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Introduction

•Most of all hadrons can be explained in the quark model 

•Some exceptions have been found in experiments: 
Exotic hadrons 

•QCD describes all hadrons although it needs non-
perturbative calculations

Motivation

qq
q q

q̄
q

q q̄
q̄

unstable particles (resonances) 
living in high energy region

Lattice QCD studies of hadron resonances are important 
for identifying exotic hadrons



•Finite volume method
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•Masses can be estimated from 2-point functions 
 

•To know decay rates, we need to see hadron scatterings

⟨0 |O(t + t0)O†(t0) |0⟩ ≃ |⟨H, p = 0 |O(0) |0⟩ |2 e−mHt

How to see hadron resonances in lattice QCD

qq
q

q̄ q

qq
q

qq
q

q̄ qHadron scatterings in lattice QCD

[Lüscher 1991]

[Ishii, Aoki, Hatsuda 2007]•HAL QCD method

•cheap numerical cost  

•difficult for systems including baryons

•efficient for systems including baryons  

•expensive numerical cost
•baryon-baryon  •meson-baryon

•…
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Decuplet baryons

•Flavor-SU(3) symmetric, spin 3/2 
baryons, living in low-energy region 

•All of them are resonances except for  
baryon

Ω

 (resonance) 
…decay into 

Δ(1232)

Nπ

 (stable particle) 
… bound state of  ?

Ω−

ΞK̄

•see the difference from  and  interactions 

•use HAL QCD method to extract interactions 
•use heavier quarks where  exists as a bound state

Nπ ΞK̄

Δ

Δ− Δ0 Δ+ Δ++

Σ*− Σ*0 Σ*+

Ξ*− Ξ*0

Ω−

I3

S

−1 +10

−1

−2

−3

0
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  : NBS wave functionΨW(r) = ⟨0 |O1(x + r,0)O2(x,0) |2H, W⟩

( )W = k2 + m2
1 + k2 + m2

2

HAL QCD method
Idea of HAL QCD method

[Ishii, Aoki, Hatsuda 2007]

•derivative expansion

•we get interaction potential from Schrödinger equation

U(r, r′�) =
∞

∑
k=0

Vk(r)(∇)kδ(3)(r − r′�)

∫ d3r′� U(r, r′�)ΨW(r′�) = ( k2

2μ
− H0)ΨW(r)

non-local potential

•Naive way to get NBS w.f.: use 4-point function F(t, r)

F(t, r) = ⟨0 |O1(x + r, t)O2(x, t) J̄(0) |0⟩ t→∞→ ΨW0(r)⟨2H, W0 | J̄(0) |0⟩ e−W0t

 difficult when we consider baryons
•exponentially suppressed S/N ratio •fake plateau [Iritani et al. 2016]



R(t, r) =
F(t, r)

C1(t)C2(t)
≃ ∑

n

An ΨWn(r) e−ΔWnt + (inelastic)

9

( )δ =
m1 − m2

m1 + m2

( )ΔWn = Wn − m1 − m2

∫ d3r′� U(r, r′�)R(r′�, t) ≃ (−
∂
∂t

+
1 + 3δ2

8μ
∂2

∂t2
+

δ2

2m1m2

∂3

∂t3
− H0)R(r, t) + O(ΔW4

n)

•We do not need to pick up only ground state 
 applicable to baryons

elastic part

[Ishii et al. 2011]Time-dependent HAL QCD method

( k2
n

2μ
− H0) AnΨWn(r) e−ΔWnt = ∫ d3r′� U(r, r′�) AnΨWn(r) e−ΔWnt

= ΔWn +
1 + 3δ2

8μ
ΔW2

n −
δ2

2m1m2
ΔW3

n + O(ΔW4
n) = −

∂
∂t

+
1 + 3δ2

8μ
∂2

∂t2
+

δ2

2m1m2

∂3

∂t3
+ O(ΔW4

n)

•Each elastic term satisfies the Schrödinger equation
2-point function

•R-correlator
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•   … channel to  baryon 

•   … channel to  baryon

I = 3/2, JP = 3/2+ Nπ Δ

S = − 3, I = 0, JP = 3/2+ ΞK̄ Ω

FNπ
αjz (r, t) = ⟨π+(r + x, t)pα(x, t)Δ̄++

jz
(t0)⟩

4-point functions

Target

Setups for  and  interactionsNπ ΞK̄

3-quark type operators

Δ̄++ ∝ ∑
y

ū(y)ū(y)ū(y)

FΞK̄
αjz (r, t) = ⟨(K̄(r + x, t)Ξα(x, t))I=0 Ω̄−

jz (t0)⟩

Ω̄− ∝ ∑
y

s̄(y)s̄(y)s̄(y)

3-quark type operators
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Quark contraction for Nπ

 : summed,  : fixed,  :argument of 4-point functionsz x r

all-to-all propagator calculation 
using stochastic method

move  to increase 
statistics (CAA + TSM)

x

p
Δ̄++

d̄
u

π+ ū

u
u
d ū

ū z
x

x + r

t0t + t0time

} pΔ++ = 0

[Blum, Izubuchi, Shintani 2013]
[Bali, Collins, Schäfer 2010]
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calculate in the same way as that for Nπ

Ξ0

Ω̄−

d̄
s

K− s̄

s
s
d s̄

s̄ z
x

x + r

t0t + t0time

} pΩ− = 0

Quark contraction for ΞK̄



Problems due to short-range structure

•quarks at the sink: point-like

(The same thing happens in I=1 P-wave  system)ππ

(cf. Y. Akahoshi’s talk )

FNπ(x, y, z = 0,t = 6)  LO potential (t=6)Nπ

impossible to fit 
this potentialFNπ(r) ∼ ⟨u(r)u(r) d(r)d̄(0) u(0) J̄⟩

∝
r→0

1
r3

Y1,m(Ω)

sharp structure

14

 (These are the test simulations 
on small volume)



Solution to the fitting problem

•One of the solutions to this problem: smeared sink
 w/ point sinkFNπ(r)  w/ smeared sinkFNπ(r)

•Too much smeared sink may enhance the contribution 
from non-locality of potentials

Note:

 suppressed in low-energy region 
in the similar systems •  S-wave  w/  

•  S-wave 

I = 1 NK ms = ml

I = 1 ΞK̄15
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•PACS-CS, (2+1)-flavor conf.:  
Iwasaki gauge action + Wilson-clover quark action 
(gauge fixing, 450 confs.) 

•  fm on  lattices 

•16 timeslice at the sink  

•smearing quarks both at the source and sink 

•use 64 spatial points to increase statistics 
 

•LO analysis in the time-dependent HAL QCD method 

• ,   ,  … bound states

a = 0.0907 323 × 64

t0

x = (0,0,0), (0,0,8)…(24,24,24)

mπ + mN > mΔ mK̄ + mΞ > mΩ Δ Ω

Numerical setup

mass (MeV)

mπ
mK

mΞ

411
635

1503

mΩ 1840

mN

mΔ

1215

1513

[PACS-CS Collab., 2009]
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Potentials

•Strong attractions to create bound states, horns at  fm r ≈ 0.5

Results
Nπ ΞK̄

•contribution from quark-antiquark pair is dominant 
•difference between  and  masses comes only from the 
reduced masses of  and 

Δ Ω

Nπ ΞK̄

•Two potentials are quite similar
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Phase shifts and binding energies

•large systematic error but 
consistent with the energies 
estimated from 2pt functions

Nπ ΞK̄

(The systematic error is estimated so that the lattice artifact in short range, 
finite volume effect, and timeslice dependence are taken into account.)

Nπ ΞK̄
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Summary

• We analyze P-wave I=3/2  and I=0  interactions in 
the HAL QCD method at heavy pion mass, where  and 
 baryons exist as bound states. 

• We use 3-quark-type source operators with zero 
momentum. 

• The two similar potentials indicate that only the 
kinematics of  and  contribute to the difference 
between  and .

Nπ ΞK̄

Δ

Ω

Nπ ΞK̄

Δ Ω
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Future Works
•Analysis of baryon resonances in more realistic setups

•need larger volume and NLO analysis in derivative expansion 
with meson-baryon source operators

•Application to exotic hadrons
• ,  pentaquarks, charm version of  pentaquarksΛ(1405) Pc Θ+
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Backups



•meson-meson  meson resonances

FV HAL QCD

Many studies being done

•  [M. Werner et al., 2019] 

• , ,  [R. Briceno et al., 2018] 

• ,  [G. Rendon et al., 2020]

ρ

σ f0 f2

κ K*

I=1 P-wave   ππ ρ

•meson‒baryon  baryon resonances

None
I=3/2 P-wave    Nπ Δ

[S. Paul et al., 2018] 
[C. W. Andersen et al., 2021]

FV HAL QCD

q̄ q

q̄ q

q̄ q

q̄ q

q̄ q

qq
q

q̄ q

qq
q

qq
q

q̄ q

[Akahoshi et al. 2021]

Analysis of hadron resonances in lattice QCD



24

hadron operators

2-body hadron 
state with energy W

NBS wave function:  ΨW(r) = ⟨0 |O1(x + r,0)O2(x,0) |2H, W⟩

ΨW,l(r) ∝
r>R

sin(kr − l
2 π + δl(k))

kr
eiδl(k)

phase shift for 2-body 
hadron scattering

asymptotic 
behavior

•Finite volume method 
：use periodic boundary condition of NBS wave functions 
in finite volume to extract phase shift

R

L

interaction 
range

( )W = k2 + m2
1 + k2 + m2

2

[Lüscher, 1991]

[Ishii, Aoki, Hatsuda, 2007]

Hadron scattering in lattice QCD

ΨW(x = − L /2) = ΨW(x = L /2)

ei(− kL
2 −δ(k)) = ei( kL

2 +δ(k))

•HAL QCD method

e.g.) 1+1 dim



Δ̄++
+3/2(t0) = − ∑

y

ϵabc(ūb(y, t0)Γ+ūT
c (y, t0))ūa,0(y, t0)

Δ̄++
+1/2(t0) = −

1

3 ∑
y

ϵabc[ 2(ūb(y, t0)ΓzūT
c (y, t0))ūa,0(y, t0) + (ūb(y, t0)Γ+ūT

c (y, t0))ūa,1(y, t0)]

Δ̄++
−1/2(t0) =

1

3 ∑
y

ϵabc[ 2(ūb(y, t0)ΓzūT
c (y, t0))ūa,1(y, t0) + (ūb(y, t0)Γ−ūT

c (y, t0))ūa,0(y, t0)]

Δ̄++
−3/2(t0) = ∑

y

ϵabc(ūb(y, t0)Γ−ūT
c (y, t0))ūa,1(y, t0)

(Γ± =
1
2

C(γ2 ± iγ1), Γz =
−i

2
Cγ3)

 source opeartors (3-quark type)Δ

Ω̄++
+3/2(t0) = − ∑

y

ϵabc(s̄b(y, t0)Γ+s̄T
c (y, t0))s̄a,0(y, t0)

Ω̄++
+1/2(t0) = −

1

3 ∑
y

ϵabc[ 2(s̄b(y, t0)Γzs̄T
c (y, t0))s̄a,0(y, t0) + (s̄b(y, t0)Γ+s̄T

c (y, t0))s̄a,1(y, t0)]

Ω̄++
−1/2(t0) =

1

3 ∑
y

ϵabc[ 2(s̄b(y, t0)Γzs̄T
c (y, t0))s̄a,1(y, t0) + (s̄b(y, t0)Γ−s̄T

c (y, t0))s̄a,0(y, t0)]

Ω̄++
−3/2(t0) = ∑

y

ϵabc(s̄b(y, t0)Γ−s̄T
c (y, t0))s̄a,1(y, t0)

 source opeartors (3-quark type)Ω



⟨⟨η(x)α
a
η*(y)β

b
⟩⟩ = δxyδabδαβ

η(x)α
a
η*(x)α

a
= 1 (for all x, a, α)

η(x)α
a

… noise vector that satisfies

Propagator  can be written asD−1

= ∑
c,γ,z

D−1(x, z)ac
αγδzyδcbδγβ

q̄(y)β
b

q(x)α
a = D−1(x, y)ab

αβ

= ∑
c,γ,z

D−1(x, z)ac
αγ⟨⟨η(z)γ

c
η*(y)β

b
⟩⟩

= ⟨⟨(D−1η
⏟

≡ψ

)(x)α
a
η*(y)β

b
⟩⟩ = ⟨⟨(ψ(x)α

a
η*(y)β

b
⟩⟩

Stochastic estimation



⇔ D−1(x, y)ab
αβ = lim

Nr→∞

1
Nr

Nr

∑
r=1

ψ[r](x)α
a
η*[r](y)β

b

(ψ⋯solution ∑
b,β,y

D(x, y)ab
αβψ(y)β

b
= η(x)α

a)

Therefore,  can be estimated byD−1

D−1(x, y)ab
αβ ≈

1
Nr

Nr

∑
r=1

ψ[r](x)α
a
η*[r](y)β

b

noisy estimation:  very noisy  itself has  errorη(x)α
a

O(1)

this noise can be reduced  
by using “dilution”

Stochastic estimation



decompose the noise vector

η( j)(x)α
a

= {
η(x)α

a
(for j = t)

0 (for j ≠ t)
where

ex) time dilution

η(x)α
a

=
Nt−1

∑
j=0

η( j)(x)α
a

Stochastic estimation with dilution



→ ∑
c,γ,z

D−1(x, z)ac
αγ

Nt−1

∑
j=0

⟨⟨η( j)(z)γ
c
η( j)*(y)β

b
⟩⟩

 terms are noisy parts, not signals j ≠ k

D−1(x, y)ab
αβ = ∑

c,γ,z

D−1(x, z)ac
αγ⟨⟨η(z)γ

c
η*(y)β

b
⟩⟩

= ∑
c,γ,z

D−1(x, z)ac
αγ

Nt−1

∑
j,k=0

⟨⟨η( j)(z)γ
c
η(k)*(y)β

b
⟩⟩

ex) time dilution
Stochastic estimation with dilution



D−1(x, y)ab
αβ =

Nt−1

∑
j=0

⟨⟨(ψ( j)(x)α
a
η( j)*(y)β

b
⟩⟩

( ∑
b,β,y

D(x, y)ab
αβψ (i)(y)β

b
= η(i)(x)α

a)

Therefore,

D−1(x, y)ab
αβ ≈

1
Nr

Nr

∑
r=1

∑
j

ψ( j)
[r] (x)α

a
η( j)*

[r] (y)β
b

ex) time dilution

Stochastic estimation with dilution



 …  observable that is covariant under symmetry O[U] G

( ex)  … translation )G x → x + a
  for all ⇔ O[Ug] = Og[U] g ∈ G

We define
OG[U] =

1
NG ∑

g∈G

O[Ug] =
1

NG ∑
g∈G

Og[U]

(  …  number of the element of )NG G

This variable satisfies
⟨O[U]⟩ = ⟨OG[U]⟩ ( ∵ ⟨O[Ug]⟩ = ⟨O[U]⟩)

Covariant approximation averaging (CAA)



O(appx)
G [U] =

1
NG ∑

g∈G

O(appx)[Ug] =
1

NG ∑
g∈G

O(appx)g[U]

 …  approximation of  which reduces 
computational cost
O(appx)[U] G

and we introduce

Covariant approximation averaging (CAA)

Improved estimator is defined by

O(imp)[U] = O[U] − O(appx)[U] + O(appx)
G [U]

and this satisfies
⟨O(imp)[U]⟩ = ⟨O[U]⟩ − ⟨O(appx)[U]⟩ + ⟨O(appx)

G [U]⟩
= ⟨O(appx)[U]⟩= ⟨O[U]⟩



relaxed stopping criterion in the CG method  
(Truncated solver method)

CAA + Truncated solver method (TSM)

（same as all-mode averaging without low mode）

O(appx) = O[S(appx)[U]]

O(appx)
G =

1
NG ∑

g∈G

O[S(appx)g[U]]

where
(S(appx)b)i =

NCG

∑
i=1

(Hi)ci



: correlation function at gauge conf.  with the 
hadron source operator at  

C(U; z0) U

z0

: approximated correlation function at 
gauge conf.  with the hadron source operator at  

C(appx)(U; zi)

U zi

by relaxing stopping condition 
 in BiCG solver| |Dψ − s | | / | |s | | < ϵ

CAA + TSM in this situation



1. For each gauge conf., we calculate  and  

 for some .

C(U; z0)

C(appx)(U; z0) z0

z0

C(U; z0)
C(appx)(U; z0)

CAA + TSM in this situation



2. Tranlate  and calculate  at each source 
point.

z0 C(appx)(U; zi)

z3 z1

z4

z2

C(appx)(U; z1)

C(appx)(U; z2)

C(appx)(U; z3)

C(appx)(U; z4)

z0

CAA + TSM in this situation



3. The improve estimator is constructed from  

and  

C(U; z0)

{C(appx)(U; zi)}i=0,1⋯Ns

C(imp)(U) = C(U; z0) − C(appx)(U; z0) +
1
Ns

Ns

∑
i=1

C(appx)(U; zi)

this satisfies

⟨C(imp)(U)⟩ = ⟨C(U; z0)⟩ − ⟨C(appx)(U; z0)⟩ +
1
Ns

Ns

∑
i=1

⟨C(appx)(U; zi)⟩

= ⟨C(appx)(U; z0)⟩= ⟨C(U; z0)⟩

CAA + TSM in this situation
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I=0 I=1 (similar to  )I = 3/2 Nπ

blue … point sink  
red … smeared sink

Test for the non-locality contributions from smeared sink

•potential of S-wave  w/ NK ms = ml

•smearing function at the sink: 

fA,B(x) =

Ae−B|x| ( |x | < L − 1
2 )

1 ( |x | = 0)

0 ( |x | ≥ L − 1
2 )

w/ (A, B) = (1.0,1/0.7)
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•phase shift of S-wave  w/  (t=8) NK ms = ml

blue: point sink (I=0) 
red: smeared sink (I=0)  
green: point sink (I=1) 
orange: smeared sink (I=1)

we can ignore the non-locality contributions 
in  MeV0 < Eth ≲ 100

Test for the non-locality contributions



fA,B(x) =

Ae−B|x| ( |x | < L − 1
2 )

1 ( |x | = 0)

0 ( |x | ≥ L − 1
2 )

•3-point functions are projected onto  representation  

•smaering function:  (  for source,

 for sink)

Hg

fA,B(x) (A, B) = (1.0,0.38)

(A, B) = (1.0,1/0.7)

•dilution for stochastic estimation: time, color, spinor, s2  

•CAA+TSM:  for relaxed condition 

•we neglect  term for  and  term for 

ϵ = 10−4

O(ΔW2
n) Nπ O(ΔW4

n) ΞK̄

η(sdil)(x) = {η(x) (x + y + z ≡ sdil (mod 2))
0 (x + y + z ≡ sdil + 1 (mod 2))

, sdil = 0,1,

Details of setups



•  potential is slightly deeper 

  and depper bound for ？

ΞK̄

| (k(Nπ)
bound)2 | < | (k(ΞK̄)

bound)2 | ΞK̄

 ( )Nπ × μNπ /μΞK̄ ΞK̄

Direct comparison to  and  potentialsNπ ΞK̄



•Fit in the following 4 cases to see the lattice artifact in the 
short range

Setup for the fittings

 potentials w/ and w/o data at r = a
potentials whose laplacian term is 
calculated w/ 2nd and 4th precision

×

•Fitting function:
•3 Gaussians 

•3 Gaussians with finite volume effect
V3G(r) = a0e−(r/a1)2 + a2e−(r/a3)2 + a4e−(r/a5)2

V3G
p (r) = V3G(r) + ∑

n∈{(0,0,±1),(0,±1,0),(±1,0,0)}

V3G(r + Ln)

[Akahoshi et al., 2020]

•Estimate systematic error by including the 4 cases, 
fitting function, and different timeslices

L

R



•It was found that some fitting results have the following behavior

Problem in the naive fittings

•This is due to the deep potential in a short distance with 
small statistical error 

•Indeed, this does not happen in the case w/o the shortest data 
and w/ 2nd-prec. laplacian 

•In order to avoid this behavior, I used Bayesian analysis
the shallowest case



Bayesian analysis
•a fitting where we add the bias term to  

•fit by using function
χ2/dof

F = χ2 + λϕ

ϕ = ∑
n

(an − ãn)2

σ̃2
n

where

• : parameters we want to fit 

• : bias parameters, : relative weights 

• : tunable parameter

{an}

{ãn} {σ̃n}

λ

•  is tuned in the region where  depend weakly on  and 
take it as small value as possible
λ {an} λ

[Lepage et al., 2002]



Setup for Bayesian analysis

•fit in case ① without Bayesian analysis and set  and 

 as mean values and error of the results, respectively 

•use Bayesian analysis in case ②, ③ and ④ with  and 

 determined above 

•use fitting potential in case ① for the central values and 
statistical error of the observables while in other cases for 
the systematic error

{ãn}

{σ̃n}

{ãn}

{σ̃n}

laplacian
data at r = a

removed

not removed

2nd prec. 4th prec.

① ②
③ ④

(for convenience, each case is labeled as follows)



Fitting results in case ①

•it looks that the fitting works well in this case 
•the range of the attraction becomes smaller 
when we take into account p.b.c.

laplacian
data at r = a

removed

not removed

2nd prec. 4th prec.

① ②
③ ④

XiKbar XiKbar (zoomed)



Bayesian analysis in case ④

•  is set to the minimum value in the region after the large gap 
in each case 

•if there is no large gap,  is set to zero (w/o Bayesian)

λ

λ

laplacian
data at r = a

removed

not removed

2nd prec. 4th prec.

① ②
③ ④•sum of the parameters for XiKbar

large gap large gap



Fitting results in case ④

•in the long distance, the results are the same as those in 
case ① 

•in the short distance, the bound becomes deeper

laplacian
data at r = a

removed

not removed

2nd prec. 4th prec.

① ②
③ ④

XiKbar XiKbar (zoomed)



Fitting results with systematic error
Nπ

ΞK̄



Binding energy in all cases
laplacian

data at r = a

removed

not removed

2nd prec. 4th prec.

① ②
③ ④(o: usual, : periodic)□

MeVENπ
B = 82.6(8.2)stat(+90.3

−38.4)
sys

MeVEΞK̄
B = 193.9(3.2)stat(+163.9

−11.4 )
sys



point-to-all + stochastic+ one-end trick
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ū
d̄

z

yx

x + r
p p̄

d̄

u

π+ π−

d
ū
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Quark contraction for the 4-point function with  sourceNπ


