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Motivation
Idea: Energy levels of particles in a box map to infinite-volume scattering amplitude, useful for 
extracting low-energy QCD scattering parameters from lattice simulations 
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det[1 + Fℳ] = 0

det[1 + F3𝒦df,3] = 0 ℳ3

O
utgoing

Goal: Derive analytic results for two- and three-particle systems, in a power counting scheme

ℳ2

• Test three-particle quantization condition

• Guided root finding

• Build intuition for -particles systemsN

• Test convergence when including higher partial waves

Motivation for This Work

2

Previous work by Huang, Yang, Beane, Detmold, Savage, Hansen, Sharpe, Pang, Wu, Hammer, Meißner, Rusetsky, Romero-López, Schlage, Urbach, ...
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Utilizing Two-Particle Quantization

Idea: Truncation of  and  are necessary to make practical use of quantization condition

• Expansion in a given power counting scheme allows for analytic expressions
F ℳ

Power Counting: Treat theory as weakly interacting, expand around non-interacting energy

q𝔫(L)2 = q(0)
𝔫 (L)2 +

∞

∑
k=1

ϵk Δ(k)
q[𝔫](L)

Idea: Systematically solve for  to find total energy of the system

• Infinite-volume contribution is simple to expand 

• Known geometrical function  must be treated with care due to poles

Δ(k)
q[𝔫](L)

f

3

:  relative momentum, in CoM; dimensionless
:  collective index for a given energy level

q
𝔫

(details in manuscript to appear)

p⋆ cot δ0(p⋆) = f(q, d, L)Truncation to s-wave only:
  :  total momentum

:  relative momentum, in CoM
d

p⋆

inf. vol. fin. vol.
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Expanding Geometric Function
Complication: Geometric function contains a sum over the set of all three vectors

S𝔫 = {v ∈ ℤ3 E(0)
𝔫 − ωv − ωd−v = 0}

f =
1

γ(q𝔫, d, L) ∑
v∈S𝔫

T(q𝔫, d, L) + ∑
v∉S𝔫

B(q𝔫, d, L)

4

f =
1

γ(q𝔫, d, L) ∑
v∈ℤ3

ℱ(q𝔫, d, L) :  relative momentum, in CoM; dimensionless
:  collective index for a given energy level

q
𝔫

• The summand  has poles when expanding around the non-interacting energy

• Defines a set of vectors  for each energy level
ℱ

S𝔫

:  single particle energyωv

Expansion: Break infinite sum into sum over  and v ∈ S𝔫 v ∉ S𝔫

Starts at 𝒪(1/ϵ) Starts at 𝒪(1)
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Two-Particle Result, NLO

5

NLO Result: General result for any s-wave dominated non-degenerate state*

E𝔫(L) = E(0)
𝔫 (L) + ϵ g𝔫

E(0)
𝔫 (L)

4ων𝔫
ωd−ν𝔫

8πa0

γ(0)
𝔫 L3

+ 𝒪(ϵ2) :  size of set 
:  single particle energy

g𝔫 S𝔫
ωv

*Degenerate states require use 
of partial waves, but we have a 
systematic way of treating these

• Check expansion validity by 
subtracting LO and NLO terms from 
exact numerical solution 

• At large mL, error reduction scales 
with , as expected

• Similar test for moving frames have 
been done

a2
0

CoM

Holds for states in trivial irrep in any moving frame, assuming a2r ∼ 𝒪(ϵ2)

Sanity Check: Does the analytic result converge to the numerical solution?
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Two-Particle Result, Higher Order

6

Idea: Higher order corrections can be found by further expanding ,  and systematically 
solving for 

F ℳ
Δ(k)

q[𝔫]

Complication: NNLO depends on infinite sum over 

• Summand for each energy level is different

• In moving frames the summand depends on mL

v ∉ S𝔫

E𝔫(L) = E(0)
𝔫 (L) + g𝔫

E(0)
𝔫 (L)

4ων𝔫
ωd−ν𝔫

8πa0

L3
+ ϵ2 g𝔫

8a2
0

E(0)
𝔫 (L)L4 (B𝔫,0 −

4π2g𝔫

E(0)
𝔫 (L)2L2 ) + 𝒪(ϵ3)

B𝔫,0 = lim
s→−1 ∑

v∉S𝔫

[q(0)2
𝔫 − v2]

s

Example: NNLO result in the CoM frame*

q(0)
𝔫 ∈ {0,ℤ+}

* have general NNLO result, just much less compact
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Three-Particle Expansion

7

Idea: Apply same systematic approach to three-particle quantization condition

det[1 + F3𝒦df,3] = 0

Complication: Both  and  have a significantly more complicated structure

• Similar to two-particle case,   and  have poles that can be used to define 

F3 𝒦df,3

F G S3,𝔫

Way Forward: NLO energy is given by solving for the pole in F3

F3 ≡
1
L3

1
2ω ( F

3
− F

1
𝒦−1

2 + F + G
F)

:  similar to two-particle F matrixF, G

:  two-particle  matrix𝒦2 K

S3,𝔫 = {v1 ∈ ℤ3 E(0)
3,𝔫 − (ωv1

+ ωv2
+ ωd−v1−v2) = 0 ∀ v2 ∈ ℤ3}
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Three-Particle NLO Energy

8

Idea: Set  decomposes into at 
most three two-particle sets 

S3,𝔫
S2,𝔫i

Idea: Texture of ,  and  allow for the derivation 
of NLO energy

•  and  are always diagonal

•  has only five classes of textures

𝒦2 F G

𝒦2 F
G

∼

∼∼

∼ ∼

(non-degenerate states)
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Previous work by Huang, Yang, Beane, Detmold, Savage, Hansen, Sharpe, Pang, Wu, Hammer, Meißner, Rusetsky, Romero-López, Schlage, Urbach, ...

Three-Particle NLO Result

9

Interpretation: LO energy shift is the sum of all possible two-particle LO energy shifts

ΔELO(p1, p2, p3) ΔELO(p1, p2) ΔELO(p1, p3) ΔELO(p2, p3)

=

=

This result has been derived for all non-degenerate s-wave dominated energy levels 

+ +

NLO Result: General result for any s-wave dominated non-degenerate state*

E3,𝔫 = E(0)
3,𝔫 + ϵ

3

∑
i=1

Δ(1)
E[2,𝔫i]

+ 𝒪(ϵ2)

+ +

*Degenerate states require use 
of partial waves, but we have a 
systematic way of treating these

Ss

Δ(1)
E[2,𝔫] ≡ g𝔫

E(0)
𝔫 (L)

4ων𝔫
ωd−ν𝔫

8πa0

γ(0)
𝔫 L3
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Conclusion

10

• Developed systematic method for expanding two- and three-particle energies for 
any non-degenerate state in any frame

• Can also handle degenerate states, though more complicated

• Useful for
• Guided root finding 
• Testing three-particle quantization condition
• Testing convergence when including higher partial waves

• Build intuition for  particlesN

E2,𝔫(L) = E(0)
2,𝔫(L) + ϵ g𝔫

E(0)
2,𝔫(L)

4ων𝔫
ωd−ν𝔫

8πa0

γ(0)
𝔫 L3

+ 𝒪(ϵ2) E3,𝔫 = E(0)
3,𝔫 +

3

∑
i=1

g𝔫𝔦

E(0)
2,𝔫i

(L)

4ων𝔫i
ωdi−ν𝔫i

8πa0

γ(0)
𝔫i

L3
+ 𝒪(ϵ2)


