Introduction	Methods, Parameters	2pt-function	GEVP	Phase shifts	Conclusion
000	0	000	000	00	0

Elastic $\pi - N$ scattering in the I= 3/2 channel

C. Alexandrou, G. Koutsou, S. Paul, M. Petschlies, <u>F. Pittler</u>, A. Todaro

July 27, 2021

http://gwdac.phys.gwu.edu/

814 (2021)

2

Talk at the conference in the same topic:

Precise I = 3/2 and I = 0 meson-baryon scattering amplitudes from an

 $N_f = 2 + 1$ CLS ensemble at $m_{\pi} = 200$ MeV by C. Morningstar Jul 28, 2021, 9:00

3

Elastic $\pi - N$ scattering in the I= 3/2 channel

Challange: $N\pi\pi$ threshold is very low

At the physical point $m_N + m_\pi < m_\Delta \longrightarrow \Delta$ is unstable

Challange: $N\pi\pi$ threshold is very low

At the physical point $m_N + m_\pi < m_\Delta \longrightarrow \Delta$ is unstable

Luescher-method

- Two particle energy levels in a finite box with size L
- Volume dependence of the energy shift related to scattering observables at *L* = ∞

$$\det\left(\mathscr{M}_{J\ell\mu,J'\ell'\mu'}^{\vec{P}}-\delta_{JJ'}\delta_{\ell\ell'}\delta_{\mu\mu'}\cot\delta_{J\ell}\right)=0$$

• Determinant is taken in angular momentum space

Parameters

- Configurations: 2+1+1 Twisted mass Clover,
 - $M_{\pi} = 139 \,\mathrm{MeV}, \quad a = 0.08 \,\mathrm{fm}$
 - $L = 5.1 \,\mathrm{fm}, \quad M_{\pi} \cdot L = 3.6, \quad N_s = 64, \quad N_t = 128$
- Measurements: 400 configurations, 64 source position each with Gauss-smearing at source, sink.

$\pi N - \pi N$ more difficult sink-sink

Ferenc Pittler : Elastic $\pi - N$ scattering in the I= 3/2 channel 6

Introduction	Methods,Parameters	2pt-function	GEVP	Phase shifts	Conclusion
$\pi N - \pi I$	V				

- Sink to sink with fully time-diluted stochastic propagators
- Cutting the whole diagram by the stochastic piece to factors
- Expensive factor calculation on the GPU

- Instead of spin we have the degrees of freedom:
 - irrep, irrep row(μ), # occurances

Irreps in this work			Hg irrep $ec{p}_{ ext{tot}} = (0,0,0), p_N =$
	ℓ <i>s</i> <i>p</i> , <i>f</i> <i>s</i> , <i>p</i> , <i>d</i> <i>s</i> , <i>p</i> , <i>d</i> <i>s</i> , <i>p</i> , <i>d</i> <i>p</i> , <i>d</i> <i>p</i> , <i>d</i>	N _{dim} 8x8 9x9 24x24 18x18 30x30 16x16 6x6 6x6	$1, p_{\pi} = 1, \mu = 0$ • Occurance <i>a</i> $0.5 (N_{-1,0,0}(0)\pi_{1,0,0} - iN_{0,-1,0}(0)\pi_{0,1,0} + iN_{0,1,0}(0)\pi_{0,-1,0} - N_{1,0,0}(0)\pi_{-1,0,0})$ • Occurance <i>b</i> $0.5 (N_{-1,0,0}(3)\pi_{1,0,0} - N_{0,-1,0}(3)\pi_{0,1,0} - N_{0,1,0}(3)\pi_{0,-1,0} + N_{1,0,0}(3)\pi_{-1,0,0})$

Behind the scenes:GEVP

Why we need the expensive $\pi - N$ two-hadron correlation function?

Ferenc Pittler :

Elastic N scattering 3/2 channe 9

Introduction	Methods, Parameters	2pt-function	GEVP	Phase shifts	Conclusion
000	0	000	000		

Spectrum, stability plot

Comparison of single and double exponential fits as a function of t_{min}

э

= 9Q@

Ferenc Pittler :

Quantization conditions (QC)Göckeler et. al PRD 2012

• Phase shift parametrization:

•
$$\ell = 0 \rightarrow \cot \delta_{\ell=0} = \frac{a_0 q_{\rm cmf}}{M_c^2 - s}$$
, $\ell = 1 \rightarrow \tan \delta_{\ell=1} = \frac{\sqrt{s} \Gamma(\Gamma_R, s)}{M_c^2 - s}$

• We restrict ourselves to $\ell = 0, 1$ and check for $\ell \ge 2$

Example: Energy levels: roots of QC. Hg and G2 irreps

Introduction	Methods, Parameters	2pt-function	GEVP	Phase shifts	Conclusion
Luesche	er-analysis				

Preliminary results:

• $M_R = 1255(25)$ MeV, $\Gamma_R = 140(120)$ MeV, $a_0 = -0.0016(6)$ MeV⁻¹, $\chi^2/dof = 0.88$

Elastic $\pi - N$ scattering in the I= 3/2 channel 13

- We determine the parameters of the ∆ resonance at the physical point
- We need to improve our determinations for the width
- Fit the scattering length using dedicated measurements
- Consider the I = 1/2 case as well, determining the σ -term

Acknowledgement

 The project is supported by PRACE, the measurements are doing on Piz-Daint cluster

• Thank you for your attention

Backup-slide, GEVP, Spectrum

Example: Hg irrep 1. eigenvalue

Operator set (sorting):

- All (values)
- All (vectors)
- First two components (values)
- First two components (vectors)
- Best signal (values)
- Best signal (vectors)

< ロ > < 母 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E >

Quantization condition G1u

Ferenc Pittler :

Elastic $\pi - N$ scattering in the I= 3/2 channel 2

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□

Quantization condition G1

Quantization condition 2G

Elastic $\pi - N$ scattering in the I= 3/2 channel 4

Quantization condition 3G

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□

Quantization condition F1,F2

Ferenc Pittler :