Light flavor-singlet pseudoscalar in J/ψ radiative decay

Xiangyu Jiang

Institute of High Energy Physics, Chinese Academy of Sciences

Outlines

- Motivation
- Methodology
- Preliminary results
- Summary

I. Motivation

• The radiative decays of J/ψ is thought of a good hunting ground for glueballs (and hybrids) due to the abundance of gluons in $c\bar{c}$ annihilation γ

Naïve α_s power counting expects:

$$
\frac{\Gamma(J/\psi \to \gamma G)}{\Gamma(J/\psi \to \gamma(q\overline{q}))} \propto \frac{1}{\alpha_s^2}
$$

• Therefore, the production rate of $q\bar{q}$ mesons is relatively suppressed in comparison with that of glueballs.

I. Motivation

- Quenched lattice QCD studies predict large production ratios of the scalar and the tensor glueballs:
	- $Br(J/\psi \rightarrow \gamma G_{0^+}) = 3.8(9) \times 10^{-3}$, L.-C. Gui et al., PRL 110 (2013) 021601
	- $Br(J/\psi \rightarrow \gamma G_{2}^+) = 1.1(2) \times 10^{-2}$, Y.-B. Yang et al., PRL 111 (2013) 091601
- In order to check the possible suppression, it is intriguing to calculate the partial width $\Gamma(J/\psi \to \gamma(q\bar{q}))$ from lattice QCD.
- The decay $J/\psi \to \gamma \eta^{(\prime)}$ can be a good starting point, since $\eta^{(\prime)}$ is relatively stable in comparison to other light flavor singlet mesons.
- For two flavor gauge configuration, the isoscalar light pseudoscalar η is considered.

I. A. Configuration

• We generated $N_f = 2$ gauge configurations on an anisotropic lattice:

- The fermion anisotropic ratio ξ_f is measured by dispersion relation Ω n π .
- The lattice spacing a_t^{-1} is measured by relationship between light flavor pseudoscalar (π) and vector (ρ) particles: $m_\rho^2 - m_\pi^2 = 1$ 0.5682 GeV^2 .
- Since glueballs and disconnected insertion need large statistics, such an anisotropic lattice is an optimal choice.
- Generated \sim 70,000 trajectories now, used 500 of them

Outlines

- Motivation
- Methodology
- Preliminary results
- Summary

II. Methodology

• The general radiative decay width of an initial particle i to a final particle f is:

$$
\Gamma(i \to \gamma f) = \int d\Omega_q \, \frac{1}{32\pi^2} \frac{|\vec{q}|}{m_i^2} \frac{1}{2J_i + 1} \times \sum_{r_i, r_f, r_\gamma} \left| M_{r_i, r_f, r_\gamma} \right|^2
$$

• The transition amplitude is:

$$
M_{r_i,r_f,r_\gamma} = \epsilon^*_{\mu}(\vec{q},r_\gamma) \langle f(\vec{p}_f,r_f)|j_{em}^{\mu}(0)|i(\vec{p}_i,r_i) \rangle
$$

• Apply the multipole decomposition:

$$
\langle f(\vec{p}_f, r_f)|j_{em}^{\mu}(0)|i(\vec{p}_i, r_i)\rangle = \sum_k \alpha_k^{\mu}(p_i, p_f) F_k^2(Q^2)
$$

• The matrix element can be derived from 3-point function: $\Gamma^{(3)\mu}(\vec{p}_f, \vec{q}; t_f, t) = \sum$ \vec{x} , \vec{y} $e^{-i\vec{p}_f\cdot\vec{x}}e^{-i\vec{q}\cdot\vec{y}}\left(o_\eta(\vec{x},t_f)j_{em}^\mu(\vec{y},t) o_{J/\psi}^\dagger(\vec{0},0)\right)$

II. Methodology

- One of the key points of this calculation is to tackle with the light quark loop relevant to the η meson. This can be done by applying the distillation method (M. Peardon et al., PRD 80 (2009) 054506)
- Left part of the diagram is something like 2-point function between J/ψ and electromagnetic current j_{em}^{μ} , which should be much simpler than the light quark loop

II. A. Previous work

- Once we get the good SNR of η , we can do the similar calculation as L.-C. Gui et al., PRL 110 (2013) 021601
- This paper calculated $J/\psi \rightarrow \gamma G_0 +$
- Include
	- calculating 3-point function
	- extracting form factors

II. Methodology

• At first, we check the 2-point functions of different interpolation operators for η :

$$
\mathcal{O}_{\Gamma} = \frac{1}{\sqrt{2}} \left(\bar{u} \Gamma u + \bar{d} \Gamma d \right), \qquad \Gamma = i \gamma_5, \gamma_4 \gamma_5, \gamma_4 \gamma_5 \gamma_i \nabla_i
$$

where $\nabla_i = \frac{1}{2} \left(U_i(x) \delta_{x+i,y} - U_i^{\dagger} (x - i) \delta_{x-i,y} \right)$

• And we have the 2-point function:

$$
C_2(t) = \sum_{\vec{x}} \langle \mathcal{O}_{\Gamma}(\vec{x},t) \mathcal{O}_{\Gamma}^{\dagger}(\vec{0},0) \rangle = C(t) + 2D(t)
$$

\n
$$
C(t) = -\sum_{\vec{x}} \langle \text{Tr}[\Gamma S_F(\vec{x},t;\vec{0},0) \Gamma S_F(\vec{0},0;\vec{x},t)] \rangle
$$

\n
$$
D(t) = \sum_{\vec{x}} \langle \text{Tr}[\Gamma S_F(\vec{x},t;\vec{x},t)] \text{Tr}[\Gamma S_F(\vec{0},0;\vec{0},0)] \rangle
$$

\n
$$
\Gamma, (\vec{0},0)
$$

\n
$$
\Gamma, (\vec{x},t)
$$

\n
$$
\Gamma, (\vec{0},0)
$$

\n
$$
\Gamma, (\vec{x},t)
$$

\n
$$
\Gamma, (\vec{0},0)
$$

\n
$$
\Gamma, (\vec{x},t)
$$

\n
$$
\Gamma, (\vec{0},0)
$$

\n
$$
\Gamma, (\vec{x},t)
$$

\n
$$
\Gamma, (\vec{0},0)
$$

\n
$$
\Gamma, (\vec{x},t)
$$

\n<

II. B. Distillation

- We use 70 eigenvectors to construct the perambulators and elementals for distillation method.
- The 2-point function for π generated by distillation method using only 10 configurations.

Outlines

- Motivation
- Methodology
- Preliminary results
- Summary

III. A. 2-point function

• Connected and disconnected part of the 2-point functions with zero momentum, multiplied by $e^{m_{\pi}t}$:

- Both connected and disconnected parts have good SNRs
- Orders of magnitude of the two parts are similar

III. B. Finite volume effect

- For $\Gamma = i\gamma_5$, the 2-point function of zero momentum has an extra constant at large t
- The constant is related to the topological charge (S. Aoki et al., PRD 76 (2007) 054508; G. Bali et al., PRD 91 (2015) 014503)
- We use $C_2(t + 1) C_2(t)$ instead of $C_2(t)$ to solve the effective mass

III. C. Effective mass plateaus

• For η with zero momentum, and π with zero momentum for comparison

III. D. Non-zero momentum

- For the on-shell photon $(q^2 = (p_i p_f)^2)$ $= 0$), $|\vec{q}| =$ $m_{J/\psi}^2$ – m_π^2 $2m_{J/\psi}$ can be derived for center-of-mass frame, so the momentum of η should be at least \sim 1.4GeV
- $p_0 = \frac{2\pi}{l_a a}$ $L_S a_S$ ≈ 511 MeV, $|\vec{p}_{\eta}|$ should reach $\sqrt{8}p_0$
- At least we need $\vec{n}_p = (2,2,0)$
- Plateaus with momentum match!

IV. Summary

- We do get disconnected parts with good signals for different operators
- We do get a higher plateaus after we sum the two parts up, which means π in both parts canceled
- We see plateaus for η with different momentums, but need improved SNRs
- Can do variation analysis on these different operators
- In progress
	- Variation analysis will be applied on more operators
	- Solving eigensystems and calculating perambulators on \sim 5000 configurations by using chroma and primme
	- Porting the tensor contraction code to python

Appendix. A. Finite volume effect

$$
\langle \rho(x)\rho(0)\rangle_{Q} \rightarrow \frac{1}{V_{4}} \left(\frac{Q^{2}}{V_{4}} - \chi_{t} - \frac{c_{4}}{2\chi_{t}V_{4}}\right) + \cdots
$$

Topological charge $\rho(x) \approx \frac{c_{1pt}(x)}{\alpha a^{4}}$

$$
\left\langle C_2^{\eta}(t,\vec{p}=\vec{0})\right\rangle_Q \rightarrow \frac{3\alpha^2 a^5}{T} \left(\chi_t - \frac{Q^4}{V_4}\right)
$$

From G. Bali et al., PRD 91 (2015) 014503

Appendix. B. Lattice spacing a_s

