Evidence of Glueball at Physical Point

Feiyu Chen χ QCD Collaboration

Institute of High Energy Physics, Chinese Academy of Science

July 28, 2021

me (Institute of High Energy Physics, Chines Evidence of Glueball at Physical Point

July 28, 2021 1 / 15

2 Cluster Decomposition Error Reduction

3 Glueball AA-operator construction

Motivation

	m_π / MeV	$m_{0^{++}} \ / \ { m MeV}$	$m_{2^{++}} \;/\; {\sf MeV}$	$m_{0^{-+}} \ / \ {\sf MeV}$
$N_f = 2^1$	938	1417(30)	2363(39)	2573(55)
	650	1498(58)	2384(67)	2585(65)
$N_{f} = 3^{2}$	360	1795(60)	2620(50)	-
quenched ³	-	1710(50)(80)	2390(30)(120)	2560(35)(120)
quenched ⁴	-	1730(50)(80)	2400(25)(120)	2590(40)(130)

What's the results at physical point?

¹Sun et al., "Glueball spectrum from $N_f = 2$ lattice QCD study on anisotropic lattices".

 $^2\mbox{Gregory}$ et al., "Towards the glueball spectrum from unquenched lattice QCD".

³Chen et al., "Glueball spectrum and matrix elements on anisotropic lattices".

⁴Morningstar and Peardon, "The Glueball spectrum from an anisotropic lattice study".

Configuration set

- $N_f = 2 + 1$ dynamical confingrations generated by RBC/UKQCD collaboration;
- **2** Accessed through the agreement between χ QCD Collaboration
- Large volumn, physical pion mass

$L^3 \times T$	$a \ / \ {\sf fm}$	m_π / MeV	$La \ / \ {\rm fm}$	$N_{\rm conf}$
$48^3 \times 96$	0.1141(2)	~ 139	~ 5.5	364
$64^3 \times 128$	0.0836(2)	~ 139	~ 5.3	300

Cluster Decomposition Error Reduction

 $^{\rm 5}$ Correlation function in Euclidean space: translation invariance and mass gap implies that

$$\langle 0|T\mathcal{O}(x)\mathcal{O}(y)|0\rangle|^2 = Ar^{-\frac{3}{2}}e^{-mr}, \quad r = |x-y|$$
 (1)

me (Institute of High Energy Physics, Chinese Evidence of Glueball at Physical Point July 28, 2021 5/15

Typically in numberic calculation the summation over source and sink coordinates is performed, the signal sacturate by $r < R \approx \frac{8}{m}$

$$C(t) = \frac{1}{V^2} \sum_{\vec{x}} \sum_{\vec{y}} \langle 0 | T \mathcal{O}_{\alpha}(\vec{x}, t) \mathcal{O}_{\beta}(\vec{y}, 0) | 0 \rangle$$

$$= \frac{1}{V^2} \sum_{\vec{r}} \sum_{\vec{x}} \langle 0 | T \mathcal{O}_{\alpha}(\vec{x} + \vec{r}, t) \mathcal{O}_{\beta}(\vec{x}, 0) | 0 \rangle$$

$$C(R, t) = \sum_{|\vec{r}| \leqslant R} \sum_{\vec{x}} \langle 0 | T \mathcal{O}_{\alpha}(\vec{x} + \vec{r}, t) \mathcal{O}_{\beta}(\vec{x}, 0) | 0 \rangle$$

$$= \sum_{r \leqslant R} K(\vec{r}, t)$$

where

$$K(\vec{r},t) = \frac{1}{V} \sum_{\vec{k}} e^{-i\vec{k}\cdot\vec{r}} \tilde{\mathcal{O}}_{\alpha}(-\vec{k},t) \mathcal{O}_{\beta}(\vec{k},0)$$
$$\tilde{\mathcal{O}}_{\alpha}(\vec{k},t) = \sum_{\vec{x}} e^{-i\vec{k}\cdot\vec{x}} \mathcal{O}(\vec{x},t).$$

calculated using FFT.

,

July 28, 2021 6 / 15

 \mathcal{O}_G - \mathcal{O}_G correlation functions for different cut off R

We can choose R = 7a in this case.

me (Institute of High Energy Physics, Chines Evidence of Glueball at Physical Point

⁶ Operators constructed from Wilson loop \mathcal{O}_G ;

⁷ Operators constructed from gauge field

$$\mathcal{O}_{AA}^{l,s}(r,\vec{x},t) = \frac{1}{N_r} \sum_{|\vec{r}|=r} \sum_{\vec{x}} C_{ij}^m Y_{lm}(\hat{r}) A_i(\vec{x}+\vec{r},t) A_j(\vec{x},0)$$
(3)

where

- **(**) r_s : radius coordinate of the Bethe-Salpeter wave function operator;
- I: total spin and orbital momentum of the two gauge fields;
- **③** N_r : the multiplicity of \vec{r} with $|\vec{r}| = r$.

AA-operators are gauge dependent, need fixing using Coulomb gauge.

⁶Chen et al., "Glueball spectrum and matrix elements on anisotropic lattices".

 7 Liang et al., "Wave functions of SU(3) pure gauge glueballs on the lattice". Ξ - ${
m space}$

Extracting AA-operators from gauge links

$$A_{\mu} \propto \ln U_{\mu}$$
$$U_{\mu} = P \operatorname{diag}(\lambda_{1}, \lambda_{2}, \lambda_{3}) P^{-1}$$
$$A_{\mu} \propto P \operatorname{diag}(\ln \lambda_{1}, \ln \lambda_{2}, \ln \lambda_{3}) P^{-1}$$

 $AA\mbox{-}{\rm operators}$ for $A_1^{++}\mbox{, }A_1^{-+}\mbox{, }E^{++}\mbox{, }T_2^{++}$

(A) → (A

• Wave function extraction Optimized glueball operator: $\mathcal{O}_{G}^{(n)} = \sum_{\alpha} c_{\alpha}^{(n)} \mathcal{O}_{\alpha}$ $\mathcal{O}_{AA}-\mathcal{O}_{G}$ correlation function:

$$\langle 0|\mathcal{O}_{AA}(r,t)\mathcal{O}_{G}^{(n)}|0\rangle = \sum_{n} \langle 0|\mathcal{O}_{AA}(r,0)|n\rangle \langle n|\mathcal{O}_{G}^{(n)}|0\rangle e^{-m_{n}t}$$
$$= Z_{0}\Phi_{0}(r)e^{-m_{0}t} + Z_{1}\Phi_{1}(r)e^{-m_{1}t} + \cdots$$

2 Mass spectrum optimization Find r_0 such that $\Phi_1(r_0) = 0$

 $\langle 0|\mathcal{O}_{AA}(r_0,t)\mathcal{O}_{G}^{(n)}|0\rangle = Z_0\Phi_0(r)e^{-m_0t} + (n \ge 2 \text{ contributions})$

Scalar A_1^{++} operator

Tensor E^{++} , T_2^{++} operators

me (Institute of High Energy Physics, Chinese Evidence of Glueball at Physical Point

Image: A matched black

$$\Phi_1(r) = A(1 - \beta r^{\alpha})re^{-(r/r_0)^{\alpha}}$$

July 28, 2021 13 / 15

- ODER significantly improved the signal
- Bethe-Salpeter wave function in agreement with quenched results
- Sevidence of Glueballs?

Thanks for you attention!