmatrix} 1 & 0.08 & 0.43 & -0.33 & 0.19 \\ 1 & 0.37 & -0.46 & 0.81 \\ 1 & -0.86 & 0.49 \\ 1 & -0.57 \\ 1 \end{bmatrix}$$

$$\chi^{2}/N_{dof} = \frac{91.3}{72-5} = 1.36$$

Elasticity

Zero is a feature of elastic unitarity

$$t = \frac{1}{\rho(\cot\delta - i)}$$

Cannot generate with an effective range

$$k^{3} \cot \delta = \frac{1}{a} + \frac{1}{2}rk^{2} + \dots$$

 $-a_t E_{cm}$

produce zeros in t(s)

$\eta^8 \omega^8$ elastic scattering in 3⁻

Coupled-channel $\det\left[1+i\boldsymbol{\rho}\cdot\mathbf{t}\cdot\left(\mathbf{1}+i\mathbf{M}\right)\right]=0$

Solutions follow from K-matrix parameterizations of the amplitude :

$$\mathbf{t}^{-1} = \mathbf{K}^{-1} - i\boldsymbol{\rho} \qquad \qquad K_{ij}(s) = \sum_{i=1}^{N} K_{ij}(s) = \sum_{i=1$$

Future

Calculation of the octet is underway:

 \Rightarrow more channels

 \Rightarrow identical particles $\eta^{8}\eta^{8}, \omega^{8}\omega^{8}$

 \Rightarrow nearly degenerate thresholds in $\eta^8 \omega^8, \eta^8 \omega^1$

Would like to be able to study the hybrid candidate that lies slightly above in $1^{--}\,$

 \Rightarrow likely requires three-particle formalism

A crude extrapola

$$\omega = \sqrt{\frac{2}{3}}\omega_1 + \sqrt{\frac{1}{3}}\omega_8$$
; $\phi = \sqrt{\frac{1}{3}}\omega_1 - \sqrt{\frac{2}{3}}\omega_8$

Assume an exact OZI symmetry to get the couplings to the octet

Assume width scales with the angular momentum $\sim k^{\ell}$

$$g^{1} = \left| \frac{k^{phys}(M^{phys})}{k(M)} \right|^{\ell} |c_{\eta^{8}\omega^{8}}|$$

Octet calculation is underway

 $\begin{array}{l} \begin{array}{c} \text{Calculation} \\ \Gamma^{\pi\rho}_{\omega_3} \sim 62 \ \text{MeV} \\ \Gamma^{K\bar{K}^*}_{\omega_3} \sim 2 \ \text{MeV} \\ \Gamma^{\eta\omega}_{\omega_3} \sim 1 \ \text{MeV} \end{array} \\ \begin{array}{c} \Gamma^{K\bar{K}^*}_{\phi_3} \sim 20 \ \text{MeV} \\ \Gamma^{\eta\phi}_{\phi_3} \sim 3 \ \text{MeV} \end{array} \\ \begin{array}{c} \Gamma^{\pi\omega}_{\phi_3} \sim 22 \ \text{MeV} \\ \Gamma^{K\bar{K}^*}_{\rho_3} \sim 2 \ \text{MeV} \end{array} \end{array} \end{array}$

tion		Calculation $\Gamma^{\pi\rho}_{\omega_a} \sim 384 \text{ MeV}$	$ ext{PDG} \ \Gamma^{\pi ho}_{\omega(1420)} \sim 240 ext{ Me}$
		$\Gamma^{KK^*}_{\omega_a} \sim 4 \text{ MeV} \\ \Gamma^{\eta\omega}_{\omega_a} \sim 5 \text{ MeV}$	$\Gamma^{tot}_{\omega(1420)} \sim 290(120)$]
		$\begin{array}{l} \Gamma_{\phi_a}^{K\bar{K}^*} \sim 154 \ {\rm MeV} \\ \Gamma_{\phi_a}^{\eta\omega} \sim 25 \ {\rm MeV} \end{array} \end{array}$	$\Gamma^{tot}_{\phi(1680)} \sim 150(50) \ { m N}$
T	PDG	$\Gamma^{\pi\omega}_{\rho_a} \sim 133 \text{ MeV}$	$\Gamma^{\pi\omega}_{o(1450)} \sim 52-78 \ { m M}$
V	$\Gamma^{tot}_{\omega_3(1670)} \sim 168(10) \text{ MeV}$	$\Gamma^{K\bar{K}^*}_{\rho_a} \sim 9 \text{ MeV}$	$\Gamma^{tot}_{\rho(1450)} \sim 400(60) \text{ N}$
V	$\Gamma_{\phi_3(1850)}^{tot} \sim 87(25) \text{ MeV}$		
		Calculation	PDG
Τ	$\Gamma^{\pi\omega}_{\rho_3(1690)} \sim 30(10) \text{ MeV}$	$\Gamma^{\pi\rho}_{\omega_b} \sim 25 \text{ MeV}$	$\Gamma^{\pi\rho}_{\omega(1650)} \sim 84 \text{ M}$
V	$\Gamma^{K\bar{K}\pi}_{ ho_3(1690)} \sim 7 \; { m MeV}$	$ \Gamma^{KK^*}_{\omega_b} \sim 3 \text{ MeV} \Gamma^{\eta\omega}_{\omega_b} \sim 1 \text{ MeV} $	$\Gamma^{tot}_{\omega(1650)} \sim 315(35)$

 $\frac{\Gamma^{\pi\omega}_{\rho_b} \sim 9 \text{ MeV}}{\Gamma^{K\bar{K}^*}_{\rho_b} \sim 3 \text{ MeV}}$

A. Donnachie and A. B. Clegg, Z. Phys. C 51, 689 (1991)

Fig. 2 $K_s^0 K^{\pm} \pi^{\mp}$ cross section. The dashed line shows the ρ , ω , ϕ tail contribution.

D. Bisello et al., Z. Phys. C 52, 227 (1991)

Lattice QCD

Finite volume spectrum $\Rightarrow C_{ij}(t) = \sum \langle 0 | O_i | \alpha \rangle \langle \alpha | O_j | 0 \rangle e^{-E_{\alpha}t}$ Single meson operators: $\sum_{\overrightarrow{v}} e^{i\overrightarrow{p}\cdot\overrightarrow{x}}\overline{\psi}\overrightarrow{D}\overrightarrow{D}\dots\overrightarrow{D}\psi$ Meson-meson operators: $\sum C(\overrightarrow{p}_1, \overrightarrow{p}_2; \overrightarrow{P}) h_1^{\dagger}(\overrightarrow{p}_1) h_2^{\dagger}(\overrightarrow{p}_2)$ $\overrightarrow{p}_1 + \overrightarrow{p}_2 = \overrightarrow{P}$

No interactions

$$E = \sqrt{m_1^2 + \left(\frac{2\pi \vec{n}_1}{L}\right)^2} + \sqrt{m_2^2 + \left(\frac{2\pi \vec{n}_2}{L}\right)^2}$$

Optimized operator constructed from applying the eigenvectors extracted from applying the variational method $h^{\dagger} = \sum v_i O_i$

Momentum is quantized $\overrightarrow{p} = \frac{2\pi}{I} \overrightarrow{n}$

Variational Method

Diagonalize matrix of correlation functions to produce the finite volume spectrum:

Use the orthonormality of the eigenvectors to distinguish states, and extract energies from the principle correlators $\lambda^{\alpha}(t)$.

Coupled channel with nonzero spin

Orbital and angular momentum couple $\ell \otimes S \rightarrow$

Can use K-matrix to handle this (ex. $0^{-+}, 1^{--}$ scattering in $J^P = 1^+$)

$$K_{1^{+}} = \begin{pmatrix} \{{}^{3}S_{1}|{}^{3}S_{1}\} & \{{}^{3}S_{1}|{}^{3}I \\ \{{}^{3}S_{1}|{}^{3}D_{1}\} & \{{}^{3}D_{1}|{}^{3}I \\ \{{}^{3}D_{1}|{}^{3}I \end{pmatrix} \end{pmatrix}$$

Done in both non-resonant and resonant systems:

"Dynamically-coupled partial-waves in $\rho\pi$ isospin-2 scattering from

lattice QCD"- A. Woss, C. Thomas, J. Dudek

"The b_1 resonance in coupled $\pi\omega, \pi\phi$ scattering from lattice QCD"-A. Woss, C. Thomas, J. Dudek

$$\rightarrow J$$

 D_1 D_1

 $(0, 1, 2)^{-}$ $(1, 2, 3)^+$ 3 $(2,3,4)^{-}$

Broken rotational symmetry of the lattice causes different resonances to be in the same representation.

Typical scattering calculations are able to isolate a SINGLE resonance.

All other irreps will feature a minimum of TWO resonances

 $^{3}D_{1.2.3}$ states are expected to be nearly degenerate.

SU(3) Flavor

Two neutral members basis states $I = I_z = Y = 0$

$$\begin{aligned} |\mathbf{1}\rangle &= \frac{1}{\sqrt{3}} \left(|\bar{u}u\rangle + |\bar{d}d\rangle + |\bar{s}s\rangle \right) \\ |\mathbf{8}\rangle &= \frac{1}{\sqrt{6}} \left(|\bar{u}u\rangle + |\bar{d}d\rangle - 2|\bar{s}s\rangle \right) \end{aligned}$$

Pseudoscalar have small mixing angle from SU(3) states $\sim -10^{\circ}$

$$|\eta\rangle \sim |\eta^8\rangle \qquad \qquad |\eta'\rangle \sim |\eta^1\rangle$$

Mixing splits into light and strange quarks (OZI) $|\omega\rangle \sim \frac{1}{\sqrt{2}} \left(|\bar{u}u\rangle + |\bar{d}d\rangle \right) \qquad |\phi\rangle \sim |\bar{s}s\rangle$

SU(3) Flavor

Lattice QCD

Finite volume spectrum $\Rightarrow C_{ij}(t) = \sum \langle 0 | O_i | \alpha \rangle \langle \alpha | O_j | 0 \rangle e^{-E_{\alpha}t}$ Single meson operators: $\sum e^{i \overrightarrow{p} \cdot \overrightarrow{x}} \overline{\psi} \overrightarrow{D} \overrightarrow{D} \dots \overrightarrow{D} \psi$ Meson-meson operators: $\sum_{\overrightarrow{p}_1 + \overrightarrow{p}_2 = \overrightarrow{P}} C(\overrightarrow{p}_1, \overrightarrow{p}_2; \overrightarrow{P}) h_1^{\dagger}(\overrightarrow{p}_1) h_2^{\dagger}(\overrightarrow{p}_2) \quad \bigcirc^{\mathbb{E}}$

Will include $\eta^{8}(\overrightarrow{p_{1}})\omega^{8}(\overrightarrow{p_{2}}), \eta^{1}(\overrightarrow{p_{1}})\omega^{1}(\overrightarrow{p_{2}}), f_{0}^{1}(\overrightarrow{p_{1}})\omega^{8}(\overrightarrow{p_{2}})$

 $\eta^1 \omega^1 / f_0^1 \omega^1$

Channels in SU(3) Flavor

Conventional $\bar{q}q$ mesons live in either a singlet ($\bar{3} \otimes 3 \rightarrow 1$) or octet (3 \otimes 3 \rightarrow 8) representations.

Two ways to project to flavor singlet $8 \otimes 8 \rightarrow 1$, and trivially $1 \otimes 1 \rightarrow 1$.

Charge conjugation in neutral member of the octet $|I = I_7 = Y = 0\rangle$ for $8 \otimes 8 \rightarrow 1$:

 $\hat{C}(|8_1, C_1\rangle \otimes |8_2, C_2\rangle) \rightarrow C_1 C_2(|8_1, C_1\rangle \otimes |8_2, C_2\rangle)$

 \Rightarrow channels with C=-: $\eta^{8}(0^{-+})\omega^{8}(1^{--}), f_{0}^{1}(0^{++})\omega^{1}(1^{--}), \eta^{1}(0^{-+})\omega^{1}(1^{--})$

 \Rightarrow can't have identical particles with C=-

$J^P = (1,3,...)^-$

Three resonances in a single irrep. $\Rightarrow \rho\{^{3}2S_{1}\}, \rho\{^{3}D_{1}\}, \rho\{^{3}D_{3}\}$

Very dense in energy levels.

Appears to be a decoupling within the heavier channels $f_0^1\eta^1, \eta^1\omega^1$

Parameterization

J=2 dynamically coupled in P- and F-waves

Can handle this with the K-matrix $t^{-1} = K^{-1} + K^{-1}$

$$K_{J=2} = \begin{bmatrix} ({}^{3}P_{2}|{}^{3}P_{2}) & ({}^{3}P_{2}|{}^{3}F_{2}) \\ ({}^{3}P_{2}|{}^{3}F_{2}) & ({}^{3}F_{2}|{}^{3}F_{2}) \end{bmatrix}$$

J=3 Breit-Wigner parameterization

S, J=2,3

$$K_{ij} \rightarrow (2k_i)^{\ell} K_{ij}^{\ell\ell'} (2k_j)^{\ell'} \quad \ell = 0 \qquad 1^+$$

$$I \qquad \qquad \ell = 1 \qquad (0, 1, 2)^-$$

$$\ell = 2 \qquad (1, 2, 3)^+$$

$$\ell = 3 \qquad (2, 3, 4)^-$$

$$\dots \qquad \dots$$

$$I(s) = I(s_0) - \frac{s - s_0}{\pi} \int_{s_{thr}}^{\infty} \frac{\rho(s')}{(s' - s_0)(s' - s - i\epsilon)}$$

$$\operatorname{Im} I = -\rho$$

Resonance interpretation

$$t(s) = \frac{N(s)}{D(s)}$$

Write dispersively
$$\frac{1}{2\pi i} \oint \frac{D(s')}{s'-s} = D(s_0) - \frac{s-s_0}{\pi} \int_{s_{thr}}^{\infty} \frac{N(s')\rho(s')}{(s'-s)(s'-s_0)} ds'$$

- \Rightarrow can add poles to D(s) that feature as zeros in t(s)
- \Rightarrow create nearby poles in t(s)
- \Rightarrow these "CDD" poles have an interpretation that they would be stable particles if there were not lighter mesons for which it to decay

Vector states are mixtures of the singlet and octet states

$$\omega = \sqrt{\frac{2}{3}}\omega_1 + \sqrt{\frac{1}{3}}\omega_8; \phi = \sqrt{\frac{1}{3}}\omega_1 - \sqrt{\frac{2}{3}}\omega_8$$

Pseudoscalar states have little mixing from SU(3) eigenstates $\eta \sim \eta_8$, $\eta' \sim \eta_1$

If we assume excited J^{--} have the same quark content as the vector states, we need to know the result of the octet couplings to find the partial width of the isoscalar resonances to pseudoscalar-vector final states.

We can still guess what the result of the octet calculation would be by assuming an exact OZI symmetry.

We first re-write the couplings in the basis of familiar meson states:

$$|\eta^{8} \otimes \omega^{8} \to \mathbf{1}\rangle = \frac{1}{2\sqrt{2}} \left(K^{+}\bar{K}^{*-} + K^{-}\bar{K}^{*} - K^{0}\bar{K}^{*0} - \bar{K}^{0}K^{*0} + \pi^{+}\rho^{-} + \pi^{-}\rho^{+} - \pi^{0}\rho^{0} - \eta_{8}\omega_{8} \right) : g^{1}$$

$$|\eta^{8} \otimes \omega^{8} \to \mathbf{8}\rangle = \sqrt{\frac{1}{20}} \left(K^{+}K^{*-} + K^{-}\bar{K}^{*} - K^{0}\bar{K}^{*0} - \bar{K}^{0}K^{*0} \right) - \sqrt{\frac{1}{5}} \left(\pi^{+}\rho^{-} + \pi^{-}\rho^{+} - \pi^{0}\rho^{0} - \eta_{8}\omega_{8} \right) : g^{8}$$

$$|\eta^{8} \otimes \omega^{1} \to \mathbf{8}\rangle = \eta_{8}\omega_{1} = \sqrt{\frac{2}{3}}\eta\omega + \sqrt{\frac{1}{3}}\eta\phi : h^{8}$$

OZI disallowed decays:

$$\phi^* \to \rho \pi \sim \sqrt{\frac{1}{3}} \frac{1}{2\sqrt{2}} g^1 + \left(-\sqrt{\frac{2}{3}}\right) \left(-\sqrt{\frac{1}{5}}\right) g^8$$

$$\phi^* \to \eta \omega \sim \sqrt{\frac{1}{3}} \left(-\frac{1}{2\sqrt{2}}\right) \sqrt{\frac{1}{3}} g^1 + \left(-\sqrt{\frac{2}{3}}\right) \left(-\sqrt{\frac{1}{5}}\right) \sqrt{\frac{1}{3}} g^8 + \left(-\sqrt{\frac{2}{3}}\right) \sqrt{\frac{2}{3}} h^8$$

Leads to the constraints:

$$g^{8} = -\frac{\sqrt{5}}{4}g^{1}; h^{8} = -\frac{1}{2\sqrt{2}}g^{1}$$

We write the partial widths as $\Gamma = g^2 \frac{\rho}{M}$

OZI relations together with a sum over the charged states give us the following partial widths:

$$\Gamma(\omega^* \to \pi \rho) = 3 \frac{\rho}{M} \frac{3}{16} (g^1)^2$$
$$(\omega^* \to K\overline{K}^*) = 4 \frac{\rho}{M} \frac{3}{64} (g^1)^2$$
$$\Gamma(\omega^* \to \eta \omega) = 1 \frac{\rho}{M} \frac{1}{16} (g^1)^2$$

Г

$$g^1 = \left| \frac{k^{phys}(M^p)}{k(M)} \right|$$

$$\Gamma\left(\phi^{\star} \to K\overline{K}^{\star}\right) = 4 \frac{\rho}{M} \frac{3}{32} \left(g^{1}\right)^{2}$$
$$\Gamma\left(\phi^{\star} \to \eta\phi\right) = 1 \frac{\rho}{M} \frac{1}{4} \left(g^{1}\right)^{2}$$

$$\Gamma\left(\rho^{\star} \to \pi\omega\right) = 1 \frac{\rho}{M} \frac{3}{16} \left(g^{1}\right)^{2}$$
$$\Gamma\left(\rho^{\star} \to K\overline{K}^{*}\right) = 2 \frac{\rho}{M} \frac{3}{32} \left(g^{1}\right)^{2},$$

o rescale the angular momentum barrier factors:

Prediction

Experiment

$$\Gamma(\omega_3 \to \pi \rho) = 62 \text{ MeV}$$

 $\Gamma(\omega_3 \to K\bar{K}^*) = 2 \text{ MeV}$
 $\Gamma(\omega_3 \to \eta \omega) = 1 \text{ MeV}$

 $\Gamma^{tot}_{\omega_3(1670)} \sim 168(10) \text{ MeV}$

 $\Gamma(\phi_3 \to K\bar{K}^*) = 20 \text{ MeV} \quad \Gamma_{\phi_3(1850)}^{tot} \sim 87(25) \text{ MeV}$ $\Gamma(\phi_3 \to \eta \phi) = 3 \text{ MeV}$

 $\Gamma^{\pi\omega}_{\rho_3} \sim 30(10) \text{ MeV}$ $\Gamma(\rho_3 \to \pi \omega) = 22 \text{ MeV}$ $\Gamma_{\rho_3}^{KK\pi} \sim 7 \text{ MeV}$ $\Gamma(\rho_3 \to K\bar{K}^*) = 2 \text{ MeV}$

 $\Gamma(\rho_2 \to \pi\omega, K\overline{K}^*) = 125, 36 \,\mathrm{MeV}$ $\Gamma(\omega_2 \to \pi \rho, K\overline{K}^*, \eta \omega) = 365, 36, 17 \,\mathrm{MeV}$ $\Gamma(\phi_2 \to K\overline{K}^*, \eta\phi) = 148, 44 \,\mathrm{MeV},$

Prediction

 $\Gamma(\omega_b \to \pi \rho) = 25 \text{ MeV}$ $\Gamma(\omega_b \to K\bar{K}^*) = 3 \text{ MeV}$ $\Gamma(\omega_b \to \eta \omega) = 1 \text{ MeV}$

Experiment

 $\Gamma_{\omega(1650)}^{tot} \sim 315(35) \text{ MeV}$

 $\Gamma^{\pi\rho}_{\omega(1650)} \sim 84 \text{ MeV}$

$$\Gamma(\phi_b \to K\bar{K}^*) = 13 \text{ MeV}$$

 $\Gamma(\phi_b \to \eta\phi) = 5 \text{ MeV}$

 $\Gamma^{\pi\omega}_{\rho(1700)} \sim 0 \,\,\mathrm{MeV}$ $\Gamma(\rho_b \to \pi \omega) = 9 \text{ MeV}$ $\Gamma(\rho_b \to K\bar{K}^*) = 3 \text{ MeV} \quad \Gamma_{\rho(1700)}^{tot} \sim 250(100) \text{ MeV}$

Prediction Experiment

$$\Gamma(\omega_a \to \pi \rho) = 384 \text{ MeV}$$

$$\Gamma(\omega_a \to K\bar{K}^*) = 4 \text{ MeV} \qquad \Gamma^{\pi\rho}_{\omega(1420)} \sim 240 \text{ MeV}$$

$$\Gamma(\omega_a \to \eta \omega) = 5 \text{ MeV} \qquad \Gamma^{tot}_{\omega(1420)} \sim 290(120) \text{ N}$$

$$\Gamma(\phi_a \to K\bar{K}^*) = 154 \text{ MeV} \quad \Gamma_{\phi(1680)}^{tot} \sim 150(50) \text{ MeV}$$

 $\Gamma(\phi_a \to \eta\omega) = 25 \text{ MeV}$

$$\Gamma(\rho_a \to \pi\omega) = 133 \text{ MeV} \qquad \Gamma_{\rho(1450)}^{tot} \sim 400(60) \text{ MeV}$$

$$\Gamma(\rho_a \to K\bar{K}^*) = 9 \text{ MeV} \qquad \Gamma_{\rho(1450)}^{\pi\omega} \sim 52 - 78 \text{ MeV}$$

Add the $[011]A_1$ irreps and fit all simultaneously Very good constraint $N_{dof} = 180$

$$K_{J=1} = \frac{g_{\mathsf{a}}^2}{m_{\mathsf{a}}^2 - s} + \frac{g_{\mathsf{b}}^2}{m_{\mathsf{b}}^2 - s} + \gamma$$

$$K_{J=2} = \frac{1}{m_R^2 - s} \begin{bmatrix} g_P^2 & g_P g_F \\ g_P g_F & g_F^2 \end{bmatrix} + \begin{bmatrix} \gamma_{PP} \\ \gamma_{PF} \end{bmatrix}$$

$$K_{J=3} = \frac{g_F^2}{m_R^2 - s}$$

$$\sqrt{s_0}$$

 $2^{-}|_{FF}$

 $\chi^2 / N_{\rm dof} = 258.3 / (192 - 12) = 1.43$

Only 4 levels with large $\eta^1 \omega^1$ overlap.

Only real difference in fit-1 which features two $\eta^1 \omega^1$ parameters. Potentially a small coupling $c_{\eta^1 \omega^1} \lesssim 0.04$ does not change overall width. Statistical uncertainties on $f_0^1 \omega^1$ energy levels prevent a proper C.C. analysis with this channel.

Mild changes in the amplitude.

 $a_t |c_{\eta^1 \omega^1}| \sim 0.07(2)$ is small and comparable to F-wave coupling.

 $\eta^{\mathbf{8}}\omega^{\mathbf{8}}, \eta^{\mathbf{1}}\omega^{\mathbf{1}}$ $\eta^{\mathbf{1}}\omega^{\mathbf{1}}, \eta^{\mathbf{1}}\omega^{\mathbf{1}}$

Additional singularities

Unphysical sheet real axis pole $a_t \sqrt{s} \sim 0.23$ on many parameterizations

 \Rightarrow wanders a bit and remains far from physical scattering

Additional real axis pole $a_t \sqrt{s} \sim 0.24$ for simple phase space parameterization

 \Rightarrow not surprising this parameterization has poorer analytic properties

 \Rightarrow residue is real, a true p-wave bound state has imaginary coupling

Amplitude analytic structure

The full scattering amplitude T(s,t) relates all scattering channels s,t,u- through an analytic continuation.

s-channel unitarity constrains the "right hand cut" to form $2^{N_{chan}}$ Riemann sheets

 \Rightarrow built into our parameterizations

Analyticity requires poles off axis real valued poles be on unphysical sheets.

 \Rightarrow reject parameterizations that have these

t,u-channel unitarity manifests themselves in the form of a "left hand cut"

 \Rightarrow not described but we know where they are

 \Rightarrow hope is we remain far enough away

Cross Channels

T-Channel

0.2 0.1 $s > (m_{\omega^8} + m_{\eta^8})^2$ S-channel

Stable particles in cross-channels add additional singularities

0.2

Right-most part of additional cuts at $a_t \sqrt{s} = 0.299$ compared to threshold of $a_t \sqrt{s} = 0.3632$

Additional Singularities

Physical sheet pole at $a_t \sqrt{s} = 0.278(26)$ wrong residue.

 \Rightarrow asses this as a "ghost" occurring from improper treatment of the LHC

Noisy third unphysical sheet pole lies beyond region of constraint $a_t E \sim 0.46$.

 \Rightarrow artifact not present in all parameterizations

 \Rightarrow could be feeling presence of a hybrid 1^{--} meson we expect in that region

