Composition of the inclusive semi-leptonic decay of B meson

Shoji Hashimoto, Takashi Kaneko (KEK, SOKENDAI), Gabriela Bailas (U. of Tsukuba), Paolo Gambino, Sandro Machler (U. of Torino)
@ Lattice 2021 MIT(online): Wed, Jul 28, 9:45pm (10:45am+1 JST)

Semi-leptonic B decay

Exclusive: specific final states (D, D^{*}, \ldots)
Inclusive: sum over all final states, can be computed using PT (or OPE)

A new method to compute the "sum" in LQCD Gambino and SH, arXiv:2005.13730 from the forward-Compton amplitude.

$$
\langle B(\mathbf{0})| \tilde{J}_{\mu}^{\dagger}(-\boldsymbol{q} ; t): \begin{array}{c:c}
\tilde{J}_{\nu}(\boldsymbol{q} ; 0)|B(\mathbf{0})\rangle \\
\text { all possible states contribute }
\end{array}
$$

Composition of inclusive decays (exp't):

Bernlochner @ ICHEP 2012

Sum of all identified states is less than ALL.

Can we understand why using lattice data? Need an access to both incl and excl.

Inclusive rate

Differential decay rate:

$$
d \Gamma \sim\left|V_{c b}\right|^{2} l^{\mu \nu} W_{\mu \nu}
$$

Structure function:

$$
W_{\mu \nu}=\frac{\sum_{X}(2 \pi)^{2} \delta^{4}\left(p_{B}-q-p_{X}\right) \frac{1}{2 M_{B}}\left\langle B\left(p_{B}\right)\right| J_{\mu}^{\dagger}(0)|X\rangle\langle X| J_{\nu}(0)\left|B\left(p_{B}\right)\right\rangle}{\longrightarrow\langle B(\mathbf{0})| \tilde{J}_{\mu}^{\dagger}(-\boldsymbol{q} ; t) \delta(\omega-\hat{H}) \tilde{J}_{\nu}(\boldsymbol{q} ; 0)|B(\mathbf{0})\rangle}
$$

Decay rate:

$$
\Gamma \propto \int_{0}^{\boldsymbol{q}_{\max }^{2}} d \boldsymbol{q} \int_{\sqrt{m_{D}^{2}+\boldsymbol{q}^{2}}}^{m_{B}-\sqrt{\boldsymbol{q}^{2}}} d \omega K\left(\omega ; \boldsymbol{q}^{2}\right)\langle B(\mathbf{0})| \tilde{J}^{\dagger}(-\boldsymbol{q}) \delta(\omega-\hat{H}) \tilde{J}(\boldsymbol{q})|B(\mathbf{0})\rangle
$$

Energy integral

$$
\Gamma \propto \int_{0}^{\boldsymbol{q}_{\max }^{2}} d \boldsymbol{q} \int_{\sqrt{m_{D}^{2}+\boldsymbol{q}^{2}}}^{m_{B}-\sqrt{\boldsymbol{q}^{2}}} d \omega K\left(\omega ; \boldsymbol{q}^{2}\right)\langle B(\mathbf{0})| \tilde{J}^{\dagger}(-\boldsymbol{q}) \delta(\omega-\hat{H}) \tilde{J}(\boldsymbol{q})|B(\mathbf{0})\rangle
$$

$$
=\langle B(\mathbf{0})| \tilde{J}^{\dagger}(-\boldsymbol{q}) K\left(\hat{H} ; \boldsymbol{q}^{2}\right) \tilde{J}(\boldsymbol{q})|B(\mathbf{0})\rangle
$$

Lattice Compton amplitude:

$$
\langle B(\mathbf{0})| \tilde{J}_{\mu}^{\dagger}(-\boldsymbol{q} ; t) \quad \tilde{J}_{\nu}(\boldsymbol{q} ; 0)|B(\mathbf{0})\rangle \longrightarrow\langle B(\mathbf{0})| \tilde{J}^{\dagger}(-\boldsymbol{q}) e^{-\hat{H} t} \tilde{J}(\boldsymbol{q})|B(\mathbf{0})\rangle
$$

Approximation:

$$
K(\hat{H})=k_{0}+k_{1} e^{-\hat{H}}+k_{2} e^{-2 \hat{H}}+\cdots+k_{N} e^{-k_{N} \hat{H}}
$$

Chebyshev approx:

Bailas, Ishikawa, SH, arXiv:2001.11779
(shifted) Chebyshev polynomials

$$
\begin{aligned}
& T_{0}^{*}(x)=1 \\
& T_{1}^{*}(x)=2 x-1 \\
& T_{2}^{*}(x)=8 x^{2}-8 x+1
\end{aligned}
$$

$$
T_{j+1}^{*}(x)=2(2 x-1) T_{j}^{*}(x)-T_{j-1}^{*}(x)
$$

"Best" approximation can be obtained with

$$
c_{j}^{*}=\frac{2}{\pi} \int_{0}^{\pi} d \theta S\left(-\ln \frac{1+\cos \theta}{2}\right) \cos (j \theta)
$$

$$
K(\omega) \simeq \frac{c_{0}}{2}+\sum_{j=1}^{N} c_{j}^{*} T_{j}^{*}\left(e^{-\omega}\right)
$$

[^0]
Kernel to approximate

To implement the upper limit of integ

$$
K(\omega) \sim e^{2 \omega t_{0}}\left(m_{B}-\omega\right) \cdot \sqrt{\theta\left(m_{B}-|\mathbf{q}|-\omega\right)}
$$

kinematical factor

$$
\text { Smear by "sigmoid" with a width } \sigma
$$

Need to take a limit of $\sigma \rightarrow 0$

Compton amplitude (S-wave)

$\langle B(\mathbf{0})| \tilde{J}_{\mu}^{\dagger}(-\boldsymbol{q} ; t) \quad \tilde{J}_{\nu}(\boldsymbol{q} ; 0)|B(\mathbf{0})\rangle$

Pilot lattice computation [JLQCD setup] - On a lattice of $48^{3} \times 96$ at $1 / a=3.6 \mathrm{GeV}$ - Strange spectator quark - physical charm quark mass - (unphysically) light b quark ~2.7 GeV - 100 configs $\times 4$ src

S-wave (D and D*)

- Very well approximated by a single-exp = no sign of excited state contrib.
- No wave function overlap of excited states when $m_{b}=m_{c}$ and zero recoil $\left(\mathrm{V}_{0} \mathrm{~V}_{0}\right)$

Inclusive decay rate

- Breakdown to individual channels: VV and AA; parallel and perp with respect to the recoil momentum
- Compared to exclusive contributions estimated from $B \rightarrow D^{(*)}$ form factors (dashed line), that are separately calculated.
- $\mathrm{VV}_{\text {II }}$ dominated by $\mathrm{B} \rightarrow \mathrm{D}$
- All others by $B \rightarrow D^{*}$
differential decay rate / |q|

Inclusive rate is dominated by the ground states, naturally because of the unphysical b quark mass.

Compton amplitude (P-wave)

$\langle B(\mathbf{0})| \tilde{J}_{\mu}^{\dagger}(-\boldsymbol{q} ; t) \quad \tilde{J}_{\nu}(\boldsymbol{q} ; 0)|B(\mathbf{0})\rangle$

P-wave

- Opposite parity; can't be S-wave.
- Slightly heavier; Amplitude is ~ 50x smaller.
$\left|g_{+}(1)\right|^{2} e^{-m_{D_{0}^{*}} t}$

HQET Leibovich, Ligeti, Stewart, Wise (1998)

$$
g_{+}(1)=-\frac{3}{2}\left(\frac{1}{2 m_{c}}+\frac{1}{2 m_{b}}\right) \underset{0.35 \mathrm{GeV} \sim 0.5}{\left(\bar{\Lambda}^{*}-\bar{\Lambda}\right) \zeta(1)}
$$

Isgur-Wise func for P-wave $\left(0^{+}\right)$

Summary

- Framework to compute inclusive decay rate is now available. The energy integral can be reconstructed from Euclidean lattice correlators.
- Compton amplitudes contain the excited state contributions. They are suppressed.
- S-wave: small wave function overlap.
- P-wave: starts from $1 / \mathrm{m}$ or non-zero recoil
- Decomposition into different channels. Will be compared with pQCD/OPE. See,
- Sandro Maechler "Comparison of lattice QCD results for inclusive semi-leptonic decays of B meson with OPE", Thu 6:30am
- See also the next talk (Jun-Sik Yoo), about an application to inelastic ℓN scattering.

[^0]: "best" = maximal deviation is minimal

