Lattice improvement of nuclear shape calculations using unitary transformations

Lukas Bovermann (lukas.bovermann@rub.de), E. Epelbaum, H. Krebs, D. Lee

Institut für Theoretische Physik II Ruhr-Universität Bochum

RUHR UNIVERSITÄT BOCHUM

38th International Symposium on Lattice Field Theory

Zoom/Gather@MIT 26-30 July 2021

Introduction ●○	Toy-model Hamiltonian o	Unitary transformation	Results 000	Summary & outlook
Introduction				

 Chiral lattice EFT (cf. plenary talk by Bing-Nan Lu today at 01:40) allows for simulations e.g. of ³H, ⁴He, ¹²C, ¹⁶O, ²⁸Si and nuclear matter.

Eur. Phys. J. A 41, 125 (2009); Phys. Rev. Lett. 106, 192501 (2011); Phys. Rev. Lett. 109, 252501 (2012); Phys. Rev. Lett. 112, 102501 (2014); Phys. Lett. B 732, 110 (2014); Phys. Rev. Lett. 125, 192502 (2020)

Introduction ●○	Toy-model Hamiltonian o	Unitary transformation	Results 000	Summary & outlook
Introduction				

Chiral lattice EFT (cf. plenary talk by Bing-Nan Lu today at 01:40) allows for simulations e.g. of ³H, ⁴He, ¹²C, ¹⁶O, ²⁸Si and nuclear matter.
 Eur. Phys. J. A 41, 125 (2009); Phys. Rev. Lett. 106, 192501 (2011); Phys. Rev. Lett. 109, 252501 (2012);

 It is based on an effective nucleus-nucleus Hamiltonian determined by Monte Carlo simulations using the adiabatic projection method.

Phys. Rev. Lett. 112, 102501 (2014): Phys. Lett. B 732, 110 (2014): Phys. Rev. Lett. 125, 192502 (2020)

Phys. Rev. C 92, 054612 (2015)

Introduction ●○	Toy-model Hamiltonian o	Unitary transformation	Results	Summary & outlook o
Introduction				

 Chiral lattice EFT (cf. plenary talk by Bing-Nan Lu today at 01:40) allows for simulations e.g. of ³H, ⁴He, ¹²C, ¹⁶O, ²⁸Si and nuclear matter.

Eur. Phys. J. A 41, 125 (2009); Phys. Rev. Lett. 106, 192501 (2011); Phys. Rev. Lett. 109, 252501 (2012); Phys. Rev. Lett. 112, 102501 (2014); Phys. Lett. B 732, 110 (2014); Phys. Rev. Lett. 125, 192502 (2020)

 It is based on an effective nucleus-nucleus Hamiltonian determined by Monte Carlo simulations using the adiabatic projection method.

 From this adiabatic Hamiltonian, one can extract phase shifts by applying spherical wall boundary conditions & projection onto partial waves.

(Lüscher's method is not accurate enough here because the error of the Monte-Carlo energy levels is larger than the separation between these levels.)

Nature 528, 111 (2015)

Eur. Phys. J. A 34, 185 (2007)

Phys. Rev. C 92, 054612 (2015)

Introduction	Toy-model Hamiltonian o	Unitary transformation	Results 000	Summary & outlook
Introduction				

• However, the nuclear radii obtained from such simulations still do not agree precisely with experiments (since the interaction is not uniquely defined by the phase shifts).

Introduction	Toy-model Hamiltonian	Unitary transformation	Results	Summary & outlook
○●	o		000	o
Introduction				

- However, the nuclear radii obtained from such simulations still do not agree precisely with experiments (since the interaction is not uniquely defined by the phase shifts).
- How can one modify the wave function such that the radii are correctly described (without introducing additional many-body operators to *r*²)?

Introduction	Toy-model Hamiltonian o	Unitary transformation	Results 000	Summary & outlook
Introduction				

- However, the nuclear radii obtained from such simulations still do not agree precisely with experiments (since the interaction is not uniquely defined by the phase shifts).
- How can one modify the wave function such that the radii are correctly described (without introducing additional many-body operators to *r*²)?
- A unitary transformation *U* shall be applied to the wave function ψ and the expectation value of the untransformed *r*²-operator is calculated.

Introduction	Toy-model Hamiltonian	Unitary transformation	Results	Summary & outlook
o●	o		000	O
Introduction				

- However, the nuclear radii obtained from such simulations still do not agree precisely with experiments (since the interaction is not uniquely defined by the phase shifts).
- How can one modify the wave function such that the radii are correctly described (without introducing additional many-body operators to *r*²)?
- A unitary transformation U shall be applied to the wave function ψ and the expectation value of the untransformed r^2 -operator is calculated.
- It changes the ground state wave function while leaving the expectation values of the Hamiltonian *H* (and thus the phase shifts) invariant.
 (This property is also used for similarity renormalization group (SRG) transformations.)

Introduction	Toy-model Hamiltonian	Unitary transformation	Results	Summary & outlook
○●	o		০০০	O
Introduction				

- However, the nuclear radii obtained from such simulations still do not agree precisely with experiments (since the interaction is not uniquely defined by the phase shifts).
- How can one modify the wave function such that the radii are correctly described (without introducing additional many-body operators to *r*²)?
- A unitary transformation U shall be applied to the wave function ψ and the expectation value of the untransformed r^2 -operator is calculated.
- It changes the ground state wave function while leaving the expectation values of the Hamiltonian *H* (and thus the phase shifts) invariant.
 (This property is also used for similarity renormalization group (SRG) transformations.)
- The contribution ⟨ψ| (U[†]r²U − r²) |ψ⟩ induced by the unitary transformation is interpreted to be missing in the original lattice calculation.

Introduction	Toy-model Hamiltonian ●	Unitary transformation	Results	Summary & outlook o	
Benchmark toy-model Hamiltonian					

consider *N* spinless particles of mass $m = m_{nucl} = 938.92$ MeV in 1D, choose pairwise contact interaction with C = -10 MeV

Introduction	Toy-model Hamiltonian ●	Unitary transformation	Results	Summary & outlook o
Renchma	ark tov-model Ham	iltonian		

consider *N* spinless particles of mass $m = m_{nucl} = 938.92$ MeV in 1D, choose pairwise contact interaction with C = -10 MeV

define periodic lattice with spacing a = 1.97 fm and length L = 71a:

$$x_i = 0, \dots, L-1$$
 $\forall i = 1, \dots, N$ (use lattice units with $a = 1$) $\begin{pmatrix} + & + & + & + \\ 0 & 1 & \cdots & L-1 \end{pmatrix}$

Introduction	Toy-model Hamiltonian	Unitary transformation	Results	Summary & outlook
00	●		000	O
Benchmar	k toy-model Ham	niltonian		

consider *N* spinless particles of mass $m = m_{nucl} = 938.92$ MeV in 1D, choose pairwise contact interaction with C = -10 MeV

define periodic lattice with spacing a = 1.97 fm and length L = 71a:

 $x_i = 0, \dots, L-1$ $\forall i = 1, \dots, N$ (use lattice units with a = 1) $\begin{array}{c} + + + + + + + + - \\ 0 & 1 & \cdots & L-1 \end{array}$ discretize H using $O(a^4)$ -improved dispersion relation (Eur. Phys. J. A 34, 185 (2007)):

$$H = \frac{49}{12m} \sum_{x} a^{\dagger}(x)a(x) - \frac{3}{4m} \sum_{x} a^{\dagger}(x)(a(x+1) + a(x-1))$$

+ $\frac{3}{40m} \sum_{x} a^{\dagger}(x)(a(x+2) + a(x-2))$
- $\frac{1}{180m} \sum_{x} a^{\dagger}(x)(a(x+3) + a(x-3)) + \frac{C}{2} \sum_{x} a^{\dagger}(x)a^{\dagger}(x)a(x)a(x)$

Introduction	Toy-model Hamiltonian	Unitary transformation	Results	Summary & outlook		
	o	●○	000	o		
Unitary trans	Unitary transformation for two particles					

Introduction	Toy-model Hamiltonian o	Unitary transformation ●○	Results 000	Summary & outlook				
Unitary tra	Unitary transformation for two particles							

switch to relative coordinates: $c_{ij} \triangleq \frac{1}{2}(x_i + x_j), d_{ij} = d(x_i, x_j) \triangleq |x_i - x_j|$

(
 means that periodic boundary conditions must be taken into account)

Introduction	Toy-model Hamiltonian o	Unitary transformation	Results 000	Summary & outlook o
Unitary trans	formation for two	oarticles		

switch to relative coordinates: $c_{ij} \triangleq \frac{1}{2}(x_i + x_j)$, $d_{ij} = d(x_i, x_j) \triangleq |x_i - x_j|$ (\triangleq means that periodic boundary conditions must be taken into account)

modify wave function up to range R: (to tune $\langle r^n \rangle$ order by order)

 $\psi_B(c_{12}, d_{12}) = \psi_A(c_{12}, d_{12}) + \Delta \psi(c_{12}, d_{12})$ for $d_{12} = 0, 1, \dots, R$

with $\sum_{c_{12}} \Delta \psi(c_{12}, 0)$ fixed by conservation of wave function norm

Introduction	Toy-model Hamiltonian	Unitary transformation	Results	Summary & outlook
	o	●○	০০০	o
Unitary tra	ansformation for t	wo particles		

switch to relative coordinates: $c_{ij} \triangleq \frac{1}{2}(x_i + x_j)$, $d_{ij} = d(x_i, x_j) \triangleq |x_i - x_j|$ (\triangleq means that periodic boundary conditions must be taken into account)

modify wave function up to range R: (to tune $\langle r^n \rangle$ order by order)

$$\psi_B(c_{12}, d_{12}) = \psi_A(c_{12}, d_{12}) + \Delta \psi(c_{12}, d_{12})$$
 for $d_{12} = 0, 1, \dots, R$

with $\sum_{c_{12}} \Delta \psi(c_{12}, 0)$ fixed by conservation of wave function norm construct *U* as reflection transformation with $U |u\rangle = -|u\rangle$:

$$U = 1 - 2 |u\rangle \langle u| \quad \text{for} \quad |u\rangle = |\Delta\psi\rangle / \sqrt{\langle \Delta\psi |\Delta\psi\rangle} \quad \text{or}$$

$$\langle x_1, x_2 | U | x_1', x_2' \rangle = \delta_{x_1, x_1'} \delta_{x_2, x_2'} - 2\delta_{c_{12}, c_{12}'} \frac{\Delta\psi(c_{12}, d_{12}) \Delta\psi(c_{12}, d_{12}')}{\sum_{d_{12}''} |\Delta\psi(c_{12}, d_{12}'')|^2}$$

1.		1		
		0.		
Introduction	Toy-model Hamiltonian	Unitary transformation	Results	Summary & outlook

Unitary transformation for three particles

generalization for three particles (with (i, j, k) = (1, 2, 3), (1, 3, 2), (2, 3, 1)):

$$egin{aligned} &\langle x_1, x_2, x_3 | \ U_{3\mathrm{p}} \left| x_1', x_2', x_3'
ight
angle = & \delta_{x_1, x_1'} \delta_{x_2, x_2'} \delta_{x_3, x_3'} \ &- 2 \sum_{(i, j, k)} \delta_{c_{ij}, c_{ij}'} rac{\Delta \psi(c_{ij}, d_{ij}) \ \Delta \psi(c_{ij}, d_{ij}')}{\sum_{d_{ij}'} |\Delta \psi(c_{ij}, d_{ij}')|^2} \delta_{x_k, x_k'} \end{aligned}$$

not unitary (since additional terms do not cancel in $U_{3p}U_{3p}^{\dagger}$ as for 2 particles)

Introduction Toy-model Hamiltonian oo o				Unitary transformation		Results	Summary & outlook o	
1.1.1.1.1								

Unitary transformation for three particles

generalization for three particles (with (i, j, k) = (1, 2, 3), (1, 3, 2), (2, 3, 1)):

$$egin{aligned} &\langle x_1, x_2, x_3 | \ U_{3\mathrm{p}} \left| x_1', x_2', x_3'
ight
angle = & \delta_{x_1, x_1'} \delta_{x_2, x_2'} \delta_{x_3, x_3'} \ &- 2 \sum_{(i, j, k)} \delta_{c_{ij}, c_{ij}'} rac{\Delta \psi(c_{ij}, d_{ij}) \ \Delta \psi(c_{ij}, d_{ij}')}{\sum_{d_{ij}''} |\Delta \psi(c_{ij}, d_{ij}')|^2} \delta_{x_k, x_k'} \ & imes heta ig(d(c_{ij}, x_k) \ge d_{\min} ig) \ heta ig(d(c_{i'j'}, x_{k'}') \ge d_{\min} ig) \end{aligned}$$

not unitary (since additional terms do not cancel in $U_{3p}U_{3p}^{\dagger}$ as for 2 particles) \rightarrow switch off operator U if spectator particle k comes too close to c_{ij} (This makes the transformation "locally unitary" for the particles i and j.)

Introduction Toy-model Hamiltonian oo o				Unitary transformation		Results	Summary & outlook o	
1.1.1.1.1								

Unitary transformation for three particles

generalization for three particles (with (i, j, k) = (1, 2, 3), (1, 3, 2), (2, 3, 1)):

$$egin{aligned} &\langle x_1, x_2, x_3 | \ U_{3\mathrm{p}} \left| x_1', x_2', x_3'
ight
angle = & \delta_{x_1, x_1'} \delta_{x_2, x_2'} \delta_{x_3, x_3'} \ &- 2 \sum_{(i, j, k)} \delta_{c_{ij}, c_{ij}'} rac{\Delta \psi(\boldsymbol{c}_{ij}, \boldsymbol{d}_{ij}) \ \Delta \psi(\boldsymbol{c}_{ij}, \boldsymbol{d}_{ij}')}{\sum_{\boldsymbol{d}_{ij}''} |\Delta \psi(\boldsymbol{c}_{ij}, \boldsymbol{d}_{ij}')|^2} \delta_{x_k, x_k'} \ & imes heta ig(\boldsymbol{d}(\boldsymbol{c}_{ij}, \boldsymbol{x}_k) \ge \boldsymbol{d}_{\min} ig) \ heta \Big(\boldsymbol{d}(\boldsymbol{c}_{ij'}, \mathbf{x}_{k'}') \ge \boldsymbol{d}_{\min} ig) \end{aligned}$$

not unitary (since additional terms do not cancel in $U_{3p}U_{3p}^{\dagger}$ as for 2 particles) \rightarrow switch off operator U if spectator particle k comes too close to c_{ij} (This makes the transformation "locally unitary" for the particles i and j.) calculate $\langle \psi_{3p} | U_{3p}^{\dagger} r^2 U_{3p} | \psi_{3p} \rangle$ with $\psi_{3p}(x_1, x_2, x_3)$ as eigenvector of H

Introduction	Toy-model Hamiltonian	Unitary transformation	Results	Summary & outlook

Results for two particles

plot wave function vs. d_{12} for each c_{12} :

(ψ obtained at even/odd distances separately)

(switched back to physical units)

0.03 0.03 0.02 0.02 ψ (fm⁻¹) ψ (fm⁻¹) 0.01 0.01 0 0 0 5 25 35 2 6 8 10 10 15 20 30 0 d_{12} (units of a) d_{12} (units of a)

⁽switched back to physical units)

0.03 0.03 0.02 0.02 ψ (fm⁻¹) ψ (fm⁻¹) 0.01 0.01 0 0 0 5 25 35 2 6 8 10 10 15 20 30 0 d_{12} (units of a) d_{12} (units of a)

⁽switched back to physical units)

⁽switched back to physical units)

⁽switched back to physical units)

Introduction	Toy-model Hamiltonian o	Unitary transformation	Results ○●○	Summary & outlook o
Results for	or two particles			

• energies do not change under unitary transformation

(ψ_n is *n*-th lowest eigenstate of Hamiltonian with zero total momentum; n = 1, n = 2, n = 3)

Introduction	Toy-model Hamiltonian o	Unitary transformation	Results ○●○	Summary & outlook o
Results f	or two particles			

- energies do not change under unitary transformation
- significant dependence of RMS radius on $\Delta \psi(c_{12}, 2a)$

(ψ_n is *n*-th lowest eigenstate of Hamiltonian with zero total momentum; n = 1, n = 2, n = 3)

Introduction	Toy-model Hamiltonian	Unitary transformation	Results	Summary & outlook
00	o		○○●	o
Results for t	hree particles			

• energies distorted by naive application of operator *U* with $d_{\min} = 0$ (dashed)

Introduction	Toy-model Hamiltonian o	Unitary transformation	Results oo●	Summary & outlook
Results for th	nree particles			

- energies distorted by naive application of operator U with $d_{\min} = 0$ (dashed)
- energies do not change under "local" unitary transformation ($d_{\min} = 4a$, solid)

Introduction	Toy-model Hamiltonian o	Unitary transformation	Results ○○●	Summary & outlook
Results f	or three particles			

- energies distorted by naive application of operator U with $d_{\min} = 0$ (dashed)
- energies do not change under "local" unitary transformation ($d_{\min} = 4a$, solid)
- small dependence of RMS radius on $\Delta \psi(c_{12}, 2a) \Rightarrow$ some predictive power

Introduction	Toy-model Hamiltonian o	Unitary transformation	Results ○○●	Summary & outlook
Results f	or three narticles			

- energies distorted by naive application of operator U with $d_{\min} = 0$ (dashed)
- energies do not change under "local" unitary transformation ($d_{\min} = 4a$, solid)
- small dependence of RMS radius on $\Delta \psi(c_{12}, 2a) \Rightarrow$ some predictive power

• prediction for N > 3 may be improved by additional three-body term in U:

$$\begin{split} &\langle x_1, x_2, x_3 | \left(U_{3p}' - U_{3p} \right) \left| x_1', x_2', x_3' \right\rangle = \delta_{c_{123}, c_{123}'} f(\{c_{ij}\}, \{c_{ij}'\}, d_{12}, d_{13}, d_{12}', d_{13}') \\ & \text{with } c_{123} = (x_1 + x_2 + x_3)/3 \end{split}$$

Introduction	Toy-model Hamiltonian o	Unitary transformation	Results 000	Summary & outlook
Summary &	outlook			

• developed method to adjust lattice results for $\langle r^2 \rangle$ to experimental data

Introduction	Toy-model Hamiltonian o	Unitary transformation	Results ০০০	Summary & outlook ●
Summary &	outlook			

- developed method to adjust lattice results for $\langle r^2 \rangle$ to experimental data
 - can be extended to (*rⁿ*) or electromagnetic moments (similarly to tuning derivative expansion of potential)

Introduction	Toy-model Hamiltonian o	Unitary transformation	Results	Summary & outlook
Summary &	outlook			

- developed method to adjust lattice results for $\langle r^2 \rangle$ to experimental data
 - can be extended to (*rⁿ*) or electromagnetic moments (similarly to tuning derivative expansion of potential)
 - can be improved by adding new ($N \ge 3$)-body operators with range $< d_{\min}$

Introduction	Toy-model Hamiltonian o	Unitary transformation	Results	Summary & outlook
Summary &	outlook			

- developed method to adjust lattice results for $\langle r^2 \rangle$ to experimental data
 - can be extended to (*rⁿ*) or electromagnetic moments (similarly to tuning derivative expansion of potential)
 - can be improved by adding new (N \geq 3)-body operators with range $< d_{\min}$

outlook:

• generalization to 3 dimensions and non-zero (iso)spin

Introduction	Toy-model Hamiltonian o	Unitary transformation	Results	Summary & outlook ●
Summary 8	outlook			

- developed method to adjust lattice results for $\langle r^2 \rangle$ to experimental data
 - can be extended to (*rⁿ*) or electromagnetic moments (similarly to tuning derivative expansion of potential)
 - can be improved by adding new ($N \ge 3$)-body operators with range $< d_{\min}$

outlook:

- generalization to 3 dimensions and non-zero (iso)spin
- for N ≥ 4: let unitary transformation act on all pairs of particles simultaneously (system extensivity)

Introduction	Toy-model Hamiltonian o	Unitary transformation	Results	Summary & outlook ●
Summary &	outlook			

- developed method to adjust lattice results for $\langle r^2 \rangle$ to experimental data
 - can be extended to (*rⁿ*) or electromagnetic moments (similarly to tuning derivative expansion of potential)
 - can be improved by adding new ($N \ge 3$)-body operators with range $< d_{\min}$

outlook:

- generalization to 3 dimensions and non-zero (iso)spin
- for N ≥ 4: let unitary transformation act on all pairs of particles simultaneously (system extensivity)
- choose smaller *L* for three particles than for two particles

Thank you for your attention!

Backup slides

Adiabatic projection method

define two-cluster states (here in 1D):

$$|d
angle = \sum_{x=0}^{L-1} |x + d
angle_{ ext{cluster 1}} \otimes |x
angle_{ ext{cluster 2}}$$

evolve them in Euclidean time to obtain dressed cluster states $|d\rangle_{\tau} = e^{-H\tau} |d\rangle$

calculate matrix elements $_{\tau}\langle d|H|d'\rangle_{\tau}$ of adiabatic Hamiltonian using Monte Carlo simulation

Modification of *H* vs. modification of ψ

There are two different points of view on applying the unitary transformation:

• apply *U* to wave function:

$$(\langle \psi | U^{\dagger}) H(U | \psi \rangle), \qquad (\langle \psi | U^{\dagger}) r^{2}(U | \psi \rangle)$$

• apply *U* to operators:

$$\langle \psi | (U^{\dagger}HU) | \psi \rangle, \qquad \langle \psi | (U^{\dagger}r^{2}U) | \psi \rangle$$

Notice that combining these two possibilities would cause no effect:

$$\langle \psi | U^{\dagger} U H U^{\dagger} U | \psi \rangle = \langle \psi | H | \psi \rangle, \qquad \langle \psi | U^{\dagger} U r^{2} U^{\dagger} U | \psi \rangle = \langle \psi | r^{2} | \psi \rangle.$$

Similarity renormalization group (SRG) transformations

make Hamiltonian H(0) more diagonal using a unitary transformation:

 $H(s)=U(s)H(s=0)U^{\dagger}(s)$

where the Hamiltonian can be split as

 $H(s) = H_{ ext{diag}}(s) + H_{ ext{off-diag}}(s) \quad ext{with} \quad H(s) \stackrel{s o \infty}{\longrightarrow} H_{ ext{diag}}(s), \quad H_{ ext{off-diag}}(s) \stackrel{s o \infty}{\longrightarrow} 0$

solve SRG flow equation to obtain H(s):

$$rac{\mathrm{d} \mathcal{H}(oldsymbol{s})}{\mathrm{d} oldsymbol{s}} = \left[rac{\mathrm{d} \mathcal{U}(oldsymbol{s})}{\mathrm{d} oldsymbol{s}} \mathcal{U}^{\dagger}(oldsymbol{s}), \mathcal{H}(oldsymbol{s})
ight]$$

Lect. Notes Phys. 936, 477 (2017)

Operators & states

annihilation/creation operators for distinguishable particles: ((anti)symmetrize later)

$$\begin{aligned} a^{(\dagger)}(x) &= a_{1}^{(\dagger)}(x) + \dots + a_{N}^{(\dagger)}(x), \quad \langle x_{1}, \dots, x_{N} | y_{1}, \dots, y_{N} \rangle = \delta_{x_{1}, y_{1}} \dots \delta_{x_{N}, y_{N}}, \\ a_{i}(x) | x_{1}, \dots, x_{i-1}, x_{i}, x_{i+1}, \dots, x_{N} \rangle &= \delta_{x, x_{i}} | x_{1}, \dots, x_{i-1}, \operatorname{vac}, x_{i+1}, \dots, x_{N} \rangle, \\ a_{i}(x) | x_{1}, \dots, x_{i-1}, \operatorname{vac}, x_{i+1}, \dots, x_{N} \rangle &= a_{i}^{\dagger}(x) | x_{1}, \dots, x_{i-1}, x_{i}, x_{i+1}, \dots, x_{N} \rangle = 0, \\ a_{i}^{\dagger}(x) | x_{1}, \dots, x_{i-1}, \operatorname{vac}, x_{i+1}, \dots, x_{N} \rangle &= | x_{1}, \dots, x_{i-1}, x, x_{i+1}, \dots, x_{N} \rangle \end{aligned}$$

 r^2 -operator in second quantization:

$$r^{2} = \frac{1}{N} \sum_{x=0}^{L-1} a^{\dagger}(x) a(x) \left(x - \frac{1}{N} \sum_{x'=0}^{L-1} a^{\dagger}(x') a(x') x' \right)^{2}$$

states with zero total momentum:

$$|d_1, \ldots, d_{N-1}\rangle_{P_{\text{tot}}=0} = \sum_{x=0}^{L-1} |x + d_1, \ldots, x + d_{N-1}, x\rangle$$

Center of mass & distance

The periodic boundary conditions must be taken into account in the definition of the center of mass *c* and the distance *d*:

$$c_{ij} = \left\{ egin{array}{c} (x_i + x_j)/2 & ext{if } |x_i - x_j| < L - |x_i - x_j| \ (x_i + x_j - L)/2 \mod L & ext{if } |x_i - x_j| \ge L - |x_i - x_j| \ d(x,y) = \min(|x - y|, L - |x - y|) \end{array}
ight.$$