Infinite volume, three-body scattering formalisms in the presence of bound states

Sebastian M. Dawid

38th International Symposium on Lattice Field Theory
Thursday, July 29th, 2021

Indiana University Bloomington

Three-body problems

- Exotic resonances decay to three-particle final states
- X(3872), $\mathrm{N}^{*}(1440), a_{1}(1260), \ldots$
- Interpretations of X(3872)
- molecule
- charmonium-molecule hybrid
- diquark-antidiquark
- kinematical effect

Roper resonance $\mathrm{N}^{*}(1440)$

Pion-nucleon scaltering in the Roper channel from laktice QCD, Lang, Leskovec, Padmanakh, Prelovsek, Phys. Rev. D 95 (2017) 1, 014510

> Combining experimental $N \pi$ phase shifts with elastic approximation and the Lüscher formalism suggests in the spectrum an additional energy level near the Roper mass $m_{R}=1.43 \mathrm{GeV}$ for our lattice. We do not observe any such additional energy level, which implies that $N \pi$ elastic scattering alone does not render a low-lying Roper resonance. The current status indicates that the $N^{*}(1440)$ might arise as dynamically generated resonance from coupling to other channels, most notably the $N \pi \pi$.

Relativistic formalisms

- Finite volume spectrum \rightarrow Quantization Condition \longrightarrow Three-body K-matrix
- K-matrix + two-body subprocesses \rightarrow integral equations \rightarrow 3-body amplitudes
* Final amplitudes analytically continued to the unphysical Riemann sheets

Two main frameworks

Relativistic Effective Field Theory

- generic scalar EFT,
- summation of 2PI, 3PI diagrams, (references - prof. sharpe's presentation)
- First results - three pions at $\mathrm{I}=3$

Blanton et al., Phys. Rev. Lett. 124 (2020) 3, 032001
Hansen et al., Phys. Rev. Lett. 126 (2021) 012001

Jackura et al.
Phys.Rev.D 100 (2019) 3,034508

Blanton, Sharpe,
Phys.Rev.D 102 (2020) 5, 054515

Unitarity-based framework

- parametrization based on the S matrix unitarity, (references - prof. Sharpe's presentation)
- First results - three pions at $\mathrm{I}=3$

Mai, Döring, Phys. Rev. Lett. 122, 062503 (2019)
Culver et al., Phys. Rev. D 101 (2020) 11, 114507

The B-matrix approach

- Starting with the S matrix unitarity
- Physical degrees of freedom (domain of integration)
- Simple parametrization with clear interpretation

4

One Parkicle Exchange Short Range Interactions

$$
\mathcal{A}=\mathcal{M}_{2} \mathcal{B M}_{2}+\mathcal{M}_{2} \int \mathcal{B} \mathcal{A}
$$

Solving the EFT three-body ladder equation

- Ladder approximation, $\mathrm{B}=\mathrm{G}+(\mathrm{R}=0)$

- Numerical solution of the three-body EFT equations
A. Jackura, R. Briceño, S. Dawid, M. H. E Islam, C. MeCarly, Phys.Rev.D 104 (2021) 1, 014507

- Similar studies

- weakly interacting system in the $\pi^{+} \pi^{+}$and $\pi^{+} \pi^{+} \pi^{+}$ Hansen et al., Phys. Rev. Lett. 126 (2021), 012001
\rightarrow decay $a_{1}(1260) \rightarrow \rho^{0} \pi^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-}$

$$
\text { Sadasivan et al., Phys.Rev.D } 101 \text { (2020) 9, } 094018
$$

Numerical procedure

- Discretization of the integral equation $\longrightarrow \mathrm{N}$ linear equations (Matrix equation)
- Regulation of the bound-state pole via ϵ-prescription

$$
\mathcal{A}_{2}(s)=\lim _{\epsilon \rightarrow 0^{+}} \lim _{N \rightarrow \infty} \mathcal{A}_{2}(s ; N, \epsilon)
$$

- Systematics
\bullet Unitarity test: $\operatorname{Im} \mathcal{A}_{2}(s)=\rho_{2}(s)\left|\mathcal{A}_{2}(s)\right|^{2} \longrightarrow \Delta \rho_{2}=100 \times\left|\frac{\operatorname{Im} \mathcal{A}_{2}^{-1}(s ; N, \epsilon)+\rho_{2}(s)}{\rho_{2}(s)}\right|$
- Convergence test:

$$
\Delta_{N} \mathcal{A}_{2}=2 \times\left|\frac{\mathcal{A}_{2}(s ; N+1, \epsilon)-\mathcal{A}_{2}(s ; N, \epsilon)}{\mathcal{A}_{2}(s ; N+1, \epsilon)+\mathcal{A}_{2}(s ; N, \epsilon)}\right|
$$

- Methods
"Brute force"
Explicit pole removal Spline-based quadratures

Brute force method

Discretization
1 Amputation

$$
\boldsymbol{D}(N, \epsilon)=-\mathcal{M} \cdot \boldsymbol{G}(\epsilon) \cdot \boldsymbol{\mathcal { M }}-\boldsymbol{\mathcal { M }} \cdot \boldsymbol{G}(\epsilon) \cdot \boldsymbol{P} \cdot \boldsymbol{D}(N, \epsilon) \quad \longrightarrow \quad \mathcal{D}^{(u, u)}(\mathbf{p}, \mathbf{k}) \equiv \mathcal{M}_{2}(p) d^{(u, u)}(\mathbf{p}, \mathbf{k}) \mathcal{M}_{2}(k)
$$

Matrix inversion
$\boldsymbol{D}(N, \epsilon)=-[\mathbb{I}+\boldsymbol{\mathcal { M }} \cdot \boldsymbol{G}(\epsilon) \cdot \boldsymbol{P}]^{-1} \cdot \boldsymbol{\mathcal { M }} \cdot \boldsymbol{G}(\epsilon) \cdot \boldsymbol{\mathcal { M }}$
Limits

$\mathcal{D}_{\mathbf{s}}^{(u, u)}(p, k)=\lim _{\epsilon \rightarrow 0} \lim _{N \rightarrow \infty} \boldsymbol{D}_{p k}(N, \epsilon)$
Double ordered limit \longrightarrow single limit
$\epsilon \propto \eta / N$
W. Glöckle, G. Hasberg, and A. R. Neghabian, 2. Phys. A 305, 217 (1982)

$d_{S}^{(u, u)}\left(s_{2 k}, s_{2 p}\right)=-G_{S}\left(s_{2 k}, s_{2 p}\right)-\sum_{n=0}^{N_{s}} \omega_{n}\left(s_{2 k}, s\right) d_{S}^{(u, u)}\left(s_{2 q, n}, s_{2 p}\right)$.

$$
d_{S}^{(u, u)}\left(s_{2 k}, s_{2 p}\right) \approx \sum_{n=0}^{N_{s}} S_{n}\left(s_{2 k}\right) d_{S}^{(u, u)}\left(s_{2 q, n}, s_{2 p}\right)
$$

Possible improvement analytic removal of ϵ

$$
\int_{0}^{(E-m)^{2}} \frac{\mathrm{~d} s_{2 q}}{\pi} G_{S}\left(s_{2 k}, s_{2 q}\right) \frac{\lambda^{1 / 2}\left(E^{2}, s_{2 q}, m^{2}\right)}{16 \pi E^{2}} S_{i}\left(s_{2 q}\right)=\sum_{n=0}^{N_{s}} \omega_{n}\left(s_{2 k}\right) S_{i}\left(s_{2 q, n}\right)
$$

Extrapolations of the results

- Expansion in $1 / \mathrm{N}$
- Epsilon regulator fixed to

$$
\epsilon \propto \eta / N
$$

凹
Infinite volume, three-body scattering formalisms in the presence of bound states

Example results, $\mathrm{M}^{2}=3 \mathrm{~m}^{2}$

Infinite volume, three-body scattering formalisms in the presence of bound states

Example result, three-body bound state

Romero-Lopez et al., JHEP 10 (2019) 007
Bedaque et al., Nucl. Phys. A 646 (1999) 444

Conclusions

- Systematic procedure for solving the integral equations
- Agreement with previous studies

Future prospects

- Continuing below the two-body threshold and to complex energies
- Efimov physics?
* Controlling the scheme/ cutoff dependence

DOIHAVE SOME TIME LEFT?

Example results, $2 \rightarrow 3$ amplitude

- We are not limited below the three-body threshold,

Bound-state-particle scattering

- Model study-formation of the three-body bound states
- Analytic properties of the B-matrix formalism
S. Dawid, A. Szczepaniak, Phys.Rev.D 103 (2021) 1, 014009

Jackura et al [JPAC], Eur. Phys. J C 79, no. 1, 56 (2019)

Generalization of the B-matrix equations

- Bound-state energies outside of the physical region
- Multi-hadron scattering requires generalization to all channels

$$
\begin{aligned}
\mathcal{A}_{22} & =\mathcal{B}_{22}+\int_{\hat{\boldsymbol{k}}} \mathcal{B}_{22} i \rho_{2} \mathcal{A}_{22}+\int_{\boldsymbol{q}} \mathcal{B}_{23, \boldsymbol{q}} \mathcal{A}_{32, \boldsymbol{q}} \\
\mathcal{A}_{23, \boldsymbol{p}} & =\mathcal{B}_{23, \boldsymbol{p}} \mathcal{F}_{\boldsymbol{p}}+\int_{\hat{\boldsymbol{k}}} \mathcal{B}_{22} i \rho_{2} \mathcal{A}_{23, \boldsymbol{p}}+\int_{\boldsymbol{q}} \mathcal{B}_{23, \boldsymbol{q}} \mathcal{A}_{33, \boldsymbol{q} \boldsymbol{p}}
\end{aligned}
$$

$$
\mathcal{A}_{32, \boldsymbol{p}^{\prime}}=\mathcal{F}_{\boldsymbol{p}^{\prime}} \mathcal{B}_{32, \boldsymbol{p}^{\prime}}+\int_{\hat{\boldsymbol{k}}} \mathcal{F}_{\boldsymbol{p}^{\prime}} \mathcal{B}_{32, \boldsymbol{p}^{\prime}} i \rho_{2} \mathcal{A}_{22}+\int_{\boldsymbol{q}} \mathcal{F}_{\boldsymbol{p}^{\prime}} \mathcal{B}_{33, \boldsymbol{p}^{\prime} \boldsymbol{q}} \mathcal{A}_{32, \boldsymbol{q}},
$$

- 0. 0

$$
\mathcal{A}_{33, p^{\prime} p}=\mathcal{F}_{p^{\prime}} \mathcal{B}_{33, p^{\prime} p} \mathcal{F}_{p}+\int_{\hat{k}} \mathcal{F}_{p^{\prime}} \mathcal{B}_{32, p^{\prime}} \rho_{2} \mathcal{A}_{23, p}+\int_{q} \mathcal{F}_{p^{\prime}} \mathcal{B}_{33, p^{\prime} q} \mathcal{A}_{33, q p}
$$

- Satisfies unitarity above the three-particle threshold
- Approximation: all multi-particle interactions are constant and real (couplings g_{ij})

$$
a_{33}(s)=\frac{g_{33}}{1-g_{22} i \rho_{2}-g_{33} \mathcal{I}(s)},
$$

$$
a_{22}(s)=\frac{g_{22}}{1-g_{22} i \rho_{2}-g_{33} \mathcal{I}(s)} .
$$

Analyticity of the B-matrix equations

- Solutions do not satisfy unitarity below the three-body threshold
- Spurious singularities start arbitrarily close to the two-body threshold

Kernel suffering from non-physical left-hand cuts:

$$
\mathcal{I}(s)=\int_{\sigma_{\min }}^{(\sqrt{s}-m)^{2}} \frac{d \sigma_{\boldsymbol{q}}}{2 \pi} \tau\left(s, \sigma_{\boldsymbol{q}}\right) \mathcal{F}\left(\sigma_{\boldsymbol{q}}\right)
$$

* Dispersion procedure ensures analyticity

Kernel free from those problems:

$$
\mathcal{I}_{d}(s)=\frac{\left(s-s_{s}\right)^{2}}{\pi} \int_{(3 m)^{2}}^{\infty} d s^{\prime} \frac{\operatorname{Im} \mathcal{I}\left(s^{\prime}\right)}{\left(s^{\prime}-s-i \epsilon\right)\left(s^{\prime}-s_{s}-i \epsilon\right)^{2}}
$$

- Left-hand curEwo-parkicle Chreshold
O three-particle threshold
$\mathcal{I}(\mathrm{s})$ for $\sigma_{\min } / m^{2}=2$

$\mathcal{I}(\mathrm{s})$ for $\sigma_{\min } / m^{2}=4$

Infinite volume, three-body scattering formalisms in the presence of bound states

Results

Amplitude a_{33} with dispersed kernel

Bound-state-spectator scattering length b

$$
b_{0}=-\frac{g_{22}}{\left(1-g_{33} \mathcal{I}_{d}\left(s_{\mathrm{th}, 2}\right)\right)}
$$

- Spurious singularities pushed to non-physical Riemann sheets, can study physics,
- General dispersion procedure for the three-body unitarity formalism is needed,

THANK YOU

