Nuclear Parity Violation from 4-quark Interactions

Aniket Sen, Marcus Petschlies, Nikolas Schlage and Carsten Urbach

HISKP, University of Bonn

The 38^{th} International Symposium on Lattice Field Theory

29 July, 2021

Nuclear Parity Violation

Premise

- Study hadronic parity violation in $\Delta I = 1$ nucleon-nucleon interaction
- Aim to calculate the parity-odd pion-nucleon coupling h_π^1
- Comes from the weak Lagrangian

$$\mathcal{L}_{PV}^w = -\frac{h_\pi^1}{\sqrt{2}} \bar{N} \left(\vec{\tau} \times \vec{\pi} \right)_3 N + \dots$$

• Experimental result by NPDGamma collaboration (Blyth *et al.*, Phys.Rev.Lett. 121, 2018)

$$h_{\pi}^{1} = [2.6 \pm 1.4(stat) \pm 0.2(syst)] \times 10^{-7}$$

Calculation on Lattice

• Only one study on the lattice (Wasem, Phys.Rev C85, 2012)

$$h_{\pi}^{1} = (1.099 \pm 0.505^{+0.058}_{-0.064}) \times 10^{-7}$$

- However, with lots of systematics not accounted for
 - $N\pi$ represented by 3-quark interpolator
 - "quark-loop" contributions neglected
 - No renormalization performed
 - Single lattice at pion mass 389 MeV
- We try to benchmark a recently proposed technique for this calculation
 - Using PCAC relation, get rid of the soft-pion in the final state

$$F_{\pi}h_{\pi}^{1} \approx -\frac{(\delta m_{N})_{4q}}{\sqrt{2}}$$
 where $(\delta m_{N})_{4q} \equiv (m_{n} - m_{p})_{4q}$

• Use Feynman-Hellmann theorem to obtain the mass splitting

The Parity-odd Coupling

One obtains the coupling constant from the matrix element

$$h_{\pi}^{1} = -\frac{i}{2m_{N}} \lim_{p_{\pi} \to 0} \left\langle n\pi^{+} \right| \mathcal{L}_{PV}^{w} \left| p \right\rangle$$

• Using PCAC, construct a parity-even chiral partner (Feng, Guo, Seng, Phys.Rev.Let 120, 2018)

$$\lim_{p_{\pi}\to 0} \left\langle n\pi^{+} \right| \mathcal{L}_{PV}^{w} \left| p \right\rangle \approx -\frac{\sqrt{2}i}{F_{\pi}} \left\langle p \right| \mathcal{L}_{PC}^{w} \left| p \right\rangle$$

• With the effective Lagrangian

$$\mathcal{L}_{PC}^{w} = -\frac{G_F}{\sqrt{2}} \frac{\sin^2 \theta_W}{3} \sum_i (C_i \theta_i + S_i \theta_i^{(s)})$$

Theory

4-quark Operators

• The 4-quark operators thus derived are

$$\begin{aligned} \theta_1 &= \bar{q}_a \gamma_\mu q_a \bar{q}_b \gamma_\mu \tau_3 q_b & \theta_2 &= \bar{q}_a \gamma_\mu q_b \bar{q}_b \gamma_\mu \tau_3 q_a \\ \theta_3 &= \bar{q}_a \gamma_\mu \gamma_5 q_a \bar{q}_b \gamma_\mu \gamma_5 \tau_3 q_b & \\ \theta_1^{(s)} &= \bar{s}_a \gamma_\mu s_a \bar{q}_b \gamma_\mu \tau_3 q_b & \theta_2^{(s)} &= \bar{s}_a \gamma_\mu s_b \bar{q}_b \gamma_\mu \tau_3 q_a \\ \theta_3^{(s)} &= \bar{s}_a \gamma_\mu \gamma_5 s_a \bar{q}_b \gamma_\mu \gamma_5 \tau_3 q_b & \theta_4^{(s)} &= \bar{s}_a \gamma_\mu \gamma_5 s_b \bar{q}_b \gamma_\mu \gamma_5 \tau_3 q_a \end{aligned}$$

 Using Fierz identities we can get rid of the colour-crossed operators. In the light quark sector we get

$$\begin{aligned} \mathcal{O}_S &= \bar{q} \, \mathbb{1} \otimes \mathbb{1} q \; \bar{q} \, \mathbb{1} \otimes \tau_3 \, q \\ \mathcal{O}_P &= \bar{q} \, \gamma_5 \otimes \mathbb{1} q \; \bar{q} \, \gamma_5 \otimes \tau_3 \, q \\ \mathcal{O}_V &= \bar{q} \, \gamma_\mu \otimes \mathbb{1} q \; \bar{q} \, \gamma_\mu \otimes \tau_3 \, q \\ \mathcal{O}_A &= \bar{q} \, \gamma_\mu \gamma_5 \otimes \mathbb{1} q \; \bar{q} \, \gamma_\mu \gamma_5 \otimes \tau_3 \, q \end{aligned}$$

Feynman-Hellmann Theorem

• Considering a small perturbation $H \rightarrow H + \lambda H_{\lambda}$

FHT

According to Feynman-Hellmann theorem

$$\frac{\partial m_N}{\partial \lambda} = \langle N | H_\lambda | N \rangle$$

• We can calculate the energy shift as

$$\left|\frac{\partial m_N}{\partial \lambda}\right|_{\lambda=0}(t,\tau) = \frac{1}{\tau} \left[\frac{\partial_\lambda C_\lambda(t)}{C(t)} - \frac{\partial_\lambda C_\lambda(t+\tau)}{C(t+\tau)}\right]_{\lambda=0}$$

 Here C_λ is the 2 point correlator calculated in the presence of the source λ and C is the unperturbed correlator

Methods

Diagrams

- We obtain $\partial_{\lambda}C_{\lambda}$ by calculating $\sum_{x}\langle p|\mathcal{L}_{PC}^{w}(x)|p\rangle$
- The nucleon interpolators at source and sink are of the form $(u^T C \gamma_5 d) u$
- Inserting the 4-quark operators gives the 3-pt correlator with 3 sets of diagrams

Calculate x-dependent loops for a number of time-diluted sources

$$L_f^{(k)}(x_c)_{\alpha\beta}^{ab} = \phi^{(k)}(x_c)_{\alpha}^a \xi^{(k)}(x_c)_{\beta}^{b*}$$

• With
$$E[L_f^{(k)}(x_c)_{\alpha\beta}^{ab}] \equiv S^{(f)}(x_c;x_c)_{\alpha\beta}^{ab}$$

- Average over stochastic sources to get $\bar{L}(x_c)$
- Build sequential source

$$B: \Phi(x_c; x_i) = \Gamma_c \,\overline{L}(x_c) \,\Gamma_c \,S(x_c; x_i)$$
$$D: \Phi(x_c; x_i) = Tr(\Gamma_c \,\overline{L}(x_c)) \,\Gamma_c \,S(x_c; x_i)$$

• Invert on Φ to get the sequential propagator

• Define a set of scalar noise sources $\eta^{(k)}(\boldsymbol{x})$ such that

$$E[\eta^{(k)}(x)\eta^{(l)}(y)] = \delta_{kl}\delta_{x,y}$$

• Build W type sequential propagator at the source

$$\tilde{W}^{(i)}(\Gamma_c) = \sum_{x_c} S(x_f; x_c) \Gamma_c \eta^{(i)}(x_c) S(x_c; x_i)$$

Calculate expectation of a product of two such propagators

$$E[\tilde{W}^{(i)}(\Gamma_c)\tilde{W}^{(k)}(\Gamma_c)] = \sum_{x_c} \tilde{W}(x_f; x_c, \Gamma_c; x_i)\tilde{W}(x_f; x_c, \Gamma_c; x_i)$$

Gauge Ensemble

• $N_f = 2 + 1 + 1$ twisted mass ensemble cA211.30.32

$L^3 \times T$	a[fm]	$a\mu_l$	am_{π}	$m_{\pi}L$	$m_{\pi}[MeV]$
$32^3 \times 64$	0.097	0.00300	0.12530(16)	4.01	261.1(1.1)

• 1262 configurations

First Run on Test Ensemble

• Working with only light quark flavors

	Noise Samples	Source Coordinates
B/D	1	8
W	8	2

- The propagators are source and sink smeared
- all insertions with 4 quark operators at source and sink

11 / 20

Results

Results (Diagrams)

B type diagram for $\bar{u}\Gamma u\bar{u}\Gamma u$ insertion

- $\bullet~V$ and A seem to be symmetric about the zero-line
- S and P have almost identical signal

Results (Diagrams)

D type diagram for $\bar{u}\Gamma u\bar{u}\Gamma u$ insertion

- The Signal from \mathcal{O}_P is significantly more dominant
- V and A are about 2 orders of magnitude weaker compared to B-type

Results

Results (Diagrams)

W type diagram for $\bar{u}\Gamma u\bar{u}\Gamma u$ insertion

 $p-\overline{u}u\overline{u}u-p~W~cA211.30.32~N_{confs}=1262$

- Symmetry between V and A seen here as well
- Again signal is much weaker compared to *B*-type, which seems to be the major contributor to the final operators

Preliminary Results

The energy shift for the 4-quark operators, calculated with the FHT analysis

- θ₁ and θ₃ look symmetric, which comes directly from the symmetry
 observed in the individual diagrams
- colour-crossed θ_2 has more noise, could be due to disproportionate contribution from \mathcal{O}_P in D

Aniket Sen

Nuclear Parity Violation

Concluding Remarks

- Non-zero signal observed for all operators
- Need to have better control for θ_2
- Next step is renormalization
- Also add strange quark
- Investigate other techniques and compare cost and signal quality
- Then calculate with the physical pion mass ensembles
- And finally estimate h_{π}^1

The PCAC Relation

• The PCAC relation for an operator \hat{O} goes as

$$\lim_{p_{\pi}\to 0} \langle a\pi^{i} | \hat{O} | b \rangle = \frac{i}{F_{\pi}} \langle a | \left[\hat{O}, \hat{Q}_{A}^{i} \right] | b \rangle$$

- \hat{Q}_A^i is the axial charge operator, a and b are hadrons, F_π is the pion decay constant
- This relates \mathcal{L}_{PV}^w to \mathcal{L}_{PC}^w upto leading order in chiral EFT (Guo & Seng, Eur.Phys.J. C, 2019)

$$\lim_{p_{\pi} \to 0} \left\langle n\pi^{+} \right| \mathcal{L}_{PV}^{w} \left| p \right\rangle \approx -\frac{\sqrt{2}i}{F_{\pi}} \left\langle p \right| \mathcal{L}_{PC}^{w} \left| p \right\rangle = \frac{\sqrt{2}i}{F_{\pi}} \left\langle n \right| \mathcal{L}_{PC}^{w} \left| n \right\rangle$$

LATTICE 21 29 July, 2021 17 / 20

Extras

Mass Splitting and h_{π}^1

• One can write the matrix element in terms of the neutron-pion mass splitting $(\delta m_N)_{4q} \equiv (m_n - m_p)_{4q}$ induced by \mathcal{L}_{PC}^w

$$(\delta m_N)_{4q} = \frac{1}{m_N} \langle p | \mathcal{L}_{PC}^w | p \rangle = -\frac{1}{m_N} \langle n | \mathcal{L}_{PC}^w | n \rangle$$

• Then h_{π}^1 is obtained as

$$F_{\pi}h_{\pi}^{1} \approx -\frac{(\delta m_{N})_{4q}}{\sqrt{2}}$$

• This $(\delta m_N)_{4q}$ is equivalent to the energy shift $\partial_\lambda m_N|_{\lambda=0}$, as we are calculating using FHT

Extras

FHT Method

• The 2-pt correlator in the presence of the external source λ

$$C_{\lambda}(t) = \langle \lambda | N(t) N^{\dagger}(0) | \lambda \rangle = \frac{1}{Z_{\lambda}} \int \mathcal{D}\Phi N(t) N^{\dagger}(0) e^{-S - S_{\lambda}}$$

- where $S_{\lambda} = \lambda \int d^4x \ \mathcal{L}^w_{PC}(x)$
- The partial derivative w.r.t. λ relates C_λ to the matrix element we want

$$-\frac{\partial C_{\lambda}(t)}{\partial \lambda}\Big|_{\lambda=0} = -C(t) \int d^{4}x \, \left\langle \Omega \right| \mathcal{L}_{PC}^{w}(x) \left| \Omega \right\rangle \\ + \int d^{4}x \, \left\langle \Omega \right| \mathcal{T} \left\{ N(t) \mathcal{L}_{PC}^{w}(x) N^{\dagger}(0) \right\} \left| \Omega \right\rangle$$

• The first term vanishes due to lattice symmetries

Very Naive Estimate of h_{π}^1

• If we naively add the operators with the known Wilson coefficients

LATTICE 21 29 July, 2021