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CR∗ Motivation for QED inclusion

I Statistical error reduced to subpercent levels for certain quantities
I Statistical error ∼ systematic error due to neglecting QED effects
I Increasing precision further requires QED inclusion for accuracy
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CR∗ Collaboration

I This work forms part of the RC* collaboration which comprises of:
I Lucius Bushnaq, Isabel Campos-Plasencia, Marco Catillo, Alessandro Cotellucci,

Madeleine Dale, Patrick Fritzsch, Roman Grueber, Jens Luecke, Marina
Marinkovic, Agostino Patella and Nazario Tantalo

I We have used computing time at the following centers:
I Cineca
I CSCS Swiss National Supercomputing Centre
I North German Supercomputing Alliance (HLRN)
I Poznan Supercomputing and Networking Center

I This talk is accompanied by talks given by Lucius Bushnaq, Roman Grueber and
Jens Luecke
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CR∗ Objective

I Baryon masses (preliminary results):
I Relevant by themselves and for calibration of QCD+QED
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CR∗ Formulations of QCD+QED

I Gauss’s Law: only electrically net-neutral states belong to the physical Hilbert
space on a torus (p.b.c.)

I Local gauge fixing?
I Global zero modes not constrained by local gauge-fixing procedures

I QEDL formulation1:
I Idea: Decouple zero-modes from gauge field dynamics through quenching some

gauge field Fourier modes
I Enforce constraint Ã—(t; 0) =

R
L3 d

3xA—(t; x) = 0
I Constraint is non-local → many properties of local QFTs are not automatic

1M. Hayakawa et al., QED in finite volume and finite size scaling effect on electromagnetic
properties of hadrons (2008)
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CR∗ QEDC∗ formulation

I Advantage: Totally local formulation so
renormalisability guaranteed1

I Method: Extend physical lattice with mirror
lattice of opposite electric charges

I U(1) gauge field anti-periodic in space →
spatial zero-modes sum to zero

I Spectra of electrically-charged states can be
calculated without PT or gauge-fixing

Figure: C* boundary conditions

1B. Lucini et al., Charged hadrons in local finite-volume QED+QCD with C∗ boundary
conditions (2015)
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CR∗ RC* collaboration effort

I Explored in detail in talk by Jens Lücke
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CR∗ BMW Summary plot

Figure: Mass differences1

I BMW calculation in
QCD + QEDL formulation
remains reference calculation

I QCD + QEDC : totally local
formulation to act as a check on
QCD + QEDL results without
reliance on gauge-fixing

1BMW Collaboration, Ab initio calculation of the neutron-proton mass difference, Fig. 2 (2015)
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CR∗ Baryon correlators

I Baryon correlators are notoriously
noisy

I We use both Gaussian fermion
smearing and Wilson gauge
smearing1to lengthen the plateau and
reduce noise
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Figure: Neutron correlator with no smearing

1In spatial dimensions only; not applied in propagator inversion but instead on fermion smearing
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CR∗ Smeared correlators

I In order to optimise our
results, calculate for several
smearing levels

I These can also be used to
construct Generalised
Eigenvalue Problem
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Figure: Neutron correlator with different levels
of fermion smearing
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CR∗ Proton

I Interpolating operator:
O = ΨΨTC‚5Ψ

I Parity projected and folded:
C(t) = C+(t)− C−(T − t)
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CR∗ Proton

I Proton:
mp = 1272(9) MeV

I FV-corrected 1proton:
mp;FV = 1277(9) MeV

I Neutron:
mn = 1291(6) MeV

I For reference:
mı = 496(2) MeV
¸R ∼ 0:04
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1Universal FV-correction using formula from B. Lucini et al., Charged hadrons in local
finite-volume QED+QCD with C∗ boundary conditions (2015)
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CR∗ P-N mass difference

I P-N mass difference:
mp −mn = −14(1) MeV

I FV-corrected1P-N mass
difference:
mp;FV −mn = −9(1) MeV

I For reference:
mı = 496(2) MeV
¸R ∼ 0:04
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1Universal FV-correction using formula from B. Lucini et al., Charged hadrons in local
finite-volume QED+QCD with C∗ boundary conditions (2015)
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CR∗ Omega baryon

I Interpolating
operator
O = ΨΨTC‚iΨ for
i=1,2,3

I Spin-projected to
spin-3/2 state:

P
3
2
i j = ‹i j − ‚i‚j

I Parity projected and
folded: C(t) =
C+(t)− C−(T − t)
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CR∗ Omega baryon

I Ω baryon:
mΩ = 1629(10) MeV

I FV-corrected1Ω baryon:
mΩ;FV = 1633(10) MeV

I For reference:
mı = 496(2) MeV
¸R ∼ 0:04
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1Universal FV-correction using formula from B. Lucini et al., Charged hadrons in local
finite-volume QED+QCD with C∗ boundary conditions (2015)
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CR∗ Summary and outlook

I RC∗ collaboration: baryon masses in full QCD+QED simulations
I QCD+QEDC : totally local formulation; our results don’t require perturbation

theory or gauge-fixing
I Extended basis of interpolating operators

I Good signals for spin-1
2 and spin-3

2 baryons at mı = 496(2) MeV and
¸em ∼ 6¸phys

I Future:
I Extrapolate to physical point?
I Investigate numerically the flavour violating contributions to Ω baryons

I Expect these to be highly suppressed from theory
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CR∗ Thanks for listening

I This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 765048.

I The authors acknowledge access to the Eagle HPC cluster at PSNC (Poland).
I The work was supported by the Poznan Supercomputing and Networking Center

(PSNC) through grant numbers 450 and 466.
I The work was supported by CINECA that granted computing resources on the

Marconi supercomputer to the LQCD123 INFN theoretical initiative under the
CINECA-INFN agreement.

I We acknowledge access to Piz Daint at the Swiss National Supercomputing
Centre, Switzerland under the ETHZ’s share with the project IDs go22 and go24.

I The work was supported by the North-German Supercomputing Alliance (HLRN)
with the project bep00085.
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CR∗ Details

I 3 C∗ dimensions
I Periodic bcs in time
I NT = 64; NL = 32

I 1 + 2 + 1 simulation
I ¸R ∼ 0:04

I ˛ = 3:24

I 1912 configurations
I 4 hits per configuration at random timeslices
I Smeared point-source
I Gaussian smearing: nsteps = (0, 200, 400); eps = 0.5
I Wilson smearing: nsteps = 180; eps = 0.02
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CR∗ Flavour mixing caveat

I C∗ boundary conditions allow some flavour violation as particles travel around
the torus

I Colourless particles only (given large enough box) may violate flavour under the
conditions:

∆Q = 0 mod 2; ∆B = 0 mod 2; ∆F = 0 mod 6

I Induced by disconnected contractions 〈Ψ(0)ΨT (x)〉
I Proton/neutron is the lightest charged/neutral state with B = 1

I Omega baryon mixing can satisfy these mixing conditions
I Any flavour violation is exponentially suppressed with volume1

I Future work: calculation of disconnected contractions

1B. Lucini et al., Charged hadrons in local finite-volume QED+QCD with C∗ boundary
conditions (2015)
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CR∗ Example of flavour mixing for Ω
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CR∗ Gauge dressing factor

I Define electrically charged state using a dressing factor (e.g. Dirac factor):

Ψ(t; ~x) = e−i
R
L3 d

3y Φ(~y−~x)@kAk(t;~y)| {z }
Θ(t;~x)

 (t; ~x) ; @k@kΦ(~x) = ‹3(~x) ; Φ(~x+L~k) = −Φ(~x)

I Ψ is then invariant under local gauge transformations...
 (x) 7→ e i¸(x)  (x) ; A—(x) 7→ A—(x) + @—¸(x)

Θ(t; ~x) 7→ e−i
R
L3 d

3y Φ(~y−~x)@k@k¸(t;~y) Θ(t; ~x) = e−i¸(t;~x) Θ(t; ~x)

I ... so a gauge invariant correlator
R
L3〈Ψ(t; x)Ψ̄(0)〉 can be constructed

I Non-trivial aside: ffi(x), electric potential of a charge in a box with C∗ boundary
conditions, exists!
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CR∗ Gauge dressing factor

I Define electrically charged state using a dressing factor:
Ψ(t; ~x) = Θ(t; ~x) (t; ~x)

I Ψ(t; ~x) is not invariant under global gauge transformations; it is electrically
charged!

I Dirac’s factor is not unique

ΘJ(x) = e i
R
L3 d

4y J—(y−x)A—(y) ; @—J—(x) = ‹4(x) ; J—(x + L~k) = −J—(x)

I We choose the ’string’ gauge factor:

Θs(x) = e
− i

2

R 0
−xk

ds Ak(x+s~k)
e
i
2

R L−xk
0 ds Ak(x+s~k) ;

J—(x) =
1

2
‹—k sign(xk)

Y
� 6=k

‹(x�)
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CR∗ QEDC on the lattice

S =
2

e2

X
x;—�

[1− P—�(x)] +
X
x

 ̄(x)D[U2] (x)

U—(x) = 1 +
i

2
A—(x) + · · ·

I Lattice implementation requires an unconventional coupling of the matter fields to the gauge
fields

D[U2] = m +
1

2

X
—

n
‚—
“
∇∗
—[U2] +∇—[U2]

”
−∇∗

—[U2]∇—[U2]
o

∇—[U2] (x) = U2
—(x) (x + —)−  (x)

U—(x) 7→ Ω(x)U—(x)Ω−1(x + —) ;  (x) 7→ Ω2(x) (x)

I The gauge invariant interpolating operator can then be simply implemented as (no square
roots!)

Ψ(x) =
−1Y

s=−xk

U−1
k (x + s~k) (x)

L−xk−1Y
s=0

Uk(x + s~k)
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CR∗ Finite volume corrections

∆m(L)

m
=
e2

4ı

(
q2‰(1)

2mL
+

q2‰(2)

ı(mL)2
− 1

4ımL4

∞X
‘=1

(−1)‘(2‘)!

‘!L2(‘−1)
T‘‰(2 + 2‘)

)
+ : : :

Dependence on boundary conditions is contained only in the generalized zeta
functions

1C? 2C? 3C?

‰(1) −0:77438614142 −1:4803898065 −1:7475645946

‰(2) −0:30138022444 −1:8300453641 −2:5193561521

‰(4) 0:68922257439 −2:1568872986 −3:8631638072

‰(s) =
X
~n 6=~0

(−1)〈~n〉

|~n|s ; 〈~n〉 =
X

i∈{C? b.c.}
ni
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CR∗ Smeared correlators

I Act on interpolating operator O with:

S = (1 + »gH)NS0; H(n;m) =

ndimsX
j=1

“
Uj(n)‹(n + ĵ ;m) + Uj(n− ĵ)†‹(n− ĵ ;m)

”
;

V̇t(x; k) = −g2
0 ‹x;kSw (Vt)Vt(x; k);

where ‹x;k f (U) = T a‹ax;k f (U); ‹ax;k f (U) =
d

ds
f (esXU)|s=0;

X(y; i) =

(
T a if(y; i) = (x; k);

0 otherwise:

with initial condition Vt(x; k)|t=0 = U(x; k)



∗RC

CR∗ Generalised Eigenvalue Problem

I Spectral decomposition of two-point function:

Ci j(t) = 〈Oi (t)Õ†j(t)〉;

= 〈Oi (t)e−ĤtÕ†j(0)〉;

=
∞X
n=1

Zni Z̃
n∗
j e−Ent ;

where

Ĥ|n〉 = En|n〉;
Zni = 〈0|Oi |n〉;

Z̃n∗j = 〈n|Õ†j |n〉
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CR∗ Generalised Eigenvalue Problem

I Express in matrix form
C(t) = ZΛZ̃†;

where
Λ = diag(–1(t); –2(t); : : :); E1 < E2 < E3 : : :

I Using
Q† = (Z)−1; Q̃ = (Z̃†)−1;

rewrite as
Q†C(t)Q̃ = Λ(t):

I Factorise Λ = Λ(t − t0)Λ(t0), finally get GEVP:

C(t)Q̃ = C(t0)Q̃Λ(t − t0);

I Enforcing Hermiticity of correlator ensures real eigenvalues


