Lattice improvement of nuclear shape calculations using unitary transformations

Lukas Bovermann (lukas.bovermann@rub.de), E. Epelbaum, H. Krebs, D. Lee

Institut für Theoretische Physik II Ruhr-Universität Bochum

RUHR **RUB UNIVERSITÄT BOCHLIM**

38th International Symposium on Lattice Field Theory

Zoom/Gather@MIT 26-30 July 2021

Chiral lattice EFT (cf. plenary talk by Bing-Nan Lu today at 01:40) allows for simulations e.g. of ${}^{3}H$, ${}^{4}He$, ${}^{12}C$, ${}^{16}O$, ${}^{28}Si$ and nuclear matter.

[Eur. Phys. J. A 41, 125 \(2009\);](https://arxiv.org/abs/0903.1666) [Phys. Rev. Lett. 106, 192501 \(2011\);](https://arxiv.org/abs/1101.2547) [Phys. Rev. Lett. 109, 252501 \(2012\);](https://arxiv.org/abs/1208.1328) [Phys. Rev. Lett. 112, 102501 \(2014\);](https://arxiv.org/abs/1312.7703) [Phys. Lett. B 732, 110 \(2014\);](https://arxiv.org/abs/1311.0477) [Phys. Rev. Lett. 125, 192502 \(2020\)](https://arxiv.org/abs/1912.05105)

- Chiral lattice EFT (cf. plenary talk by Bing-Nan Lu today at 01:40) allows for simulations e.g. of 3 H, 4 He, 12 C, 16 O, 28 Si and nuclear matter. [Eur. Phys. J. A 41, 125 \(2009\);](https://arxiv.org/abs/0903.1666) [Phys. Rev. Lett. 106, 192501 \(2011\);](https://arxiv.org/abs/1101.2547) [Phys. Rev. Lett. 109, 252501 \(2012\);](https://arxiv.org/abs/1208.1328) [Phys. Rev. Lett. 112, 102501 \(2014\);](https://arxiv.org/abs/1312.7703) [Phys. Lett. B 732, 110 \(2014\);](https://arxiv.org/abs/1311.0477) [Phys. Rev. Lett. 125, 192502 \(2020\)](https://arxiv.org/abs/1912.05105)
- It is based on an effective nucleus-nucleus Hamiltonian determined by Monte Carlo simulations using the adiabatic projection method.

[Phys. Rev. C 92, 054612 \(2015\)](https://arxiv.org/abs/1505.02967)

Chiral lattice EFT (cf. plenary talk by Bing-Nan Lu today at 01:40) allows for simulations e.g. of 3 H, 4 He, 12 C, 16 O, 28 Si and nuclear matter. [Eur. Phys. J. A 41, 125 \(2009\);](https://arxiv.org/abs/0903.1666) [Phys. Rev. Lett. 106, 192501 \(2011\);](https://arxiv.org/abs/1101.2547) [Phys. Rev. Lett. 109, 252501 \(2012\);](https://arxiv.org/abs/1208.1328)

[Phys. Rev. Lett. 112, 102501 \(2014\);](https://arxiv.org/abs/1312.7703) [Phys. Lett. B 732, 110 \(2014\);](https://arxiv.org/abs/1311.0477) [Phys. Rev. Lett. 125, 192502 \(2020\)](https://arxiv.org/abs/1912.05105)

It is based on an effective nucleus-nucleus Hamiltonian determined by Monte Carlo simulations using the adiabatic projection method.

• From this adiabatic Hamiltonian, one can extract phase shifts by applying spherical wall boundary conditions & projection onto partial waves.

(Lüscher's method is not accurate enough here because the error of the Monte-Carlo energy levels is larger than the separation between these levels.)

[Eur. Phys. J. A 34, 185 \(2007\)](https://arxiv.org/abs/0708.1780)

[Phys. Rev. C 92, 054612 \(2015\)](https://arxiv.org/abs/1505.02967)

• However, the nuclear radii obtained from such simulations still do not agree precisely with experiments (since the interaction is not uniquely defined by the phase shifts).

- However, the nuclear radii obtained from such simulations still do not agree precisely with experiments (since the interaction is not uniquely defined by the phase shifts).
- How can one modify the wave function such that the radii are correctly described (without introducing additional many-body operators to *r* 2)?

- However, the nuclear radii obtained from such simulations still do not agree precisely with experiments (since the interaction is not uniquely defined by the phase shifts).
- How can one modify the wave function such that the radii are correctly described (without introducing additional many-body operators to *r* 2)?
- \bullet A unitary transformation *U* shall be applied to the wave function ψ and the expectation value of the untransformed r²-operator is calculated.

- However, the nuclear radii obtained from such simulations still do not agree precisely with experiments (since the interaction is not uniquely defined by the phase shifts).
- How can one modify the wave function such that the radii are correctly described (without introducing additional many-body operators to *r* 2)?
- \bullet A unitary transformation *U* shall be applied to the wave function ψ and the expectation value of the untransformed r²-operator is calculated.
- It changes the ground state wave function while leaving the expectation values of the Hamiltonian *H* (and thus the phase shifts) invariant. (This property is also used for similarity renormalization group (SRG) transformations.)

- However, the nuclear radii obtained from such simulations still do not agree precisely with experiments (since the interaction is not uniquely defined by the phase shifts).
- How can one modify the wave function such that the radii are correctly described (without introducing additional many-body operators to *r* 2)?
- \bullet A unitary transformation *U* shall be applied to the wave function ψ and the expectation value of the untransformed r²-operator is calculated.
- It changes the ground state wave function while leaving the expectation values of the Hamiltonian *H* (and thus the phase shifts) invariant. (This property is also used for similarity renormalization group (SRG) transformations.)
- The contribution $\bra{\psi} (U^\dagger r^2 U r^2) \ket{\psi}$ induced by the unitary transformation is interpreted to be missing in the original lattice calculation.

consider *N* spinless particles of mass $m = m_{\text{nucl}} = 938.92 \text{ MeV}$ in 1D, choose pairwise contact interaction with $C = -10$ MeV

Benchmark toy-model Hamiltonian

consider *N* spinless particles of mass $m = m_{\text{nucl}} = 938.92 \text{ MeV}$ in 1D, choose pairwise contact interaction with $C = -10$ MeV

define periodic lattice with spacing $a = 1.97$ fm and length $L = 71a$.

$$
x_i = 0, \ldots, L-1 \quad \forall \ i = 1, \ldots, N \quad \text{(use lattice units with } a = 1) \quad \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \text{+} \\ \text{+} \\ \text{0} \end{array} \end{array} & \begin{array}{c} \text{+} \\ \text{+} \\ \text{+} \\ \text{+} \end{array} & \begin{array}{c} \text{+} \\ \text{+} \\ \text{+} \\ \text{+} \end{array} & \begin{array}{c} \begin{array}{c} \text{+} \\ \text{+} \\ \text{+} \\ \text{+} \end{array} & \begin{array}{c} \text{+} \\ \text{+} \\ \text{+} \\ \text{+} \end{array} & \begin{array}{c} \begin{array}{c} \text{+} \\ \text{+} \\ \text{+} \\ \text{+} \end{array} & \begin{array}{c} \text{+} \\ \text{+} \\ \text{+} \\ \end{array} & \begin{array}{c} \text{+} \\ \text{+} \\ \text{+} \\ \end{array} & \begin{array}{c} \begin{array}{c} \text{+} \\ \text{+} \\ \text{+} \\ \end{array} & \begin{array}{c} \text{+} \\ \text{+} \\ \text{+} \\ \end{array} & \begin{array}{c} \text{+} \\ \text{+} \\ \text{+} \\ \end{array} & \begin{array}{c} \text{+} \\ \text{+} \\ \text{+} \\ \end{array} & \begin{array}{c} \text{+} \\ \text{+} \\ \text{+} \\ \end{array} & \begin{array}{c} \text{+} \\ \text{+} \\ \text{+} \\ \end{array}
$$

Benchmark toy-model Hamiltonian

consider *N* spinless particles of mass $m = m_{\text{nucl}} = 938.92 \text{ MeV}$ in 1D, choose pairwise contact interaction with $C = -10$ MeV

define periodic lattice with spacing $a = 1.97$ fm and length $L = 71a$.

$$
x_i = 0, ..., L - 1
$$
 $\forall i = 1, ..., N$ (use lattice units with $a = 1$) $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array} \end{array} \\ \begin{array} \end{array} \\ \begin{array} \end{array} \\ \begin{array} \end{array} \\ \end{array} \\ \begin{array} \end{$

discretize *H* using *O*(*a* 4)-improved dispersion relation ([Eur. Phys. J. A 34, 185 \(2007\)](https://arxiv.org/abs/0708.1780)):

$$
H = \frac{49}{12m} \sum_{x} a^{\dagger}(x) a(x) - \frac{3}{4m} \sum_{x} a^{\dagger}(x) (a(x+1) + a(x-1))
$$

+
$$
\frac{3}{40m} \sum_{x} a^{\dagger}(x) (a(x+2) + a(x-2))
$$

-
$$
\frac{1}{180m} \sum_{x} a^{\dagger}(x) (a(x+3) + a(x-3)) + \frac{C}{2} \sum_{x} a^{\dagger}(x) a^{\dagger}(x) a(x) a(x)
$$

solve Schrödinger equation $H|\psi\rangle = E|\psi\rangle$ using Lanczos algorithm to determine ground state $\psi_A(x_1, x_2)$ as eigenvector of *H*

solve Schrödinger equation $H|\psi\rangle = E |\psi\rangle$ using Lanczos algorithm to determine ground state $\psi_A(x_1, x_2)$ as eigenvector of *H*

switch to relative coordinates: $c_{ij}\triangleq \frac{1}{2}$ $\frac{1}{2}(x_i + x_j), \ d_{ij} = d(x_i, x_j) \triangleq |x_i - x_j|$

 $($ $\hat{=}$ means that periodic boundary conditions must be taken into account)

solve Schrödinger equation $H|\psi\rangle = E|\psi\rangle$ using Lanczos algorithm to determine ground state $\psi_A(x_1, x_2)$ as eigenvector of H

switch to relative coordinates: $c_{ij}\triangleq \frac{1}{2}$ $\frac{1}{2}(x_i + x_j), \ d_{ij} = d(x_i, x_j) \triangleq |x_i - x_j|$ $($ $\hat{=}$ means that periodic boundary conditions must be taken into account)

modify wave function up to range R : (to tune $\langle r^n \rangle$ order by order)

 $\psi_B(c_{12}, d_{12}) = \psi_A(c_{12}, d_{12}) + \Delta \psi(c_{12}, d_{12})$ for $d_{12} = 0, 1, ..., R$

with $\sum_{c_{12}}\Delta\psi(c_{12},0)$ fixed by conservation of wave function norm

solve Schrödinger equation $H|\psi\rangle = E |\psi\rangle$ using Lanczos algorithm to determine ground state $\psi_A(x_1, x_2)$ as eigenvector of H

switch to relative coordinates: $c_{ij}\triangleq \frac{1}{2}$ $\frac{1}{2}(x_i + x_j), \ d_{ij} = d(x_i, x_j) \triangleq |x_i - x_j|$ $($ \triangle means that periodic boundary conditions must be taken into account)

modify wave function up to range R : (to tune $\langle r^n \rangle$ order by order)

 $\psi_B(c_{12}, d_{12}) = \psi_A(c_{12}, d_{12}) + \Delta \psi(c_{12}, d_{12})$ for $d_{12} = 0, 1, ..., R$

with $\sum_{c_{12}}\Delta\psi(c_{12},0)$ fixed by conservation of wave function norm construct *U* as reflection transformation with $U|u\rangle = -|u\rangle$:

$$
U = 1 - 2 |u\rangle\langle u| \quad \text{for} \quad |u\rangle = |\Delta\psi\rangle / \sqrt{\langle \Delta\psi | \Delta\psi \rangle} \quad \text{or}
$$

$$
\langle x_1, x_2 | U | x_1', x_2' \rangle = \delta_{x_1, x_1'} \delta_{x_2, x_2'} - 2 \delta_{c_{12}, c_{12}'} \frac{\Delta\psi(c_{12}, d_{12}) \Delta\psi(c_{12}, d_{12}')}{\sum_{d_{12}''} |\Delta\psi(c_{12}, d_{12}'')|^2}
$$

Unitary transformation for three particles

generalization for three particles (with $(i, j, k) = (1, 2, 3), (1, 3, 2), (2, 3, 1)$):

$$
\begin{aligned} \bra{\chi_1,\chi_2,\chi_3}\bm{\mathit{U}}_{3\mathrm{p}}\ket{\chi_1',\chi_2',\chi_3'}=&\delta_{\chi_1,\chi_1'}\delta_{\chi_2,\chi_2'}\delta_{\chi_3,\chi_3'}\\ &-2\sum_{(i,j,k)}\delta_{c_{ij},c_{ij}'}\frac{\Delta\psi(\bm{c}_{ij},\bm{d}_{ij})\ \Delta\psi(\bm{c}_{ij},\bm{d}_{ij}')}{\sum_{d_{ij}''}|\Delta\psi(\bm{c}_{ij},\bm{d}_{ij}'')|^2}\delta_{\chi_k,\chi_k'} \end{aligned}
$$

<code>not</code> <code>unitary</code> (since additional terms do not cancel in $\mathit{U_{3p}U_{3p}^{\dagger}}$ as for 2 particles)

Unitary transformation for three particles

generalization for three particles (with $(i, j, k) = (1, 2, 3), (1, 3, 2), (2, 3, 1)$):

$$
\begin{aligned} \bra{\chi_1,\chi_2,\chi_3}\,U_{3\mathrm{p}}\ket{\chi_1',\chi_2',\chi_3'}=&\delta_{\chi_1,\chi_1'}\delta_{\chi_2,\chi_2'}\delta_{\chi_3,\chi_3'}\\ &-2\sum_{(i,j,k)}\delta_{\textit{C}_{ij}^{\prime},\textit{C}_{ij}^{\prime\prime}}\frac{\Delta\psi(\textit{C}_{ij},\textit{d}_{ij})\;\Delta\psi(\textit{C}_{ij},\textit{d}_{ij}^{\prime\prime})}{\sum_{\textit{d}_{ij}^{\prime\prime}}|\Delta\psi(\textit{C}_{ij},\textit{d}_{ij}^{\prime\prime})|^2}\delta_{\chi_k,\chi_k'}\\ &\times\theta\big(d(\textit{C}_{ij},\textit{\textbf{x}_k})\geq\textit{d}_{\min}\big)\,\theta\Big(d(\textit{C}_{i^{\prime}j^{\prime}}^{\prime},\textit{\textbf{x}_{k}^{\prime}}^{\prime})\geq\textit{d}_{\min}\Big)\end{aligned}
$$

*d*min

<code>not</code> <code>unitary</code> (since additional terms do not cancel in $\mathit{U_{3p}U_{3p}^{\dagger}}$ as for 2 particles) ⇒ switch off operator *U* if spectator particle *k* comes too close to *cij* (This makes the transformation "locally unitary" for the particles *i* and *j*.)

Unitary transformation for three particles

generalization for three particles (with $(i, j, k) = (1, 2, 3), (1, 3, 2), (2, 3, 1)$):

$$
\begin{aligned} \bra{\chi_1,\chi_2,\chi_3}\bm{\mathit{U}}_{3p}\ket{\chi_1',\chi_2',\chi_3'}=&\delta_{\chi_1,\chi_1'}\delta_{\chi_2,\chi_2'}\delta_{\chi_3,\chi_3'}\\&-2\sum_{(i,j,k)}\delta_{\textit{C}_{ij},\textit{C}_{ij}'}\frac{\Delta \psi(\textit{\textbf{C}}_{ij},\textit{\textbf{d}}_{ij}) \,\Delta \psi(\textit{\textbf{C}}_{ij},\textit{\textbf{d}}_{ij}')}{\sum_{\textit{\textbf{d}}_{ij}''}|\Delta \psi(\textit{\textbf{C}}_{ij},\textit{\textbf{d}}_{ij}'')|^2}\delta_{\chi_k,\chi_k'}\\&\times\theta\big(\textit{\textbf{d}}(\textit{\textbf{C}}_{ij},\textit{\textbf{X}}_k)\geq \textit{\textbf{d}}_{\min}\big)\,\theta\Big(\textit{\textbf{d}}(\textit{\textbf{C}}_{i'j'}',\textit{\textbf{X}}_{k'}')\geq \textit{\textbf{d}}_{\min}\Big)\end{aligned}
$$

*d*min

<code>not</code> <code>unitary</code> (since additional terms do not cancel in $\mathit{U_{3p}U_{3p}^{\dagger}}$ as for 2 particles) ⇒ switch off operator *U* if spectator particle *k* comes too close to *cij* (This makes the transformation "locally unitary" for the particles *i* and *j*.) calculate $\bra{\psi_{3p}}U^\dagger_{3p}$ r $^2U_{3p}\ket{\psi_{3p}}$ with $\psi_{3p}(x_1,x_2,x_3)$ as eigenvector of *H*

Results for two particles

plot wave function vs. d_{12} for each c_{12} :

 $(\psi$ obtained at even/odd distances separately)

(switched back to physical units)

Results for two particles

 (ψ) obtained at even/odd distances separately)

plot wave function vs. *d*¹² for each *c*12: vary e.g. ∆ψ(*c*12, 2*a*) in possible domain:

(switched back to physical units)

plot wave function vs. *d*¹² for each *c*12: vary e.g. ∆ψ(*c*12, 2*a*) in possible domain: (ψ) obtained at even/odd distances separately)

 0 0.01 0.02 0.03 0 5 10 15 20 25 30 35 ψ (fm⁻¹) *d*12 (units of *a*) 0 0.01 0.02 0.03 0 2 4 6 8 10 $ψ$ (fm⁻¹) d_{12} (units of *a*)

(switched back to physical units)

 (ψ) obtained at even/odd distances separately)

 0 0.01 0.02 0.03 0 5 10 15 20 25 30 35 ψ (fm⁻¹) *d*12 (units of *a*) -0.01 Ω 0.01 0.02 0.03 0.04 0 2 4 6 8 10 $ψ$ (fm⁻¹) d_{12} (units of *a*)

plot wave function vs. *d*¹² for each *c*12: vary e.g. ∆ψ(*c*12, 2*a*) in possible domain:

⁽switched back to physical units)

plot wave function vs. *d*¹² for each *c*12: vary e.g. ∆ψ(*c*12, 2*a*) in possible domain: (ψ) obtained at even/odd distances separately)

• energies do not change under unitary transformation

(ψ*ⁿ* is *n*-th lowest eigenstate of Hamiltonian with zero total momentum; $n = 1, n = 2, n = 3$

- energies do not change under unitary transformation
- significant dependence of RMS radius on ∆ψ(*c*12, 2*a*)

(ψ*ⁿ* is *n*-th lowest eigenstate of Hamiltonian with zero total momentum; $n = 1, n = 2, n = 3$

e energies distorted by naive application of operator *U* with $d_{\min} = 0$ (dashed)

- **e** energies distorted by naive application of operator *U* with $d_{\min} = 0$ (dashed)
- \bullet energies do not change under "local" unitary transformation ($d_{\min} = 4a$, solid)

- **e** energies distorted by naive application of operator *U* with $d_{\min} = 0$ (dashed)
- \bullet energies do not change under "local" unitary transformation ($d_{\min} = 4a$, solid)
- **•** small dependence of RMS radius on $\Delta\psi(c_{12}, 2a)$ ⇒ some predictive power

- **e** energies distorted by naive application of operator *U* with $d_{\min} = 0$ (dashed)
- \bullet energies do not change under "local" unitary transformation ($d_{\rm min} = 4a$, solid)
- **•** small dependence of RMS radius on $\Delta \psi(c_{12}, 2a)$ ⇒ some predictive power

• prediction for $N > 3$ may be improved by additional three-body term in *U*:

 $\bra{x_1,x_2,x_3}(U_{3\mathrm{p}}'-U_{3\mathrm{p}})\ket{x_1',x_2',x_3'}=\delta_{c_{123},c_{123}'}f(\lbrace c_{ij}\rbrace,\lbrace c_{ij}'\rbrace,d_{12},d_{13},d_{12}',d_{13}')$ with $c_{123} = (x_1 + x_2 + x_3)/3$

developed method to adjust lattice results for $\langle r^2 \rangle$ to experimental data

- developed method to adjust lattice results for $\langle r^2 \rangle$ to experimental data
	- can be extended to $\langle r^n \rangle$ or electromagnetic moments (similarly to tuning derivative expansion of potential)

- developed method to adjust lattice results for $\langle r^2 \rangle$ to experimental data
	- can be extended to $\langle r^n \rangle$ or electromagnetic moments (similarly to tuning derivative expansion of potential)
	- can be improved by adding new ($N \geq 3$)-body operators with range $< d_{\min}$

- developed method to adjust lattice results for $\langle r^2 \rangle$ to experimental data
	- can be extended to $\langle r^n \rangle$ or electromagnetic moments (similarly to tuning derivative expansion of potential)
	- can be improved by adding new ($N \geq 3$)-body operators with range $< d_{\min}$

outlook:

• generalization to 3 dimensions and non-zero (iso)spin

- developed method to adjust lattice results for $\langle r^2 \rangle$ to experimental data
	- can be extended to $\langle r^n \rangle$ or electromagnetic moments (similarly to tuning derivative expansion of potential)
	- can be improved by adding new $(N > 3)$ -body operators with range $< d_{\min}$

outlook:

- generalization to 3 dimensions and non-zero (iso)spin
- for *N* ≥ 4: let unitary transformation act on all pairs of particles simultaneously (system extensivity)

- developed method to adjust lattice results for $\langle r^2 \rangle$ to experimental data
	- can be extended to $\langle r^n \rangle$ or electromagnetic moments (similarly to tuning derivative expansion of potential)
	- can be improved by adding new $(N > 3)$ -body operators with range $< d_{\min}$

outlook:

- generalization to 3 dimensions and non-zero (iso)spin
- for *N* ≥ 4: let unitary transformation act on all pairs of particles simultaneously (system extensivity)
- **•** choose smaller *L* for three particles than for two particles

Thank you for your attention!

Backup slides

Adiabatic projection method

define two-cluster states (here in 1D):

$$
|d\rangle = \sum_{x=0}^{L-1} |x+d\rangle_{cluster\ 1} \otimes |x\rangle_{cluster\ 2}
$$

evolve them in Euclidean time to obtain dressed cluster states $\ket{\pmb{\mathcal{d}}}_\tau = \pmb{e}^{-H\tau}\ket{\pmb{\mathcal{d}}}$

calculate matrix elements ${}_{\tau}\bra{d}H\ket{d'}_{\tau}$ of adiabatic Hamiltonian using Monte Carlo simulation

Modification of *H* vs. modification of $ψ$

There are two different points of view on applying the unitary transformation:

• apply *U* to wave function:

$$
(\bra{\psi}U^{\dagger})H(U\ket{\psi}), \qquad (\bra{\psi}U^{\dagger})r^2(U\ket{\psi})
$$

• apply *U* to operators:

$$
\langle \psi | \left(U^{\dagger} H U \right) | \psi \rangle \, , \qquad \langle \psi | \left(U^{\dagger} r^2 U \right) | \psi \rangle
$$

Notice that combining these two possibilities would cause no effect:

$$
\langle \psi | U^{\dagger}U H U^{\dagger}U^{\dagger} \psi \rangle = \langle \psi | H | \psi \rangle, \qquad \langle \psi | U^{\dagger}U f^2 U^{\dagger}U^{\dagger} \psi \rangle = \langle \psi | I^2 | \psi \rangle
$$

Similarity renormalization group (SRG) transformations

make Hamiltonian *H*(0) more diagonal using a unitary transformation:

$$
H(s) = U(s)H(s=0)U^{\dagger}(s)
$$

where the Hamiltonian can be split as

 $H(s) = H_{\text{diag}}(s) + H_{\text{off-diag}}(s)$ with $H(s) \stackrel{s \to \infty}{\longrightarrow} H_{\text{diag}}(s)$, $H_{\text{off-diag}}(s) \stackrel{s \to \infty}{\longrightarrow} 0$

solve SRG flow equation to obtain *H*(*s*):

$$
\frac{\mathrm{d}H(s)}{\mathrm{d}s}=\left[\frac{\mathrm{d}U(s)}{\mathrm{d}s}U^{\dagger}(s),H(s)\right]
$$

[Lect. Notes Phys. 936, 477 \(2017\)](https://arxiv.org/abs/1612.08315)

Operators & states

annihilation/creation operators for distinguishable particles: ((anti)symmetrize later)

$$
a^{(\dagger)}(x) = a_1^{(\dagger)}(x) + \cdots + a_N^{(\dagger)}(x), \quad \langle x_1, \ldots, x_N | y_1, \ldots, y_N \rangle = \delta_{x_1, y_1} \ldots \delta_{x_N, y_N},
$$

\n
$$
a_i(x) | x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_N \rangle = \delta_{x, x_i} | x_1, \ldots, x_{i-1}, \text{vac}, x_{i+1}, \ldots, x_N \rangle,
$$

\n
$$
a_i(x) | x_1, \ldots, x_{i-1}, \text{vac}, x_{i+1}, \ldots, x_N \rangle = a_i^{\dagger}(x) | x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_N \rangle = 0,
$$

\n
$$
a_i^{\dagger}(x) | x_1, \ldots, x_{i-1}, \text{vac}, x_{i+1}, \ldots, x_N \rangle = | x_1, \ldots, x_{i-1}, x, x_{i+1}, \ldots, x_N \rangle
$$

r 2 -operator in second quantization:

$$
r^{2} = \frac{1}{N} \sum_{x=0}^{L-1} a^{\dagger}(x) a(x) \left(x - \frac{1}{N} \sum_{x'=0}^{L-1} a^{\dagger}(x') a(x') x'\right)^{2}
$$

states with zero total momentum:

$$
|d_1,\ldots,d_{N-1}\rangle_{P_{tot}=0}=\sum_{x=0}^{L-1}|x+d_1,\ldots,x+d_{N-1},x\rangle
$$

Center of mass & distance

The periodic boundary conditions must be taken into account in the definition of the center of mass *c* and the distance *d*:

$$
c_{ij} = \begin{cases} (x_i + x_j)/2 & \text{if } |x_i - x_j| < L - |x_i - x_j| \\ (x_i + x_j - L)/2 & \text{mod } L \quad \text{if } |x_i - x_j| \ge L - |x_i - x_j| \end{cases},
$$

$$
d(x, y) = \min(|x - y|, L - |x - y|)
$$