| Introduction | Model | Numerical result | Phase shift |
|--------------|-------|------------------|-------------|
| 00           | 00    | 000000           | 0000000     |

### Scattering from generalised $\phi^4$

Marco Garofalo<sup>a)</sup>, Fernando Romero-López<sup>b)</sup>, Akaki Rusetsky<sup>a)c)</sup>, Carsten Urbach<sup>a)</sup>

a)HISKP (Theory), Rheinische Friedrich-Wilhelms-Universität Bonn b)IFIC, CSIC-Universitat de Valéncia, 46980 Paterna, Spain c)Tbilisi State University, 0186 Tbilisi, Georgia

The 38th International Symposium on Lattice Field Theory 26-31 July 2021





| Introduction | Model | Numerical result | Phase shift |
|--------------|-------|------------------|-------------|
| •0           | 00    | 000000           | 0000000     |
|              |       |                  |             |

- We want to investigate techniques to extract scattering amplitudes from Euclidean Lattice field theory
- As a tool we are using a variation of  $\phi^4$  theory with two fields with different masses
- $\phi^4$  theory as been used many times to test method for scattering quantities calculation e.g. [F. Romero-López , A. Rusetsky, N. Schlage and C. Urbach (2021)]
- We test a proposal to extract the scattering length from lattice simulations [M. Bruno, M. T. Hansen (2021)] and Talk
   M. Bruno, "Variations on the Maiani-Testa approach and the inverse problem", Hadron Spectroscopy and Interactions, 27 Jul 2021, 06:45 local time.

| Introduction | Model | Numerical result | Phase shift |
|--------------|-------|------------------|-------------|
| 0.           | 00    | 000000           | 0000000     |

#### BH method

One of the results derived in [M. Bruno, M. T. Hansen (2021)]

$$\langle \pi_0 | \tilde{N}_0(t) N^{\dagger}(t_i) | \pi_0 \rangle_c = \mathcal{N} e^{-m_N (t-t_i)} \bigg[ 8\pi (m_N + m_\pi) a_{N\pi} (t-t_i) - 16a_{N\pi}^2 \sqrt{2\pi (m_N + m_\pi) m_N m_\pi (t-t_i)} \bigg] + O(t^0)$$

- *a*<sub>Nπ</sub> scattering length
- N is the interpolating field of the Nucleon and
- $\tilde{N}_0(t) = \frac{1}{V} \sum_{\mathbf{x}} N(t, \mathbf{x})$
- $m_{\pi}$ , $m_N$  masses of the particles
- $\langle \cdot \rangle_c$  is the connected part

| Introduction | Model | Numerical result | Phase shift |
|--------------|-------|------------------|-------------|
| 00           | ●○    |                  | 0000000     |
|              |       |                  |             |

#### The model

- Two real fields  $\phi_0$  and  $\phi_1$
- Different masses m<sub>0</sub> < m<sub>1</sub>
- $Z_2 \otimes Z_2$  symmetry  $\phi_0 \to -\phi_0 \otimes \phi_1 \to -\phi_1$

$$\mathcal{L} = \sum_{i=0,1} \left( \frac{1}{2} \partial_{\mu} \phi_i \partial_{\mu} \phi_i + \frac{1}{2} m_i \phi_i^2 + \lambda_i \phi_i^4 \right) + \mu \phi_0^2 \phi_1^2$$

- $\phi_0$  mimic the  $\pi$  and  $\phi_1$  the N
- On the lattice  $\partial_{\mu} = \phi(x + \mu) \phi(x)$
- Metropolis-Hastings algorith to generate ensembles
- Implementation with Kokkos to have a performance portable implementation [H. C. Edwards, C. R. Trott, D. Sunderland (2014)]

| Introduction | Model | Numerical result | Phase shift |
|--------------|-------|------------------|-------------|
| 00           | 0.    | 000000           | 0000000     |
|              |       |                  |             |

• Fitting the BH formula reads

$$C_4^{\rm BH}(t_f, t, t_i) \equiv \frac{\langle \tilde{\phi}_0(t_f) \tilde{\phi}_1(t) \tilde{\phi}_1(t_i) \tilde{\phi}_0(0) \rangle}{\langle \tilde{\phi}_0(t_f) \tilde{\phi}_0(0) \rangle \langle \tilde{\phi}_1(t) \tilde{\phi}_1(t_i) \rangle} - 1$$

$$\xrightarrow{T \gg t_f \gg t}{t_i \gg t_i \gg 0} \frac{2}{L^3} \left[ \pi \frac{a_0}{\mu_{01}} (t - t_i) - 2a_0^2 \sqrt{\frac{2(t - t_i)}{\mu_{01}}} + O\left((t - t_i)^0\right) \right]$$

• 
$$\tilde{\phi}_i = \sum_{\mathbf{x}} \phi(t, \mathbf{x})$$

- $\mu_{01} = M_0 M_1 / (M_0 + M_1)$
- $2M_0 \sim M_1$  masses of the particle
- $m_0=-4.952,\,m_1=-4.85$  ,  $\lambda_0=\lambda_1=\mu/2=2.5$

| Introduction | Model | Numerical result | Phase shift |
|--------------|-------|------------------|-------------|
| 00           | 00    | 00000            | 0000000     |

• In  $\phi^4$  model the BH formula reads

$$C_4^{\rm BH}(t_f,t,t_i) \equiv \frac{\langle \tilde{\phi}_0(t_f)\tilde{\phi}_1(t)\tilde{\phi}_1(t_i)\tilde{\phi}_0(0)\rangle}{\langle \tilde{\phi}_0(t_f)\tilde{\phi}_0(0)\rangle\langle \tilde{\phi}_1(t)\tilde{\phi}_1(t_i)\rangle} - 1$$

$$\xrightarrow{T \gg t_f \gg t}{t_i \gg t_i \gg 0} \frac{2}{L^3} \left[ \pi \frac{a_0}{\mu_{01}}(t-t_i) - 2a_0^2 \sqrt{\frac{2(t-t_i)}{\mu_{01}}} + O\left((t-t_i)^0\right) \right]$$



- Example plot for L22T96,  $t_f = 16$  ,  $t_i = 3$
- fit [10,14]  $\chi^2/d.o.f\sim 0.7$

• fit [6,14] 
$$\chi^2/d.o.f\sim 5$$

| Introduction | Model | Numerical result | Phase shift |
|--------------|-------|------------------|-------------|
| 00           | 00    | 00000            | 0000000     |

• Fitting the constant term

$$C_4^{\rm BH}(t_f, t, t_i) \equiv \frac{\langle \tilde{\phi}_0(t_f) \tilde{\phi}_1(t) \tilde{\phi}_1(t_i) \tilde{\phi}_0(0) \rangle}{\langle \tilde{\phi}_0(t_f) \tilde{\phi}_0(0) \rangle \langle \tilde{\phi}_1(t) \tilde{\phi}_1(t_i) \rangle} - 1$$
$$\xrightarrow{T \gg t_f \gg t}{t_i \gg 0} \frac{2}{L^3} \left[ \pi \frac{a_0}{\mu_{01}} (t - t_i) - 2a_0^2 \sqrt{\frac{2(t - t_i)}{\mu_{01}}} + \frac{const}{const} \right]$$



| Introduction | Model | Numerical result | Phase shift |
|--------------|-------|------------------|-------------|
| 00           | 00    | 00000            | 0000000     |

• We can cancel the constant term using a shifted correlator

$$\Delta_t C_4^{\rm BH}(t_f, t, t_i) = C_4^{\rm BH}(t_f, t+1, t_i) - C_4^{\rm BH}(t_f, t, t_i)$$
$$\Delta_t C_4^{\rm BH}(t_f, t, t_i) \approx \frac{2}{L^3} \Big[ \pi \frac{a_0}{\mu_{01}} - 2a_0^2 \sqrt{\frac{2}{\mu_{01}}} \Big( \sqrt{t+1-t_i} - \sqrt{t-t_i} \Big) \Big].$$



•  $C_4^{\text{BH}} + const$  fit [4,14]  $\chi^2/d.o.f \sim 0.2$  $a_0 = -0.31(6)$ 

• 
$$\Delta_t C_4^{\text{BH}}$$
 fit [4,14]  
 $\chi^2/d.o.f \sim 0.2$   
 $a_0 = -0.34(4)$ 

| Introduction | Model | Numerical result | Phase shift |
|--------------|-------|------------------|-------------|
| 00           | 00    | 000000           | 0000000     |

• We check the dependence on  $t_f$  and  $t_i$  in  $\Delta_t C_4^{\text{BH}}(t_f, t, t_i)$ 



- Consistent result for different  $t_f$  and  $t_i$
- Smaller error for smaller  $t_f$  and  $t_i$

| Introduction | Model | Numerical result | Phase shift |
|--------------|-------|------------------|-------------|
| 00           | 00    | 000000           | 0000000     |

• We compare the result of BH method with the Lüscher threshold expansion [M. Lüscher (1986)]

$$\Delta E_2 = -\frac{2\pi a_0}{\mu_{01}L^3} \left[ 1 + c_1 \frac{a_0}{L} + c_2 \left(\frac{a_0}{L}\right)^2 \right] + O\left(L^{-6}\right) \,,$$

• 
$$\Delta E_2 = E_2 - M_0 - M_1$$

• E<sub>2</sub> the interacting two-particle energy

• 
$$\mu_{01} = M_0 M_1 / (M_0 + M_1)$$

• 
$$c_1 = -2.837297$$
,  $c_2 = 6.375183$ 

$$\langle \tilde{\phi}_1(t) \tilde{\phi}_0(t) \tilde{\phi}_1(0) \tilde{\phi}_0(0) \rangle \xrightarrow[T-t\gg0]{t\gg0} A_2 e^{-E_2 \frac{T}{2}} \cosh\left(E_2(t-\frac{T}{2})\right) + B_2 e^{-(M_0+M_1)\frac{T}{2}} \cosh\left((M_1-M_0)(t-\frac{T}{2})\right).$$



- In each ensemble both method are consistent
- Systematic difference between the average, possibly due to lattice artefacts
- Statistical error and scaling with L similar
- BH method is a promising alternative that will be interesting to try it in QCD where the continuum limit can be studied

| Introduction | Model | Numerical result | Phase shift |
|--------------|-------|------------------|-------------|
| 00           | 00    |                  | •000000     |
|              |       |                  |             |

- We also investigate the computation of the scattering quantities at non zero momentum
- We studied s-wave scattering amplitude for two particles with Lüscher method [M. Lüscher (1991)]
- We compute the spectrum of our  $\phi^4$  model at  $p \neq 0$  for the lighter particle.
- $3M_0 \sim M_1$  masses of the particle
- $m_0=-4.9$ ,  $m_1=-4.65$  ,  $\lambda_0=\lambda_1=\mu/2=2.5$

| Introduction | Model | Numerical result | Phase shift |
|--------------|-------|------------------|-------------|
| 00           | 00    | 000000           | 0000000     |

• One particle spectrum from the correlator

$$\langle \tilde{\phi}_0(t,p)\tilde{\phi}_0(0,-p)\rangle \approx |A_1| \left( e^{-E_1(p)t} + e^{-E_1(p)(T-t)} \right)$$

 $p=2\pi n/L$  with n=(0,0,0),(1,0,0),(1,1,0),(1,1,1)

• The data are described well by the lattice bosonic dispersion relation



| Introduction | Model | Numerical result | Phase shift |
|--------------|-------|------------------|-------------|
| 00           | 00    | 000000           | 0000000     |

Two particle spectrum from the correlator

$$\begin{array}{l} \langle \hat{O}_2(t,p)\hat{O}_2(0,-p)\rangle \xrightarrow{t\gg 0} A_2 e^{-E_2(p)\frac{T}{2}} \cosh\left(E_2(p)(t-\frac{T}{2})\right) \\ +A_1 e^{-(E_1(p)+M_0)\frac{T}{2}} \cosh\left((E_1(p)-M_0)(t-\frac{T}{2})\right) \end{array}$$

•  $\hat{O}_2(t,p) = \tilde{\phi}_0(t,p)\tilde{\phi}_0(t,0)$  in the A1 irrep

- We also compute  $\hat{O}_2(t,0) = \sum_{i=x,y,z} \tilde{\phi}_0(t,p_i) \tilde{\phi}_0(t,-p_i)$  in the A1 irrep
- Calculate the S-wave phase shift as [M. Lüscher (1991)]

$$\cot \delta = \frac{Z_{0,0}(1,q^2)}{\pi^{3/2}\gamma q}$$

- Z<sub>0,0</sub> Lüscher zeta function
- $\gamma = E_2/E_{CM}$  with  $E_{CM} = E_2 p^2$
- $q = kL/2\pi$  with  $k = \frac{E_{CM}}{4} M_0^2$  the scattering momentum

| Introduction                                    | Model<br>oo                                        | Numerical result                                                           | Phase shift<br>000●000 |
|-------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------|------------------------|
| • $k \cot \delta =$<br>• $k = \frac{E_{CM}}{4}$ | $\frac{\frac{1}{a_0} + \frac{r_0 k^2}{2}}{-M_0^2}$ | • $\hat{O}_2(t) = \tilde{\phi}(t, p_1)\phi(t, p_2)$<br>• $L = 32 \ T = 32$ |                        |
| 0.0 -                                           | $\circ$ $\circ$ $\bullet$ $E_2$                    | $0.006$ $ E_2$ $ 0.004$ $ \Phi$                                            | $-E_2^{free,cont}$     |
| -0.5 - •                                        |                                                    |                                                                            |                        |
| -1.0 -                                          |                                                    | 0.000                                                                      | •                      |
| -1.5                                            | $\frac{1}{1} \frac{2}{k^2/M_2^2} = \frac{3}{3}$    | 669. (10. (10. (10. (10. (10. (10. (10. (10                                | 1,1,1,0,0,0            |
|                                                 |                                                    | $\Gamma \rightarrow \Gamma \rightarrow$                                    |                        |

| Introduction | Model | Numerical result | Phase shift |
|--------------|-------|------------------|-------------|
| 00           | 00    | 000000           | 0000000     |

Add a lattice artefact to the energy

$$E_2 \rightarrow E_2 - E_2^{free,latt} + E_2^{free,cont}$$

• Similar treatment in [K. Rummukainen and S. A. Gottlieb (1995)]



| Introduction | Model | Numerical result | Phase shift |
|--------------|-------|------------------|-------------|
| 00           | 00    | 000000           | 0000000     |

Add a lattice artefact to the energy

$$E_2 \to E_2 - E_2^{free,latt} + E_2^{free,con}$$

• Similar treatment in [K. Rummukainen and S. A. Gottlieb (1995)]



•  $k \cot \delta = \frac{1}{a_0} + \frac{r_0 k^2}{2}$ 

• 
$$a_0m_0 = -4.58(7)$$
  
 $r_0m_0 = -0.220(5)$   
 $\chi^2/d.o.f \sim 3.9$ 

•  $a_0m_0 = -4.79(7)$  $r_0m_0 = -0.105(3)$  $\chi^2/d.o.f \sim 1.3$ 

| Introduction | Model | Numerical result | Phase shift |
|--------------|-------|------------------|-------------|
| 00           | 00    | 000000           | 0000000     |
|              |       |                  |             |

## Conclusion

- In the  $\phi^4$  model considered we found that [M. Bruno, M. T. Hansen (2021)] method produces results compatible with [M. Lüscher (1986)]
- At large momentum we need to consider discretization effect in the lattice dispersion relation to determine the scattering phase shifts  $\delta$ , as already observed in [K. Rummukainen and S. A. Gottlieb (1995)]

## Outlook

- add a  $g\phi_0^3\phi_1$  term in the Lagrangian to induce decay  $\phi_1\to 3\phi_0$  and study resonance

| Introduction | Model | Numerical result | Phase shift |
|--------------|-------|------------------|-------------|
| 00           | 00    | 000000           | 000000      |
|              |       |                  |             |

# Thank you for your attention