Nuclear Parity Violation from 4-quark Interactions

Aniket Sen, Marcus Petschlies, Nikolas Schlage and Carsten Urbach

HISKP, University of Bonn

The 38^{th} International Symposium on Lattice Field Theory

29 July, 2021

Premise

- \bullet Study hadronic parity violation in $\Delta I = 1$ nucleon-nucleon interaction
- Aim to calculate the parity-odd pion-nucleon coupling h^1_π
- **Comes from the weak Lagrangian**

$$
\mathcal{L}_{PV}^w = -\frac{h_\pi^1}{\sqrt{2}} \bar{N} \left(\vec{\tau} \times \vec{\pi} \right)_3 N + \dots
$$

• Experimental result by NPDGamma collaboration (Blyth et al., Phys.Rev.Lett. 121, 2018)

$$
h_{\pi}^{1} = [2.6 \pm 1.4(stat) \pm 0.2(syst)] \times 10^{-7}
$$

Calculation on Lattice

Only one study on the lattice (Wasem, Phys.Rev C85, 2012)

$$
h_{\pi}^{1} = (1.099 \pm 0.505^{+0.058}_{-0.064}) \times 10^{-7}
$$

- However, with lots of systematics not accounted for
	- $N\pi$ represented by 3-quark interpolator
	- "quark-loop" contributions neglected
	- No renormalization performed
	- Single lattice at pion mass 389 MeV
- We try to benchmark a recently proposed technique for this calculation
	- Using PCAC relation, get rid of the soft-pion in the final state

$$
F_\pi h_\pi^1 \approx -\frac{(\delta m_N)_{4q}}{\sqrt{2}} \quad \ \text{ where } \; (\delta m_N)_{4q} \equiv (m_n - m_p)_{4q}
$$

Use Feynman-Hellmann theorem to obtain the mass splitting

The Parity-odd Coupling

• One obtains the coupling constant from the matrix element

$$
h^1_\pi = -\frac{i}{2m_N}\lim_{p_\pi\to 0}\left\langle n\pi^+\right|{\mathcal L}_{PV}^w\left|p\right\rangle
$$

Using PCAC, construct a parity-even chiral partner (Feng, Guo, Seng, Phys.Rev.Let 120, 2018)

$$
\lim_{p_{\pi}\to 0} \left\langle n\pi^+\right|{\cal L}_{PV}^w\left|p\right\rangle \approx -\frac{\sqrt{2}i}{F_{\pi}}\left\langle p\right|{\cal L}_{PC}^w\left|p\right\rangle
$$

• With the effective Lagrangian

$$
\mathcal{L}_{PC}^w = -\frac{G_F \sin^2 \theta_W}{\sqrt{2}} \sum_i (C_i \theta_i + S_i \theta_i^{(s)})
$$

[Theory](#page-3-0)

4-quark Operators

• The 4-quark operators thus derived are

$$
\theta_1 = \bar{q}_a \gamma_\mu q_a \bar{q}_b \gamma_\mu \tau_3 q_b \qquad \theta_2 = \bar{q}_a \gamma_\mu q_b \bar{q}_b \gamma_\mu \tau_3 q_a
$$

\n
$$
\theta_3 = \bar{q}_a \gamma_\mu \gamma_5 q_a \bar{q}_b \gamma_\mu \gamma_5 \tau_3 q_b
$$

\n
$$
\theta_1^{(s)} = \bar{s}_a \gamma_\mu s_a \bar{q}_b \gamma_\mu \tau_3 q_b \qquad \theta_2^{(s)} = \bar{s}_a \gamma_\mu s_b \bar{q}_b \gamma_\mu \tau_3 q_a
$$

\n
$$
\theta_3^{(s)} = \bar{s}_a \gamma_\mu \gamma_5 s_a \bar{q}_b \gamma_\mu \gamma_5 \tau_3 q_b \qquad \theta_4^{(s)} = \bar{s}_a \gamma_\mu \gamma_5 s_b \bar{q}_b \gamma_\mu \gamma_5 \tau_3 q_a
$$

Using Fierz identities we can get rid of the colour-crossed operators. In the light quark sector we get

$$
O_S = \bar{q} \mathbb{1} \otimes \mathbb{1} q \bar{q} \mathbb{1} \otimes \tau_3 q
$$

\n
$$
O_P = \bar{q} \gamma_5 \otimes \mathbb{1} q \bar{q} \gamma_5 \otimes \tau_3 q
$$

\n
$$
O_V = \bar{q} \gamma_\mu \otimes \mathbb{1} q \bar{q} \gamma_\mu \otimes \tau_3 q
$$

\n
$$
O_A = \bar{q} \gamma_\mu \gamma_5 \otimes \mathbb{1} q \bar{q} \gamma_\mu \gamma_5 \otimes \tau_3 q
$$

[FHT](#page-5-0)

Feynman-Hellmann Theorem

- Considering a small perturbation $H \to H + \lambda H_\lambda$
- **•** According to Feynman-Hellmann theorem

$$
\frac{\partial m_N}{\partial \lambda} = \langle N | H_\lambda | N \rangle
$$

• We can calculate the energy shift as

$$
\left| \frac{\partial m_N}{\partial \lambda} \right|_{\lambda=0} (t, \tau) = \frac{1}{\tau} \left[\frac{\partial_{\lambda} C_{\lambda}(t)}{C(t)} - \frac{\partial_{\lambda} C_{\lambda}(t+\tau)}{C(t+\tau)} \right]_{\lambda=0}
$$

 \bullet Here C_{λ} is the 2 point correlator calculated in the presence of the source λ and C is the unperturbed correlator

Diagrams

- We obtain $\partial_{\lambda} C_{\lambda}$ by calculating $\sum_x \langle p | \mathcal{L}_{PC}^{w}(x) | p \rangle$
- The nucleon interpolators at source and sink are of the form $(u^T C \gamma_5 d) u$
- Inserting the 4-quark operators gives the 3-pt correlator with 3 sets of diagrams

Calculate x-dependent loops for a number of time-diluted sources

$$
L_f^{(k)}(x_c)_{\alpha\beta}^{ab} = \phi^{(k)}(x_c)_\alpha^a \xi^{(k)}(x_c)_\beta^{b*}
$$

• With
$$
E[L_f^{(k)}(x_c)_{\alpha\beta}^{ab}] \equiv S^{(f)}(x_c; x_c)_{\alpha\beta}^{ab}
$$

- Average over stochastic sources to get $L(x_c)$
- Build sequential source

$$
B: \Phi(x_c; x_i) = \Gamma_c \bar{L}(x_c) \Gamma_c S(x_c; x_i)
$$

$$
D: \Phi(x_c; x_i) = Tr(\Gamma_c \bar{L}(x_c)) \Gamma_c S(x_c; x_i)
$$

• Invert on Φ to get the sequential propagator

Method for W

Define a set of scalar noise sources $\eta^{(k)}(x)$ such that

[Methods](#page-6-0)

$$
E[\eta^{(k)}(x)\eta^{(l)}(y)] = \delta_{kl}\delta_{x,y}
$$

• Build W type sequential propagator at the source

$$
\tilde{W}^{(i)}(\Gamma_c) = \sum_{x_c} S(x_f; x_c) \Gamma_c \eta^{(i)}(x_c) S(x_c; x_i)
$$

Calculate expectation of a product of two such propagators

$$
E[\tilde{W}^{(i)}(\Gamma_c)\tilde{W}^{(k)}(\Gamma_c)] = \sum_{x_c} \tilde{W}(x_f; x_c, \Gamma_c; x_i) \tilde{W}(x_f; x_c, \Gamma_c; x_i)
$$

Gauge Ensemble

• $N_f = 2 + 1 + 1$ twisted mass ensemble $cA211.30.32$

• 1262 configurations

First Run on Test Ensemble

• Working with only light quark flavors

- The propagators are source and sink smeared
- all insertions with 4 quark operators at source and sink

[Results](#page-11-0)

Results (Diagrams)

B type diagram for $\bar{u}\Gamma u\bar{u}\Gamma u$ insertion

- \bullet V and A seem to be symmetric about the zero-line
- \bullet S and P have almost identical signal

[Results](#page-11-0)

Results (Diagrams)

D type diagram for $\bar{u}\Gamma u\bar{u}\Gamma u$ insertion

- The Signal from \mathcal{O}_P is significantly more dominant
- \bullet V and A are about 2 orders of magnitude weaker compared to B -type

[Results](#page-11-0)

Results (Diagrams)

W type diagram for $\bar{u}\Gamma u\bar{u}\Gamma u$ insertion

- Symmetry between V and \overline{A} seen here as well
- \bullet Again signal is much weaker compared to B -type, which seems to be the major contributor to the final operators

Preliminary Results

The energy shift for the 4-quark operators, calculated with the FHT analysis

- θ_1 and θ_3 look symmteric, which comes directly from the symmetry observed in the individual diagrams
- colour-crossed θ_2 has more noise, could be due to disproportionate contribution from \mathcal{O}_P in D

Concluding Remarks

- Non-zero signal observed for all operators
- Need to have better control for θ_2
- Next step is renormalization
- Also add strange quark
- Investigate other techniques and compare cost and signal quality
- Then calculate with the physical pion mass ensembles
- And finally estimate h^1_π

The PCAC Relation

 \bullet The PCAC relation for an operator \hat{O} goes as

$$
\lim_{p_{\pi}\to 0} \langle a\pi^{i}|\hat{O}|b\rangle = \frac{i}{F_{\pi}} \langle a|\left[\hat{O},\hat{Q}_{A}^{i}\right]|b\rangle
$$

- \hat{Q}_{A}^{i} is the axial charge operator, a and b are hadrons, F_{π} is the pion decay constant
- This relates \mathcal{L}_{PV}^{w} to \mathcal{L}_{PC}^{w} upto leading order in chiral EFT (Guo & Seng, Eur.Phys.J. C, 2019)

$$
\lim_{p_{\pi}\to 0} \left\langle n\pi^+ \right| \mathcal{L}_{PV}^w \left| p \right\rangle \approx -\frac{\sqrt{2}i}{F_{\pi}} \left\langle p \right| \mathcal{L}_{PC}^w \left| p \right\rangle = \frac{\sqrt{2}i}{F_{\pi}} \left\langle n \right| \mathcal{L}_{PC}^w \left| n \right\rangle
$$

[Extras](#page-16-0)

Mass Splitting and h^1_π π

One can write the matrix element in terms of the neutron-pion mass splitting $(\delta m_N)_{4q} \equiv (m_n - m_p)_{4q}$ induced by \mathcal{L}_{PC}^w

$$
(\delta m_N)_{4q} = \frac{1}{m_N} \langle p | \mathcal{L}_{PC}^w | p \rangle = -\frac{1}{m_N} \langle n | \mathcal{L}_{PC}^w | n \rangle
$$

Then h^1_π is obtained as

$$
F_{\pi}h_{\pi}^{1} \approx -\frac{(\delta m_{N})_{4q}}{\sqrt{2}}
$$

• This $(\delta m_N)_{4q}$ is equivalent to the energy shift $\partial_\lambda m_N |_{\lambda=0}$, as we are calculating using FHT

[Extras](#page-16-0)

FHT Method

• The 2-pt correlator in the presence of the external source λ

$$
C_{\lambda}(t) = \langle \lambda | N(t)N^{\dagger}(0) | \lambda \rangle = \frac{1}{Z_{\lambda}} \int \mathcal{D}\Phi N(t)N^{\dagger}(0)e^{-S-S_{\lambda}}
$$

• where
$$
S_{\lambda} = \lambda \int d^4x \mathcal{L}_{PC}^w(x)
$$

• The partial derivative w.r.t. λ relates C_{λ} to the matrix element we want

$$
-\frac{\partial C_{\lambda}(t)}{\partial \lambda}\Big|_{\lambda=0} = -C(t)\int d^4x \langle \Omega | \mathcal{L}_{PC}^w(x) | \Omega \rangle + \int d^4x \langle \Omega | \mathcal{T} \left\{ N(t)\mathcal{L}_{PC}^w(x)N^{\dagger}(0) \right\} | \Omega \rangle
$$

• The first term vanishes due to lattice symmetries

Very Naive Estimate of h^1_π π

• If we naively add the operators with the known Wilson coefficients

Aniket Sen [Nuclear Parity Violation](#page-0-0) LATTICE 21 29 July, 2021 20 / 20