Progress on Meson-Baryon Scattering

Colin Morningstar

Carnegie Mellon University

38th International Symposium on Lattice Field Theory

Zoom/Gather@MIT, Boston, MA July 28, 2021

Introduction

- goal: determine meson-baryon and baryon-baryon scattering parameters in large number of flavor channels
- use of stochastic LapH method to handle slice-to-slice quark propagators
- analysis using "box matrix" B and scattering K-matrix
- analysis can include higher partial waves, multi-channels
- show preliminary results:
 - for $I = \frac{1}{2}, \frac{3}{2} N\pi$ amplitudes including $\Delta(1232)$
 - I=0 strangeness S=1 s-wave amplitude relevant for $\Lambda(1405)$
- key collaborators: John Bulava, Ben Hörz, Drew Hanlon, Daniel Mohler, Amy Nicholson, Sarah Skinner, André Walker-Loud
- other collaborators: CalLat, Mainz
- acknowledgment: NSF, TACC Frontera

Excited states from correlation matrices

- energies from temporal correlations $C_{ij}(t) = \langle 0|\overline{O}_i(t)O_j(0)|0\rangle$
- in finite volume, energies are discrete (neglect wrap-around)

$$C_{ij}(t) = \sum_{n} Z_{i}^{(n)} Z_{j}^{(n)*} e^{-E_{n}t}, \qquad Z_{j}^{(n)} = \langle 0 | O_{j} | n \rangle$$

- not practical to do fits using above form
- define new correlation matrix $\widetilde{C}(t)$ using a single rotation

$$\widetilde{C}(t) = U^{\dagger} C(\tau_0)^{-1/2} C(t) C(\tau_0)^{-1/2} U$$

- ullet columns of U are eigenvectors of $C(au_0)^{-1/2}\,C(au_D)\,C(au_0)^{-1/2}$
- ullet choose au_0 and au_D large enough so $\widetilde{C}(t)$ diagonal for $t> au_D$
- ullet 2-exponential fits to $\widetilde{C}_{lphalpha}(t)$ yield energies E_lpha and overlaps $Z_j^{(n)}$
- energy shifts from non-interacting using 1-exp fits to ratio of correlators

Building blocks for single-hadron operators

- operator construction from PRD 72, 094506 (2005) and PRD 88, 014511 (2013)
- building blocks: covariantly-displaced LapH-smeared quark fields
- stout links $\widetilde{U}_j(x)$
- Laplacian-Heaviside (LapH) smeared quark fields

$$\widetilde{\psi}_{a\alpha}(x) = \mathcal{S}_{ab}(x, y) \; \psi_{b\alpha}(y), \qquad \mathcal{S} = \Theta\left(\sigma_s^2 + \widetilde{\Delta}\right)$$

- ullet 3d gauge-covariant Laplacian $\widetilde{\Delta}$ in terms of \widetilde{U}
- displaced quark fields:

$$q_{a\alpha j}^A = D^{(j)}\widetilde{\psi}_{a\alpha}^{(A)}, \qquad \overline{q}_{a\alpha j}^A = \widetilde{\overline{\psi}}_{a\alpha}^{(A)}\gamma_4 D^{(j)\dagger}$$

• displacement $D^{(j)}$ is product of smeared links:

$$D^{(j)}(x,x') = \widetilde{U}_{j_1}(x) \ \widetilde{U}_{j_2}(x+d_2) \ \widetilde{U}_{j_3}(x+d_3) \dots \widetilde{U}_{j_p}(x+d_p) \delta_{x', \ x+d_{p+1}}$$

• to good approximation, LapH smearing operator is

$$S = V_s V_s^{\dagger}$$

ullet columns of matrix V_s are eigenvectors of $\widetilde{\Delta}$

Extended operators for single hadrons

quark displacements build up orbital, radial structure

Baryon configurations

group-theory projections onto irreps of lattice symmetry group

$$\overline{M}_l(t) = c_{\alpha\beta}^{(l)*} \, \overline{\Phi}_{\alpha\beta}^{AB}(t) \qquad \overline{B}_l(t) = c_{\alpha\beta\gamma}^{(l)*} \, \overline{\Phi}_{\alpha\beta\gamma}^{ABC}(t)$$

• definite momentum p, irreps of little group of p

Two-hadron operators

• comparison of $\pi(k)\pi(-k)$ and localized $\sum_{x}\pi(x)\pi(x)$ operators

- important to use superposition of products of single-hadron operators of definite momenta
- efficient construction, generalizes to three or more hadrons

Stochastic estimation of quark propagators

- stochastic LapH method (PRD 83, 114505 (2011)) for time-slice to time-slice propagators
- introduce Z_4 noise vectors η in the LapH subspace

$$\eta_{\alpha k}(t), \qquad t = {\rm time}, \,\, \alpha = {\rm spin}, \,\, k = {\rm eigenvector} \,\, {\rm number}$$

• solve $D[U]X^{(r)} = \eta^{(r)}$ for each of N_R noise vectors $\eta^{(r)}$, then obtain a Monte Carlo estimate of all elements of D^{-1}

$$D_{ij}^{-1} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} X_i^{(r)} \eta_j^{(r)*}$$

- variance reduction using noise dilution
- dilution introduces projectors $P^{(a)}$, then define

$$\eta^{[a]} = P^{(a)}\eta, \qquad X^{[a]} = D^{-1}\eta^{[a]}$$

to obtain Monte Carlo estimate with drastically reduced variance

$$D_{ij}^{-1} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} \sum_{a} X_i^{(r)[a]} \eta_j^{(r)[a]*}$$

Stochastic LapH method

ullet introduce Z_N noise in the LapH subspace

$$\rho_{\alpha k}(t), \qquad t = \text{time}, \ \alpha = \text{spin}, \ k = \text{eigenvector number}$$

four dilution schemes:

$$\begin{array}{ll} P_{ij}^{(a)} = \delta_{ij} & a = 0 & \text{(none)} \\ P_{ij}^{(a)} = \delta_{ij}\delta_{ai} & a = 0, 1, \dots, N{-}1 & \text{(full)} \\ P_{ij}^{(a)} = \delta_{ij}\delta_{a,Ki/N} & a = 0, 1, \dots, K{-}1 & \text{(interlace-}K)} \\ P_{ij}^{(a)} = \delta_{ij}\delta_{a,i \bmod k} & a = 0, 1, \dots, K{-}1 & \text{(block-}K)} \end{array}$$

- apply dilutions to
 - time indices (full for fixed src, interlace for relative src)
 - spin indices (full)
 - LapH eigenvector indices (interlace-16 mesons)

Current ensemble and software

- currently using CLS D200 ensemble
- size: $64^3 \times 128$ lattice, $a \sim 0.065$ fm
- open boundary conditions in time
- number of configs = 2000
- quark masses: $m_{\pi} \sim 200 \; \mathrm{MeV}$, $m_{K} \sim 480 \; \mathrm{MeV}$
- smearing: $N_{\rm ev} = 448$
- sources:

```
t_0 = 35 forward,

t_0 = 64 forward and backward,

t_0 = 92 backward
```

- software: common subexpression elimination with tensor contractions (Ben Hörz)
- heavy use of batched BLAS routines

Flavor channels

Isospin channel	D200 Number of Correlators
$I=0,\ S=0,\ NN$	8357
$I=0,\;S=-1,\;\Lambda,N\overline{K},\Sigma\pi$ (45 SH)	8143
$I = \frac{1}{2}, \ S = 0, N\pi$	696
$I=rac{1}{2},\; S=-1, N\Lambda, N\Sigma$	17816
$I=1,\; S=0, NN$ (66 SH)	7945
$I=\frac{3}{2},\;S=0,\Delta,N\pi$	3218
$I=rac{3}{2},\; S=-1, N\Sigma$	23748
$I=0,\; S=-2,\Lambda\Lambda,N\Xi,\Sigma\Sigma$ (66 SH)	16086
$I=2,~S=-2,~\Sigma\Sigma$ (66 SH)	4589
Single hadrons	33

Scattering parameters from finite-volume energies

- extract scattering parameters from finite-volume energies using NPB924, 477 (2017) implementation (modified) of Lüscher method
- parametrize K-matrix or its inverse
- find best-fit values of parameters from quantization condition

$$\det(1-\widetilde{K}^{-1}B^{-1})=0 \quad \text{or} \quad \det(B^{-1}-\widetilde{K})=0$$

- \widetilde{K} is K-matrix with threshold factors removed
- B is so-called box matrix
- minimization using determinant residual method or spectrum method
- use of function of matrix A with real parameter μ :

$$\Omega(\mu,A) \equiv \frac{\det(A)}{\det[(\mu^2 + AA^\dagger)^{1/2}]}$$

 • use $A=1-\widetilde{K}^{-1}B^{-1}$

Motivation

- meson-baryon amplitudes useful for pheno. at $m_{\pi}^{\rm phys}$ and for chiral EFT's at varying $m_{\pi}^{\rm phys}$.
- $\Delta(1232) \rightarrow N\pi$ used as a d.o.f. in some EFT's
- scattering lengths $a_{N\pi}^{I=3/2}$ and $a_{N\pi}^{I=1/2}$ impact lattice-pheno. discrepancy for $\sigma_{\pi N}$, relevant for dark matter direct detection. (see arxiv:1602.07688)
- lattice QCD is good laboratory to study $\Lambda(1405)$ by varying quark masses.
- preliminary results shown: 2000 D200 configs, one source time
- all four source times to be completed soon

Additional difficulties

- correlator construction involves rank 3 tensors
- non-zero total spin requires additional partial waves

$$(J, L) = (1/2, 0), (3/2, 1), (1/2, 1), (5/2, 2), (3/2, 2)$$

- current analysis neglects all L >= 2 waves
- for $\Lambda(1405)$, coupled channels with $\Sigma \pi$, NK, $\Lambda \eta$
- mixing with stable hadrons in I = 1/2 and I = 0, S = 1
- relevant stable hadron for I=1/2 is nucleon, for I=0,S=1 is $\Lambda(1115)$

Analysis details

- spectrum from ratio fits + GEVP
- determination of energy shifts Δ_E from non-interacting energies stable against variations of (τ_0, τ_D) and $n_{\rm obs}$
- parametrize resonant amplitudes with BW form, non-resonant with a constant (LO eff. range)
- parameters estimated from determinant-residual fits, using $1 \widetilde{K}^{-1}B^{-1}$ as input to Ω -function with $\mu = 1$.
- covariance matrix and all statistical errors estimated using bootstrap with $N_B=800$ samples
- all elastic levels are included. A level within 1-sigma of an inelastic threshold not considered
- parametrizations provided for all s- and p-waves. Higher partial waves are ignored for now

I = 3/2 spectrum determination

- irreps with leading (2J,L)=(3,1) wave: $H_g(0),\,G_2(1),\,F_1(3),\,G_2(4).$
- irrep with leading (1,0) wave: $G_{1u}(0)$.
- irrep with leading (1,1) wave: $G_{1g}(0)$ not included because ground state is inelastic.
- irreps with s- and p-wave mixing: $G_1(1)$, G(2), $G_1(4)$.

I = 3/2 scattering amplitudes

- 17 levels across $H_g(0)$, $G_{1u}(0)$, $G_1(1)$, G(2), $F_1(3)$, $F_2(3)$, $G_1(4)$, $G_2(4)$:
- \bullet BW-form for $\widetilde{K}_1^{J=3/2}(E),$ constants for $\widetilde{K}_0^{J=1/2}(E)$ and $\widetilde{K}_1^{J=1/2}(E).$

$$\frac{m_{\Delta}}{m_{\pi}} = 6.380(20), \quad g_{\Delta N\pi} = 13.7(1.5), \quad \chi^2/\text{d.o.f.} = 1.74$$
$$m_{\pi} a_0^{J=1/2} = -0.254(41), \quad (m_{\pi} a_1^{J=1/2})^{-1} = 2.61(44)$$

• resonance parameters consistent with fit to p-wave only irreps.

I=1/2 results

- energy shifts need increased statistics
- global fit to 6 levels in irreps $G_{1u}(0)$, $G_1(1)$, G(2), $G_1(2)$:
- both p-waves modelled as constants:

$$\tilde{K}_1^{J=1/2}(E) = -0.1, \qquad \tilde{K}_1^{J=3/2}(E) = 0.1$$

- results insensitive to variations in constants.
- scattering length:

$$m_{\pi} a_0^{I=1/2} = 0.386(64), \qquad \chi^2/\text{d.o.f.} = 2.74$$

I=0, S=1 results

- *d*-wave mixing cannot be ignored due to low-lying $\Lambda^*(1520)$ resonance in (3,2) wave.
- single-hadron operators with derivatives needed to capture the orbital structure: future work. (See Meinel+Rendon '21)
- assumption: (3,2) wave is negligible for lowest $\Sigma \pi$ state in $G_1(1)$ and G(2) irreps, which also contain (1,0) and (1,1) waves.
- in $G_1(1)$ and G(2) irreps ground state Λ must be discarded.

Conclusion

- goal: determine meson-baryon and baryon-baryon scattering parameters in large number of flavor channels
- showed preliminary results:
 - for $I = \frac{1}{2}, \frac{3}{2} N\pi$ amplitudes including $\Delta(1232)$
 - I=0 strangeness S=1 s-wave amplitude relevant for $\Lambda(1405)$
- CLS D200 ensemble $64^3 \times 128$, $a \sim 0.065$ fm, $m_\pi \sim 200$ MeV, $m_K \sim 480$ MeV
- · results for full statistics ready in a few months