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@ Chiral lattice EFT (cf. plenary talk by Bing-Nan Lu today at 01:40) allows for
simulations e.g. of 3H, “He, 12C, 60, 28Si and nuclear matter.
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@ It is based on an effective nucleus-nucleus Hamiltonian K
determined by Monte Carlo simulations using the adiabatic | | | | | 0¢ |

projection method.
Phys. Rev. C 92, 054612 (2015)
@ From this adiabatic Hamiltonian, one can extract phase ]
shifts by applying spherical wall boundary conditions
& projection onto partial waves. ! A ]

Nature 528, 111 (2015)

(LUscher’'s method is not accurate enough here because the error of the

Monte-Carlo energy levels is larger than the separation between these levels.)
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@ However, the nuclear radii obtained from such simulations still do not agree
precisely with experiments (since the interaction is not uniquely defined by the phase shifts).

@ How can one modify the wave function such that the radii are correctly
described (without introducing additional many-body operators to r?)?

@ A unitary transformation U shall be applied to the wave function ) and the
expectation value of the untransformed r?-operator is calculated.

@ |t changes the ground state wave function while leaving the expectation
values of the Hamiltonian H (and thus the phase shifts) invariant.
(This property is also used for similarity renormalization group (SRG) transformations.)

@ The contribution (x| (UTr?U — r?) |») induced by the unitary transformation is
interpreted to be missing in the original lattice calculation.
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consider N spinless particles of mass m = my, = 938.92 MeV in 1D,
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Benchmark toy-model Hamiltonian

consider N spinless particles of mass m = my, = 938.92 MeV in 1D,
choose pairwise contact interaction with C = —10 MeV

define periodic lattice with spacing a = 1.97 fm and length L = 71a:

Xi=0,....,L—1 Vi=1,...,N (uselattice units with a = 1) (I) ‘i I I...I I LI 1
discretize H using O(a“)-improved dispersion relation (eur. Phys. J. A4, 185 (2007)):
49
- 7 T _
H=15r Z af Z a'(x)(a(x + 1) + a(x — 1))

40mz:aT a(x +2) + a(x — 2))

T T
180mZa a(x +3) + a(x — 3)) Za x)a(x)
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Unitary transformation for two particles

solve Schrddinger equation H |¢)) = E |¢)) using Lanczos algorithm
to determine ground state 14(x1, X2) as eigenvector of H

switch to relative coordinates: c; = 3(x; + x;), dj = d(x;, x;) = |x; — X
(= means that periodic boundary conditions must be taken into account)

modify wave function up to range R: (to tune (r") order by order)
¥B(Cr2, di2) = ¥a(C12, di2) + AY(Cr2, di2) for diz=0,1,....R
with >, A(Ci2,0) fixed by conservation of wave function norm
construct U as reflection transformation with U |u) = — |u):
U=1-2[u)(u| for |u)=|A¢)/\/(Ay|Adp) or
- Dp(C12, diz) Ay(cra, dfp)
Gr2:re Zd1//2 |AY(cy2, df,)|?

(x1,%| U|x{, X3) = Oxy x! Oxg ) — 20
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generalization for three particles (with (i,/, k) = (1,2,3), (1,3,2), (2,3,1)):
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not unitary (since additional terms do not cancel in Us,, U_Jp as for 2 particles)
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g 160G G
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not unitary (since additional terms do not cancel in Us,, U_Jp as for 2 particles) @ ;

= switch off operator U if spectator particle k comes too close to ¢; Ohnin
(This makes the transformation “locally unitary” for the particles / and j.)
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Unitary transformation for three particles

generalization for three particles (with (/,/, k) = (1,2,3), (1,3,2), (2,3, 1)):

AN
<X1 ) X2, XS‘ U3p }X1 ) X2, X3> :5x1 X] 5x2,xé5x3,x§

-2 50, ) e /If 2U Xk, Xy,
P ST R L

(1.4,k)
X e(d(CUXk) > dmin) Q(d( s Xk/ > mm)

not unitary (since additional terms do not cancel in Us,, U_Jp as for 2 particles) @ ;

= switch off operator U if spectator particle k comes too close to ¢; Ohnin
(This makes the transformation “locally unitary” for the particles / and j.)

calculate (13| Ujpr2 Usp |13p) With ¥35(X1, X2, X3) as eigenvector of H
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plot wave function vs. djo for each ci2:  vary e.g. Ay(cy2,2a) in possible domain:
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Results for two particles

@ energies do not change under unitary transformation
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n=1,n=2,n=23)



Results for two particles

@ energies do not change under unitary transformation
@ significant dependence of RMS radius on Av(cy2,2a)
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Results for three particles

<yl U3p+ H Usp lyp> (MeV)

@ energies distorted by naive application of operator U with di,;, = 0 (dashed)
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Results for three particles

<Yl U3p+ H Usp, [yp> (MeV)

@ energies distorted by naive application of operator U with dpi;, = 0 (dashed)
@ energies do not change under “local” unitary transformation (dni, = 44, solid)
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<Yl U3p+ H Ugp, [yp> (MeV)

@ energies distorted by naive application of operator U with dpi;, = 0 (dashed)
@ energies do not change under “local” unitary transformation (dni, = 44, solid)
@ small dependence of RMS radius on A (cq2,2a) = some predictive power

0 T
/
2+ + - 4
I -’
Ao e b
s
1 -
6 _- 4
-~
8+ ,/ 4
o [/ g
o

-0.05 -0.04 -0.03 -0.02 -0.01
Ay(cr, 2a) (fm™)

0

0.01

(<ynl Usp+ 7 Usp |wn>)1/2 (fm)

3
28
26
24

221 -0\

2 Ly

’\
]
1

1

1
1
]

\

-0.05 -0.04

-0.03 -0.02 -0.01
Ay(crz, 2a) (fm™)

0.01



Results for three particles

<Yl U3p+ H Ugp, [yp> (MeV)

@ energies distorted by naive application of operator U with dpi;, = 0 (dashed)
@ energies do not change under “local” unitary transformation (dni, = 44, solid)
@ small dependence of RMS radius on A (cq2,2a) = some predictive power
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@ prediction for N > 3 may be improved by additional three-body term in U:

(x1, %2, X3| (Usy, — Usp) | X1, X5, X3) = Ocp5.c1,, T({Cii}, {Cj}, Tz, diz, diz, dif5)

with ¢35 = (X1 + X2 + X3)/3

3

2.8

2.6

2.4

22

2

-0.05 -0.04

’\
]
1
1
1
1
]

\

s s s
-0.03 -0.02 -0.01
Ay(crz, 2a) (fm™)

I
0

0.01



Summary & outlook
[ ]

Summary & outlook

summary:
@ developed method to adjust lattice results for (r?) to experimental data



Summary & outlook
[ ]

Summary & outlook

summary:
@ developed method to adjust lattice results for (r?) to experimental data

e can be extended to (r") or electromagnetic moments
(similarly to tuning derivative expansion of potential)



Summary & outlook
[ ]

Summary & outlook

summary:
@ developed method to adjust lattice results for (r?) to experimental data

e can be extended to (r") or electromagnetic moments
(similarly to tuning derivative expansion of potential)

e can be improved by adding new (N > 3)-body operators with range < Qyin



Summary & outlook
[ ]

Summary & outlook

summary:
@ developed method to adjust lattice results for (r?) to experimental data

e can be extended to (r") or electromagnetic moments
(similarly to tuning derivative expansion of potential)

e can be improved by adding new (N > 3)-body operators with range < Qyin
outlook:
@ generalization to 3 dimensions and non-zero (iso)spin



Summary & outlook
[ ]

Summary & outlook

summary:
@ developed method to adjust lattice results for (r?) to experimental data

e can be extended to (r") or electromagnetic moments
(similarly to tuning derivative expansion of potential)

e can be improved by adding new (N > 3)-body operators with range < Qyin
outlook:
@ generalization to 3 dimensions and non-zero (iso)spin

@ for N > 4: let unitary transformation act on all pairs of particles simultaneously
(system extensivity)



Summary & outlook
[ ]

Summary & outlook

summary:
@ developed method to adjust lattice results for (r?) to experimental data

e can be extended to (r") or electromagnetic moments
(similarly to tuning derivative expansion of potential)

e can be improved by adding new (N > 3)-body operators with range < Qyin
outlook:
@ generalization to 3 dimensions and non-zero (iso)spin

@ for N > 4: let unitary transformation act on all pairs of particles simultaneously
(system extensivity)

@ choose smaller L for three particles than for two particles



Thank you for your attention!
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Adiabatic projection method

define two-cluster states (here in 1D):

L—1
|d> = Z X + d>c|uster1 ® |X>cluster2

x=0

evolve them in Euclidean time to obtain dressed cluster states |d), = e="7 |d)

calculate matrix elements , (d| H|d") . of adiabatic Hamiltonian
using Monte Carlo simulation

ERIY;
4

=

I Phys. Rev. C 92, 054612 (2015); Nature 528, 111 (2015)


https://arxiv.org/abs/1505.02967
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Modification of H vs. modification of ¢

There are two different points of view on applying the unitary transformation:
@ apply U to wave function:

(I UDHWU ), (el UNEU )

@ apply U to operators:

@[(UTHU) ), (@[(U'rPU) [v)

Notice that combining these two possibilities would cause no effect:

(W U'U =W|Hlp), (YU = ([ r® |v)



Similarity renormalization group (SRG) transformations

make Hamiltonian H(0) more diagonal using a unitary transformation:
H(s) = U(s)H(s = 0)U'(s)
where the Hamiltonian can be split as
H(S) = Haiag(S) + Hofi-diag(s) With  H(S) =3 Hgiag(S),  Hofr.diag(s) == 0
solve SRG flow equation to obtain H(s):

dH(s) _ [dU(s)
ds | ds

U'(s), H(s)

Lect. Notes Phys. 936, 477 (2017)


https://arxiv.org/abs/1612.08315

Operators & states

annihilation/creation operators for distinguishable particles: ((anti)symmetrize later)

al(x)=aP) +-+al (%), Oty XN YN = Fxps - O
ai(X)|X17---7Xi—1axivxi+1a'--aXN> :5X,X,' |X1,...,X,‘_1,V3.C,X,‘+1,...,XN>,

ai(X) X1, ..y Xi—1,vac, Xjiq, ..., XN) :a:f(x) IX1, ooy Xiz1, Xiy X4y - -, Xn) = 0,
a,T(X)]x1,...,x,-_1,vac,x,-+1,...,xN) = X1,y Xim 1, X, Xit 1y e s XN)

r2-operator in second quantization:

states with zero total momentum:

A, A1) py—0 = Z|X+d1,--~7x+de1,X>



Center of mass & distance

The periodic boundary conditions must be taken into account in the definition of
the center of mass ¢ and the distance d:

e = (it x)/2 it [xi — x| < L— [xi — x|
’ (Xxi+x —L)/2 mod L if|xi—x;|>L—|x;—x]| ’

d(x,y) = min(|x —y|,L = [x = y|)
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