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Introduction

Chiral lattice EFT (cf. plenary talk by Bing-Nan Lu today at 01:40) allows for
simulations e.g. of 3H, 4He, 12C, 16O, 28Si and nuclear matter.
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It is based on an effective nucleus-nucleus Hamiltonian
determined by Monte Carlo simulations using the adiabatic
projection method.
Phys. Rev. C 92, 054612 (2015)

From this adiabatic Hamiltonian, one can extract phase
shifts by applying spherical wall boundary conditions
& projection onto partial waves.
(Lüscher’s method is not accurate enough here because the error of the

Monte-Carlo energy levels is larger than the separation between these levels.)
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Introduction

However, the nuclear radii obtained from such simulations still do not agree
precisely with experiments (since the interaction is not uniquely defined by the phase shifts).

How can one modify the wave function such that the radii are correctly
described (without introducing additional many-body operators to r2)?
A unitary transformation U shall be applied to the wave function ψ and the
expectation value of the untransformed r2-operator is calculated.
It changes the ground state wave function while leaving the expectation
values of the Hamiltonian H (and thus the phase shifts) invariant.
(This property is also used for similarity renormalization group (SRG) transformations.)

The contribution 〈ψ| (U†r2U − r2) |ψ〉 induced by the unitary transformation is
interpreted to be missing in the original lattice calculation.
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Benchmark toy-model Hamiltonian

consider N spinless particles of mass m = mnucl = 938.92 MeV in 1D,
choose pairwise contact interaction with C = −10 MeV

define periodic lattice with spacing a = 1.97 fm and length L = 71a:

xi = 0, . . . ,L− 1 ∀ i = 1, . . . ,N (use lattice units with a = 1)

discretize H using O(a4)-improved dispersion relation (Eur. Phys. J. A 34, 185 (2007)):

H =
49

12m

∑
x

a†(x)a(x)− 3
4m

∑
x

a†(x)(a(x + 1) + a(x − 1))

+
3

40m

∑
x

a†(x)(a(x + 2) + a(x − 2))

− 1
180m

∑
x

a†(x)(a(x + 3) + a(x − 3)) +
C
2

∑
x

a†(x)a†(x)a(x)a(x)

0 1 . . . L− 1

https://arxiv.org/abs/0708.1780
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Unitary transformation for two particles

solve Schrödinger equation H |ψ〉 = E |ψ〉 using Lanczos algorithm
to determine ground state ψA(x1, x2) as eigenvector of H

switch to relative coordinates: cij =̂ 1
2(xi + xj), dij = d(xi , xj) =̂ |xi − xj |

(=̂ means that periodic boundary conditions must be taken into account)

modify wave function up to range R: (to tune 〈rn〉 order by order)

ψB(c12,d12) = ψA(c12,d12) + ∆ψ(c12,d12) for d12 = 0,1, . . . ,R

with
∑

c12
∆ψ(c12,0) fixed by conservation of wave function norm

construct U as reflection transformation with U |u〉 = − |u〉:

U = 1− 2 |u〉 〈u| for |u〉 = |∆ψ〉 /
√
〈∆ψ|∆ψ〉 or

〈x1, x2|U
∣∣x ′1, x ′2〉 = δx1,x ′

1
δx2,x ′

2
− 2δc12,c′

12

∆ψ(c12,d12) ∆ψ(c12,d ′12)∑
d ′′

12
|∆ψ(c12,d ′′12)|2
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Unitary transformation for three particles

generalization for three particles (with (i , j , k) = (1,2,3), (1,3,2), (2,3,1)):

〈x1, x2, x3|U3p
∣∣x ′1, x ′2, x ′3〉 =δx1,x ′

1
δx2,x ′

2
δx3,x ′

3

− 2
∑
(i,j,k)

δcij ,c′
ij

∆ψ(cij ,dij) ∆ψ(cij ,d ′ij)∑
d ′′

ij
|∆ψ(cij ,d ′′ij )|2

δxk ,x ′
k

× θ
(
d(cij , xk ) ≥ dmin

)
θ
(

d(c′i ′j ′ , x
′
k ′) ≥ dmin

)

not unitary (since additional terms do not cancel in U3pU†
3p as for 2 particles)

⇒ switch off operator U if spectator particle k comes too close to cij

(This makes the transformation “locally unitary” for the particles i and j .)

calculate
〈
ψ3p
∣∣U†3pr2U3p

∣∣ψ3p
〉

with ψ3p(x1, x2, x3) as eigenvector of H

dmin
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Results for two particles

plot wave function vs. d12 for each c12:
(ψ obtained at even/odd distances separately)
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ψ
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fm
-1

)

d12 (units of a)

(switched back to physical units)
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Results for two particles

energies do not change under unitary transformation

significant dependence of RMS radius on ∆ψ(c12,2a)

-0.6

-0.4

-0.2

 0

 0.2

-0.05 -0.04 -0.03 -0.02 -0.01  0  0.01

<
ψ

n
| 
U

+
 H

 U
 |
ψ

n
>

 (
M

e
V

)

Δψ(c12, 2a) (fm-1)

 2.9

 3

 3.1

 3.2

-0.05 -0.04 -0.03 -0.02 -0.01  0  0.01

(<
ψ

n
| 
U

+
 r

2
 U

 |
ψ

n
>

)1
/2

 (
fm

)

Δψ(c12, 2a) (fm-1)

(ψn is n-th lowest eigenstate of Hamiltonian with zero total momentum;
n = 1, n = 2, n = 3)
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Results for three particles

energies distorted by naive application of operator U with dmin = 0 (dashed)

energies do not change under “local” unitary transformation (dmin = 4a, solid)
small dependence of RMS radius on ∆ψ(c12,2a)⇒ some predictive power
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prediction for N > 3 may be improved by additional three-body term in U:

〈x1, x2, x3| (U ′3p − U3p)
∣∣x ′1, x ′2, x ′3〉 = δc123,c′

123
f ({cij}, {c′ij},d12,d13,d ′12,d

′
13)

with c123 = (x1 + x2 + x3)/3
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energies do not change under “local” unitary transformation (dmin = 4a, solid)

small dependence of RMS radius on ∆ψ(c12,2a)⇒ some predictive power
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Summary & outlook

summary:
developed method to adjust lattice results for 〈r2〉 to experimental data

can be extended to 〈rn〉 or electromagnetic moments
(similarly to tuning derivative expansion of potential)
can be improved by adding new (N ≥ 3)-body operators with range < dmin

outlook:
generalization to 3 dimensions and non-zero (iso)spin
for N ≥ 4: let unitary transformation act on all pairs of particles simultaneously
(system extensivity)
choose smaller L for three particles than for two particles
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Thank you for your attention!



Backup slides



Adiabatic projection method

define two-cluster states (here in 1D):

|d〉 =
L−1∑
x=0

|x + d〉cluster 1 ⊗ |x〉cluster 2

evolve them in Euclidean time to obtain dressed cluster states |d〉τ = e−Hτ |d〉

calculate matrix elements τ 〈d |H |d ′〉τ of adiabatic Hamiltonian
using Monte Carlo simulation

Phys. Rev. C 92, 054612 (2015); Nature 528, 111 (2015)

https://arxiv.org/abs/1505.02967
https://arxiv.org/abs/1506.03513


Modification of H vs. modification of ψ

There are two different points of view on applying the unitary transformation:
apply U to wave function:

(〈ψ|U†)H(U |ψ〉), (〈ψ|U†)r2(U |ψ〉)

apply U to operators:

〈ψ| (U†HU) |ψ〉 , 〈ψ| (U†r2U) |ψ〉

Notice that combining these two possibilities would cause no effect:

(((((((((((((((hhhhhhhhhhhhhhh
〈ψ|U†UHU†U |ψ〉 = 〈ψ|H |ψ〉,

(((((((((((((((hhhhhhhhhhhhhhh
〈ψ|U†Ur2U†U |ψ〉 = 〈ψ| r2 |ψ〉



Similarity renormalization group (SRG) transformations

make Hamiltonian H(0) more diagonal using a unitary transformation:

H(s) = U(s)H(s = 0)U†(s)

where the Hamiltonian can be split as

H(s) = Hdiag(s) + Hoff-diag(s) with H(s)
s→∞−→ Hdiag(s), Hoff-diag(s)

s→∞−→ 0

solve SRG flow equation to obtain H(s):

dH(s)

ds
=

[
dU(s)

ds
U†(s),H(s)

]
Lect. Notes Phys. 936, 477 (2017)

https://arxiv.org/abs/1612.08315


Operators & states

annihilation/creation operators for distinguishable particles: ((anti)symmetrize later)

a(†)(x) = a(†)
1 (x) + · · ·+ a(†)

N (x), 〈x1, . . . , xN |y1, . . . , yN〉 = δx1,y1 . . . δxN ,yN ,

ai(x) |x1, . . . , xi−1, xi , xi+1, . . . , xN〉 = δx ,xi |x1, . . . , xi−1, vac, xi+1, . . . , xN〉 ,

ai(x) |x1, . . . , xi−1, vac, xi+1, . . . , xN〉 = a†i (x) |x1, . . . , xi−1, xi , xi+1, . . . , xN〉 = 0,

a†i (x) |x1, . . . , xi−1, vac, xi+1, . . . , xN〉 = |x1, . . . , xi−1, x , xi+1, . . . , xN〉

r2-operator in second quantization:

r2 =
1
N

L−1∑
x=0

a†(x)a(x)

(
x − 1

N

L−1∑
x ′=0

a†(x ′)a(x ′)x ′
)2

states with zero total momentum:

|d1, . . . ,dN−1〉Ptot=0 =
L−1∑
x=0

|x + d1, . . . , x + dN−1, x〉



Center of mass & distance

The periodic boundary conditions must be taken into account in the definition of
the center of mass c and the distance d :

cij =

{
(xi + xj)/2 if |xi − xj | < L− |xi − xj |
(xi + xj − L)/2 mod L if |xi − xj | ≥ L− |xi − xj |

,

d(x , y) = min(|x − y |,L− |x − y |)
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