Evidence of Glueball at Physical Point

Feiyu Chen χQCD Collaboration

Institute of High Energy Physics, Chinese Academy of Science

July 28, 2021

[Cluster Decomposition Error Reduction](#page-4-0)

Glueball AA[-operator construction](#page-7-0)

4 0 8

Motivation

Q What's the results at physical point?

¹Sun et al., "Glueball spectrum from $N_f = 2$ [lattice QCD study on anisotropic](#page-0-1) [lattices".](#page-0-1)

²Gregory et al., ["Towards the glueball spectrum from unquenched lattice QCD".](#page-0-1)

³Chen et al., ["Glueball spectrum and matrix elements on anisotropic lattices".](#page-0-1)

⁴Morningstar and Peardon, ["The Glueball spectrum from an anisotropic lattice](#page-0-1) [study".](#page-0-1)

Configuration set

- $N_f = 2 + 1$ dynamical confiugrations generated by RBC/UKQCD collaboration;
- 2 Accessed through the agreement between χ QCD Collaboration
- **3** Large volumn, physical pion mass

Cluster Decomposition Error Reduction

⁵ Correlation funcion in Euclidean space: translation invariance and mass gap implies that

$$
|\langle 0|T\mathcal{O}(x)\mathcal{O}(y)|0\rangle|^2 = Ar^{-\frac{3}{2}}e^{-mr}, \quad r = |x - y| \tag{1}
$$

 5 Liu, Liang, and Yang, ["Variance Reduction and Cluster Decomposition"](#page-0-1) [.](#page-4-0) Ω me (Institute of High Energy Physics, Chinese Academic of Glueball at Physical Point July 28, 2021 5/15

Typically in numberic calculation the summation over source and sink coordinates is performed, the signal sacturate by $r < R \approx \frac{8}{m}$ m

$$
C(t) = \frac{1}{V^2} \sum_{\vec{x}} \sum_{\vec{y}} \langle 0|T\mathcal{O}_{\alpha}(\vec{x},t)\mathcal{O}_{\beta}(\vec{y},0)|0\rangle
$$

\n
$$
= \frac{1}{V^2} \sum_{\vec{r}} \sum_{\vec{x}} \langle 0|T\mathcal{O}_{\alpha}(\vec{x} + \vec{r},t)\mathcal{O}_{\beta}(\vec{x},0)|0\rangle
$$

\n
$$
C(R,t) = \sum_{|\vec{r}| \le R} \sum_{\vec{x}} \langle 0|T\mathcal{O}_{\alpha}(\vec{x} + \vec{r},t)\mathcal{O}_{\beta}(\vec{x},0)|0\rangle
$$

\n
$$
= \sum_{r \le R} K(\vec{r},t)
$$

where

$$
K(\vec{r},t) = \frac{1}{V} \sum_{\vec{k}} e^{-i\vec{k}\cdot\vec{r}} \tilde{\mathcal{O}}_{\alpha}(-\vec{k},t) \mathcal{O}_{\beta}(\vec{k},0)
$$

$$
\tilde{\mathcal{O}}_{\alpha}(\vec{k},t) = \sum_{\vec{x}} e^{-i\vec{k}\cdot\vec{x}} \mathcal{O}(\vec{x},t).
$$

calculated using FFT.

 Ω

 \mathcal{O}_G - \mathcal{O}_G correlation functions for different cut off R

The saturation is chosen to be ⁼ We can choose $R = 7a$ in this case.

me (Institute of High Energy Physics, Chinese Academic of Glueball at Physical Point July 28, 2021 7/15

⁶ Operators constructed from Wilson loop \mathcal{O}_G ;

 7 Operators constructed from gauge field

$$
\mathcal{O}_{AA}^{l,s}(r,\vec{x},t) = \frac{1}{N_r} \sum_{|\vec{r}|=r} \sum_{\vec{x}} C_{ij}^m Y_{lm}(\hat{r}) A_i(\vec{x}+\vec{r},t) A_j(\vec{x},0)
$$
(3)

where

- \bullet r_s : radius coordinate of the Bethe-Salpeter wave function operator;
- \bullet s, l: total spin and orbital momentum of the two gauge fields;
- 3 N_r : the multiplicity of \vec{r} with $|\vec{r}| = r$.

AA-operators are gauge dependent, need fixing using Coulomb gauge.

 6 Chen et al., ["Glueball spectrum and matrix elements on anisotropic lattices".](#page-0-1)

 7 Liang et al[.](#page-0-0), "Wave functions of $SU(3)$ [pure gauge glueballs on the lattice"](#page-0-1). QQ

me (Institute of High Energy Physics, Chinese Academy of Slueball at Physical Point July 28, 2021 8/15

Extracting AA-operators from gauge links

$$
A_{\mu} \propto \ln U_{\mu}
$$

\n
$$
U_{\mu} = P \text{diag}(\lambda_1, \lambda_2, \lambda_3) P^{-1}
$$

\n
$$
A_{\mu} \propto P \text{diag}(\ln \lambda_1, \ln \lambda_2, \ln \lambda_3) P^{-1}
$$

 AA -operators for A_1^{++} , A_1^{-+} , E^{++} , T_2^{++}

$$
\begin{array}{|c|c|} \hline A_1^{++} & \frac{1}{\sqrt{3}}(A_1A_1 + A_2A_2 + A_3A_3) \\ \hline E^{++} & \frac{1}{\sqrt{2}}(A_1A_1 - A_2A_2) \\ \hline & \frac{1}{\sqrt{6}}(A_1A_1 + A_2A_2 - 2A_3A_3) \\ \hline T_2^{++} & \frac{1}{\sqrt{2}}(A_1A_2 + A_2A_1) \\ \hline & \frac{1}{\sqrt{2}}(A_1A_3 + A_3A_1) \\ \hline & A_1^{-+} & \epsilon_{ijk}A_iA_j\hat{r}_k \\ \hline \end{array}
$$

4 D F

∢ 何 ▶ - ∢ ∃

4 Wave function extraction Optimized glueball operator: $\mathcal{O}_\mathrm{G}^{(n)} = \sum_\alpha c_\alpha^{(n)} \mathcal{O}_\alpha$ $\mathcal{O}_{\Delta\Delta}$ - \mathcal{O}_{Ω} correlation function:

$$
\langle 0|\mathcal{O}_{AA}(r,t)\mathcal{O}_G^{(n)}|0\rangle = \sum_n \langle 0|\mathcal{O}_{AA}(r,0)|n\rangle \langle n|\mathcal{O}_G^{(n)}|0\rangle e^{-m_nt}
$$

= $Z_0\Phi_0(r)e^{-m_0t} + Z_1\Phi_1(r)e^{-m_1t} + \cdots$

2 Mass spectrum optimization Find r_0 such that $\Phi_1(r_0) = 0$

> $\langle 0 | \mathcal{O}_\text{AA}(r_0, t) \mathcal{O}_\text{G}^{(n)} \rangle$ $\mathcal{L}_\mathrm{G}^{(n)}|0\rangle=Z_0\Phi_0(r)e^{-m_0t}+(n\geqslant 2\,\mathsf{contributions})$

Scalar A_1^{++} operator

€⊡

Tensor E^{++} , T_2^{++} operators

э

4日下

→ < 3 \rightarrow ∍

 \leftarrow \Box

∍

- **1** CDER significantly improved the signal
- ² Bethe-Salpeter wave function in agreement with quenched results
- **3** Evidence of Glueballs?

€⊡

Thanks for you attention!

4 0 8