Investigations of decuplet baryons from meson-baryon interactions in the HAL QCD method

Kotaro Murakami (YITP, Kyoto Univ.),
Yutaro Akahoshi (YITP), Sinya Aoki (YITP), Kenji Sasaki (SiPP, CiDER, Osaka Univ.) for HAL QCD Collaboration

The 38th International Symposium on Lattice Field Theory (Lattice 2021)
online, 29th (in US/Eastern)/30th (in Japan) July, 2021

Contents

- Introduction
- HAL QCD method
- Setups for $N \pi$ and $\Xi \bar{K}$ interactions
- Results

Contents

- Introduction

- HAL QCD method

- Setups for $N \pi$ and $\Xi \bar{K}$ interactions

- Results

Introduction

Motivation

- Most of all hadrons can be explained in the quark model
- Some exceptions have been found in experiments: Exotic hadrons
\# unstable particles (resonances) living in high energy region

- QCD describes all hadrons although it needs nonperturbative calculations

Lattice QCD studies of hadron resonances are important for identifying exotic hadrons

How to see hadron resonances in lattice QCD

- Masses can be estimated from 2-point functions

$$
\left.\langle 0| O\left(t+t_{0}\right) O^{\dagger}\left(t_{0}\right)|0\rangle \simeq|\langle H, \mathbf{p}=\mathbf{0}| O(0)| 0\right\rangle\left.\right|^{2} e^{-m_{H} t}
$$

- To know decay rates, we need to see hadron scatterings

Hadron scatterings in lattice QCD

- Finite volume method ${ }_{\text {[Lüscher 1991] }}$
- cheap numerical cost

- difficult for systems including baryons
- HAL QCD method ${ }_{\text {[lshii, Aoki, Hatsuda 2007] }}$
- efficient for systems including baryons
- baryon-baryon
- expensive numerical cost
- meson-baryon

Decuplet baryons

- Flavor-SU(3) symmetric, spin 3/2 baryons, living in low-energy region
- All of them are resonances except for Ω baryon
$\Delta(1232)$ (resonance)
\cdots decay into $N \pi$

Ω^{-}(stable particle)
\cdots bound state of $\Xi \bar{K}$?
- see the difference from $N \pi$ and $\Xi \bar{K}$ interactions
- use HAL QCD method to extract interactions
- use heavier quarks where Δ exists as a bound state

Contents

- Introduction

- HAL QCD method

- Setups for $N \pi$ and $\Xi \bar{K}$ interactions

- Resultis

HAL QCD method

Idea of HAL QCD method

[Ishii, Aoki, Hatsuda 2007]

- we get interaction potential from Schrödinger equation

$$
\begin{gathered}
\int d^{3} r^{\prime} U\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \Psi^{W}\left(\mathbf{r}^{\prime}\right)=\left(\frac{k^{2}}{2 \mu}-H_{0}\right) \Psi^{W}(\mathbf{r}) \\
\Psi^{W}(\mathbf{r})=\langle 0| O_{1}(\mathbf{x}+\mathbf{r}, 0) O_{2}(\mathbf{x}, 0)|2 H, W\rangle: \text { NBSal potential wave function }
\end{gathered}
$$

- derivative expansion

$$
U\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\sum_{k=0}^{\infty} V_{k}(\mathbf{r})(\nabla)^{k} \delta^{(3)}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)
$$

- Naive way to get NBS w.f.: use 4-point function $F(t, \mathbf{r})$

$$
F(t, \mathbf{r})=\langle 0| O_{1}(\mathbf{x}+\mathbf{r}, t) O_{2}(\mathbf{x}, t) \bar{J}(0)|0\rangle \xrightarrow{t \rightarrow \infty} \Psi^{W_{0}(\mathbf{r})\left\langle 2 H, W_{0}\right| \bar{J}(0)|0\rangle e^{-W_{0} t} .}
$$

difficult when we consider baryons

- exponentially suppressed S/N ratio
- fake plateau
[Iritani et al. 2016]

Time-dependent HAL QCD method [Ishii et al. 201

- R-correlator

$$
\left(\Delta W_{n}=W_{n}-m_{1}-m_{2}\right)
$$

$$
R(t, \mathbf{r})=\frac{F(t, \mathbf{r})}{C_{1}(t) C_{2}(t)} \simeq \sum_{n} \frac{A_{n} \Psi^{W_{n}}(\mathbf{r}) e^{-\Delta W_{n} t}}{\uparrow \text {-point function elastic })}
$$

- Each elastic term satisfies the Schrödinger equation

$$
\begin{aligned}
&\left(\frac{k_{n}^{2}}{2 \mu}-H_{0}\right) A_{n} \Psi^{W_{n}}(\mathbf{r}) e^{-\Delta W_{n} t}=\int d^{3} r^{\prime} U\left(\mathbf{r}, \mathbf{r}^{\prime}\right) A_{n}^{A_{n} W_{n}(\mathbf{r}) e^{-\Delta W_{n} t}} \\
&=\Delta W_{n}+\frac{1+3 \delta^{2}}{8 \mu} \Delta W_{n}^{2}-\frac{\delta^{2}}{2 m_{1} m_{2}} \Delta W_{n}^{3}+O\left(\Delta W_{n}^{4}\right)=-\frac{\partial}{\partial t}+\frac{1+3 \delta^{2}}{8 \mu} \frac{\partial^{2}}{\partial t^{2}}+\frac{\delta^{2}}{2 m_{1} m_{2}} \frac{\partial^{3}}{\partial t^{3}}+O\left(\Delta W_{n}^{4}\right)\left(\delta=\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right)
\end{aligned}
$$

$$
\int d^{3} r^{\prime} U\left(\mathbf{r}, \mathbf{r}^{\prime}\right) R\left(\mathbf{r}^{\prime}, t\right) \simeq\left(-\frac{\partial}{\partial t}+\frac{1+3 \delta^{2}}{8 \mu} \frac{\partial^{2}}{\partial t^{2}}+\frac{\delta^{2}}{2 m_{1} m_{2}} \frac{\partial^{3}}{\partial t^{3}}-H_{0}\right) R(\mathbf{r}, t)+O\left(\Delta W_{n}^{4}\right)
$$

- We do not need to pick up only ground state applicable to baryons

Contents

- Introduction

- HAL QCD method

- Setups for $N \pi$ and $\Xi \bar{K}$ interactions

Setups for $N \pi$ and $\Xi \bar{K}$ interactions

Target

－$I=3 / 2, J^{P}=3 / 2^{+} N \pi \cdots$ channel to Δ baryon
－$S=-3, I=0, J^{P}=3 / 2^{+} \Xi \bar{K} \cdots$ channel to Ω baryon

4－point functions

$$
\begin{aligned}
& F_{\alpha j_{z}}^{N \pi}(\mathbf{r}, t)=\left\langle\pi^{+}(\mathbf{r}+\mathbf{x}, t) p_{\alpha}(\mathbf{x}, t) \bar{\Delta}_{j_{z}}^{++}\left(t_{0}\right)\right\rangle \\
& \text { 廿— 3-quark type operators } \\
& \bar{\Delta}^{++} \propto \sum_{\mathbf{y}} \bar{u}(\mathbf{y}) \bar{u}(\mathbf{y}) \bar{u}(\mathbf{y}) \\
& F_{\alpha j_{z}}^{\Xi \bar{K}}(\mathbf{r}, t)=\left\langle\left(\bar{K}(\mathbf{r}+\mathbf{x}, t) \Xi_{\alpha}(\mathbf{x}, t)\right)_{I=0} \bar{\Omega}_{j_{z}}^{-}\left(t_{0}\right)\right\rangle \\
& \text { 廿-3-quark type operators } \\
& \bar{\Omega}^{-} \propto \sum_{\mathbf{y}} \bar{s}(\mathbf{y}) \bar{s}(\mathbf{y}) \bar{s}(\mathbf{y})
\end{aligned}
$$

Quark contraction for $N \pi$

move \mathbf{x} to increase statistics (CAA + TSM) [Blum, Izubuchi, Shintani 2013] [Bali, Collins, Schäfer 2010]

z: summed, \mathbf{x} : fixed, \mathbf{r} :argument of 4-point functions

Quark contraction for $\Xi \bar{K}$

calculate in the same way as that for $N \pi$

Problems due to short-range structure

- quarks at the sink: point-like

$$
F^{N \pi}(x, y, z=0, t=6)
$$

(These are the test simulations on small volume)
$N \pi$ LO potential ($\mathrm{t}=6$)

impossible to fit this potential
$F^{N \pi}(\mathbf{r}) \sim\langle u(\mathbf{r}) u(\mathbf{r}) d(\mathbf{r}) \bar{d}(\mathbf{0}) u(\mathbf{0}) \bar{J}\rangle$

$$
\underset{r \rightarrow 0}{\propto} \frac{1}{r^{3}} Y_{1, m}(\Omega)
$$

(The same thing happens in I=1 P-wave $\pi \pi$ system) (cf. Y. Akahoshi's talk)

Solution to the fitting problem

- One of the solutions to this problem: smeared sink

$$
F^{N \pi}(\mathbf{r}) \text { w/ point sink }
$$

$F^{N \pi}(\mathbf{r}) \mathrm{W} /$ smeared sink

Note:

- Too much smeared sink may enhance the contribution from non-locality of potentials
\square suppressed in low-energy region
- $I=1$ S-wave $N K \mathrm{w} / m_{s}=m_{l}$ in the similar systems
- $I=1$ S-wave $\Xi \bar{K}$

Numerical setup

- PACS-CS, (2+1)-flavor conf.: [PACs-cs Collab., 2009]

Iwasaki gauge action + Wilson-clover quark action
(gauge fixing, 450 confs.)

- $a=0.0907 \mathrm{fm}$ on $32^{3} \times 64$ lattices
- 16 timeslice at the sink t_{0}
- smearing quarks both at the source and sink

	mass (MeV)
m_{π}	411
m_{K}	635
m_{N}	1215
m_{Ξ}	1503
m_{Δ}	1513
m_{Ω}	1840

- LO analysis in the time-dependent HAL QCD method
- $m_{\pi}+m_{N}>m_{\Delta}, m_{\bar{K}}+m_{\Xi}>m_{\Omega} \rightarrow \Delta, \Omega \cdots$ bound states

Contents

- Introduction

- HAL QCD method

- Setups for $N \pi$ and $\Xi \bar{K}$ interactions

- Results

Results

Potentials

- Strong attractions to create bound states, horns at $r \approx 0.5 \mathrm{fm}$
- Two potentials are quite similar
\rightarrow • contribution from quark-antiquark pair is dominant
- difference between Δ and Ω masses comes only from the reduced masses of $N \pi$ and $\Xi \bar{K}_{18}$

Phase shifts and binding energies

(The systematic error is estimated so that the lattice artifact in short range,
finite volume effect, and timeslice dependence are taken into account.)

- large systematic error but consistent with the energies estimated from 2pt functions

Summary

- We analyze P-wave $\mathrm{I}=3 / 2 N \pi$ and $\mathrm{I}=0 \Xi \bar{K}$ interactions in the HAL QCD method at heavy pion mass, where Δ and Ω baryons exist as bound states.
- We use 3-quark-type source operators with zero momentum.
- The two similar potentials indicate that only the kinematics of $N \pi$ and $\Xi \bar{K}$ contribute to the difference between Δ and Ω.

Future Works

- Analysis of baryon resonances in more realistic setups
- need larger volume and NLO analysis in derivative expansion with meson-baryon source operators
- Application to exotic hadrons
- $\Lambda(1405), P_{c}$ pentaquarks, charm version of Θ^{+}pentaquarks

Backups

Analysis of hadron resonances in lattice QCD

- meson-meson \rightarrow meson resonances

FV
Many studies being done

$$
\mathrm{I}=1 \text { P-wave } \pi \pi \rightarrow \rho
$$

[Akahoshi et al. 2021]

- ρ [M. Werner et al., 2019]
- σ, f_{0}, f_{2} [R. Briceno et al., 2018]
- κ, K^{*} [G. Rendon et al., 2020]
- meson-baryon \rightarrow baryon resonances

$\mathrm{I}=3 / 2$ P-wave $N \pi \rightarrow \Delta$
[S. Paul et al., 2018]
[C. W. Andersen et al., 2021]

Hadron scattering in lattice QCD

NBS wave function: $\Psi^{W}(\mathbf{r})=\langle 0| O_{1}(\mathbf{x}+\mathbf{r}, 0) O_{2}(\mathbf{x}, 0)|2 H, W\rangle$

hadron operators

- Finite volume method ${ }_{[L u ̈ s c h e r, ~ 1991] ~}$
: use periodic boundary condition of NBS wave functions in finite volume to extract phase shift

$$
\text { e.g.) } \begin{aligned}
1+1 \operatorname{dim} \Psi^{W}(x=-L / 2) & =\Psi^{W}(x=L / 2) \\
\longleftrightarrow e^{i\left(-\frac{k L}{2}-\delta(k)\right)} & =e^{i\left(\frac{k L}{2}+\delta(k)\right)}
\end{aligned}
$$

Δ source opeartors (3-quark type)

$$
\begin{aligned}
& \bar{\Delta}_{+3 / 2}^{++}\left(t_{0}\right)=-\sum_{\mathbf{y}} \epsilon_{a b c}\left(\bar{u}_{b}\left(\mathbf{y}, t_{0}\right) \Gamma_{+} \bar{u}_{c}^{T}\left(\mathbf{y}, t_{0}\right)\right) \bar{u}_{a, 0}\left(\mathbf{y}, t_{0}\right) \\
& \bar{\Delta}_{+1 / 2}^{++}\left(t_{0}\right)=-\frac{1}{\sqrt{3}} \sum_{\mathbf{y}} \epsilon_{a b c}\left[\sqrt{2}\left(\bar{u}_{b}\left(\mathbf{y}, t_{0}\right) \Gamma_{z} \bar{u}_{c}^{T}\left(\mathbf{y}, t_{0}\right)\right) \bar{u}_{a, 0}\left(\mathbf{y}, t_{0}\right)+\left(\bar{u}_{b}\left(\mathbf{y}, t_{0}\right) \Gamma_{+} \bar{u}_{c}^{T}\left(\mathbf{y}, t_{0}\right)\right) \bar{u}_{a, 1}\left(\mathbf{y}, t_{0}\right)\right] \\
& \bar{\Delta}_{-1 / 2}^{++}\left(t_{0}\right)=\frac{1}{\sqrt{3}} \sum_{\mathbf{y}} \epsilon_{a b c}\left[\sqrt{2}\left(\bar{u}_{b}\left(\mathbf{y}, t_{0}\right) \Gamma_{z} \bar{u}_{c}^{T}\left(\mathbf{y}, t_{0}\right)\right) \bar{u}_{a, 1}\left(\mathbf{y}, t_{0}\right)+\left(\bar{u}_{b}\left(\mathbf{y}, t_{0}\right) \Gamma_{-} \bar{u}_{c}^{T}\left(\mathbf{y}, t_{0}\right)\right) \bar{u}_{a, 0}\left(\mathbf{y}, t_{0}\right)\right] \\
& \bar{\Delta}_{-3 / 2}^{++}\left(t_{0}\right)=\sum_{\mathbf{y}} \epsilon_{a b c}\left(\bar{u}_{b}\left(\mathbf{y}, t_{0}\right) \Gamma_{-} \bar{u}_{c}^{T}\left(\mathbf{y}, t_{0}\right)\right) \bar{u}_{a, 1}\left(\mathbf{y}, t_{0}\right) \quad \\
& \quad\left(\Gamma_{ \pm}=\frac{1}{2} C\left(\gamma_{2} \pm i \gamma_{1}\right), \Gamma_{z}=\frac{-i}{\sqrt{2}} C \gamma_{3}\right)
\end{aligned}
$$

Ω source opeartors (3-quark type)

$$
\begin{aligned}
& \bar{\Omega}_{+3 / 2}^{++}\left(t_{0}\right)=-\sum_{\mathbf{y}} \epsilon_{a b c}\left(\bar{s}_{b}\left(\mathbf{y}, t_{0}\right) \Gamma_{+} \bar{s}_{c}^{T}\left(\mathbf{y}, t_{0}\right)\right) \bar{s}_{a, 0}\left(\mathbf{y}, t_{0}\right) \\
& \bar{\Omega}_{+1 / 2}^{++}\left(t_{0}\right)=-\frac{1}{\sqrt{3}} \sum_{\mathbf{y}} \epsilon_{a b c}\left[\sqrt{2}\left(\bar{s}_{b}\left(\mathbf{y}, t_{0}\right) \Gamma_{z} \bar{s}_{c}^{T}\left(\mathbf{y}, t_{0}\right)\right) \bar{s}_{a, 0}\left(\mathbf{y}, t_{0}\right)+\left(\bar{s}_{b}\left(\mathbf{y}, t_{0}\right) \Gamma_{+} \bar{s}_{c}^{T}\left(\mathbf{y}, t_{0}\right)\right) \bar{s}_{a, 1}\left(\mathbf{y}, t_{0}\right)\right] \\
& \bar{\Omega}_{-1 / 2}^{++}\left(t_{0}\right)=\frac{1}{\sqrt{3}} \sum_{\mathbf{y}} \epsilon_{a b c}\left[\sqrt{2}\left(\bar{s}_{b}\left(\mathbf{y}, t_{0}\right) \Gamma_{z} \bar{s}_{c}^{T}\left(\mathbf{y}, t_{0}\right)\right) \bar{s}_{a, 1}\left(\mathbf{y}, t_{0}\right)+\left(\bar{s}_{b}\left(\mathbf{y}, t_{0}\right) \Gamma_{-} \bar{s}_{c}^{T}\left(\mathbf{y}, t_{0}\right)\right) \bar{s}_{a, 0}\left(\mathbf{y}, t_{0}\right)\right] \\
& \bar{\Omega}_{-3 / 2}^{++}\left(t_{0}\right)=\sum_{\mathbf{y}} \epsilon_{a b c}\left(\bar{s}_{b}\left(\mathbf{y}, t_{0}\right) \Gamma_{-} \bar{s}_{c}^{T}\left(\mathbf{y}, t_{0}\right)\right) \bar{s}_{a, 1}\left(\mathbf{y}, t_{0}\right)
\end{aligned}
$$

Stochastic estimation

$\eta(x) \alpha \quad \cdots$ noise vector that satisfies

$$
\left\{\begin{array}{l}
\left\langle\left\langle\eta(x)_{a}^{\alpha} \eta^{*}(y)_{\beta}\right\rangle\right\rangle=\delta_{x y} \delta_{a b} \delta_{\alpha \beta} \\
\left.\underset{a}{\eta(x)_{a} \eta^{*}(x)_{\alpha}}=1 \text { (for all } x, a, \alpha\right)
\end{array}\right.
$$

Propagator D^{-1} can be written as

$$
\begin{aligned}
& \underset{a}{q(x)_{a}^{\alpha} \longleftarrow \bar{q}(y)_{\beta}=D^{-1}(x, y)_{\alpha \beta}^{a b}}=\sum_{c, \gamma, z} D^{-1}(x, z)_{\alpha \gamma}^{a c} \delta_{z y} \delta_{c b} \delta_{\gamma \beta} \\
&=\sum_{c, \gamma, z} D^{-1}(x, z)_{\alpha \gamma}^{a c}\langle\langle\begin{array}{c}
\left.\left.\eta(z) \gamma \eta^{*}(y)_{\beta}\right\rangle\right\rangle \\
b \\
\\
\end{array}=\langle\langle(\underbrace{\left.D^{-1} \eta\right)}_{\equiv \psi}(x)_{a}^{\alpha} \eta^{*}(y)_{\beta}\rangle\rangle=\left\langle\left\langle\left(\psi(x)_{b} \eta_{b}^{*}(y)_{\beta}\right\rangle\right\rangle\right. \\
& b
\end{aligned}
$$

Stochastic estimation

$$
\begin{gathered}
\Leftrightarrow D^{-1}(x, y)_{\alpha \beta}^{a b}=\lim _{N_{r} \rightarrow \infty} \frac{1}{N_{r}} \sum_{r=1}^{N_{r}} \psi_{[r]}(x) \alpha \eta_{a}^{*}(y)_{\beta} \\
\left(\psi \cdots \text { solution } \sum_{b, \beta, y} D(x, y)_{\alpha \beta}^{a b} \psi(y)_{\beta}=\underset{b}{\left.\eta(x)_{\alpha}\right)}\right.
\end{gathered}
$$

Therefore, D^{-1} can be estimated by

$$
D^{-1}(x, y)_{\alpha \beta}^{a b} \approx \frac{1}{N_{r}} \sum_{r=1}^{N_{r}} \psi_{[r]}(x)_{a}^{\alpha} \eta_{[r]}^{*}(y)_{\beta}
$$

noisy estimation: very noisy $\longleftarrow \eta(x)_{\alpha}$ itself has $O(1)$ error
this noise can be reduced by using "dilution"

Stochastic estimation with dilution

ex) time dilution

decompose the noise vector

$$
\begin{aligned}
& \eta(x){ }_{a}^{\alpha}=\sum_{j=0}^{N_{t}-1} \eta_{a}^{(j)}(x)_{\alpha}^{\alpha} \text { where } \eta^{(j)(x) \alpha}= \begin{cases}\eta(x)_{a}^{\alpha} & (\text { for } j=t) \\
0 & (\text { for } j \neq t)\end{cases} \\
& {\left[\begin{array}{c}
\eta(t=0) \\
\eta(t=1) \\
\eta(t=2) \\
\vdots \\
\vdots
\end{array}\right]=\underbrace{\left[\begin{array}{c}
\eta(t=0) \\
0 \\
0 \\
0 \\
\vdots
\end{array}\right]}_{=\eta^{(0)}(t)}+\underbrace{\left[\begin{array}{c}
0 \\
\eta(t=1) \\
0 \\
0 \\
\vdots
\end{array}\right]}_{=\eta^{(1)}(t)}+\underbrace{\left[\begin{array}{c}
0 \\
0 \\
\vdots(t=2) \\
0 \\
\vdots
\end{array}\right]}_{=\eta^{2)^{2}(t)}}+\cdots}
\end{aligned}
$$

Stochastic estimation with dilution

ex) time dilution

$$
\begin{aligned}
D^{-1}(x, y)_{\alpha \beta}^{a b} & =\sum_{c, \gamma, z} D^{-1}(x, z)_{\alpha \gamma}^{a c}\left\langle\left\langle\underset { c } { } \left\langle\underset{c}{\left.\left.(z) \gamma \eta^{*}(y)_{\beta}\right\rangle\right\rangle} \begin{array}{l}
b \\
\\
\end{array} \sum_{c, \gamma, z} D^{-1}(x, z)_{\alpha \gamma}^{a c} \sum_{j, k=0}^{N_{t}-1} \frac{\left\langle\left\langle\eta^{(j)}(z) r \eta^{(k)^{*}}(y)_{\beta}\right\rangle\right\rangle}{b}\right.\right.\right.
\end{aligned}
$$

$j \neq k$ terms are noisy parts, not signals

Stochastic estimation with dilution

ex) time dilution

$$
\left.\begin{array}{rl}
\rightarrow D^{-1}(x, y)_{\alpha \beta}^{a b}= & \sum_{j=0}^{N_{t}-1}\left\langle\left\langle\left(\psi^{(j)}(x){ }_{a}^{\alpha} \eta^{(j)^{*}}(y)_{\beta}\right\rangle\right\rangle\right. \\
b
\end{array}\right)
$$

Therefore,

$$
D^{-1}(x, y)_{\alpha \beta}^{a b} \approx \frac{1}{N_{r}} \sum_{r=1}^{N_{r}} \sum_{j} \psi_{[r]}^{(j)}(x)_{a}^{\alpha} \eta_{[r]}^{(j)^{*}}(y)_{\beta}
$$

Covariant approximation averaging (CAA)

$O[U] \cdots$ observable that is covariant under symmetry G

$$
\begin{aligned}
\Leftrightarrow O\left[U^{g}\right]= & O^{g}[U] \text { for all } g \in G \\
& (\text { ex) } G \cdots \text { translation } x \rightarrow x+a)
\end{aligned}
$$

We define

$$
\begin{aligned}
& O_{G}[U]=\frac{1}{N_{G}} \sum_{g \in G} O\left[U^{g}\right]=\frac{1}{N_{G}} \sum_{g \in G} O^{g}[U] \\
& \\
& \quad\left(N_{G} \cdots \text { number of the element of } G\right)
\end{aligned}
$$

This variable satisfies

$$
\langle O[U]\rangle=\left\langle O_{G}[U]\right\rangle \quad\left(\because\left\langle O\left[U^{g}\right]\right\rangle=\langle O[U]\rangle\right)
$$

Covariant approximation averaging (CAA)

$O^{(a p p x)}[U] \cdots$ approximation of G which reduces computational cost
and we introduce

$$
O_{G}^{(a p p x)}[U]=\frac{1}{N_{G}} \sum_{g \in G} O^{(a p p x)}\left[U^{g}\right]=\frac{1}{N_{G}} \sum_{g \in G} O^{(a p p x) g}[U]
$$

Improved estimator is defined by

$$
O^{(i m p)}[U]=O[U]-O^{(a p p x)}[U]+O_{G}^{(a p p x)}[U]
$$

and this satisfies

$$
\begin{aligned}
\left\langle O^{(i m p)}[U]\right\rangle & =\langle O[U]\rangle-\left\langle O^{(a p p x)}[U]\right\rangle+\frac{\left\langle O_{G}^{(a p p x)}[U]\right\rangle}{=\left\langle O^{(a p p x)}[U]\right\rangle} \\
& =\langle O[U]\rangle
\end{aligned}
$$

CAA + Truncated solver method (TSM)

(same as all-mode averaging without low mode)

$$
\begin{gathered}
O^{(a p p x)}=O\left[S^{(a p p x)}[U]\right] \\
O_{G}^{(a p p x)}=\frac{1}{N_{G}} \sum_{g \in G} O\left[S^{(a p p x) g}[U]\right]
\end{gathered}
$$

where

$$
\left(S^{(a p p x)} b\right)_{i}=\sum_{i=1}^{N_{C G}}\left(H^{i}\right) c_{i}
$$

relaxed stopping criterion in the CG method
(Truncated solver method)

CAA + TSM in this situation

$C\left(U ; \mathbf{z}_{0}\right)$: correlation function at gauge conf. U with the hadron source operator at \mathbf{z}_{0}
$C^{(a p p x)}\left(U ; \mathbf{z}_{i}\right)$: approximated correlation function at gauge conf. U with the hadron source operator at \mathbf{z}_{i}

> by relaxing stopping condition
> $\| D \psi-s| | /||s||<\epsilon$ in BiCG solver

CAA + TSM in this situation

1. For each gauge conf., we calculate $C\left(U ; \mathbf{z}_{0}\right)$ and $C^{(a p p x)}\left(U ; \mathbf{z}_{0}\right)$ for some \mathbf{z}_{0}.

CAA + TSM in this situation

2. Tranlate \mathbf{z}_{0} and calculate $C^{(a p p x)}\left(U ; \mathbf{z}_{i}\right)$ at each source point.

CAA + TSM in this situation

3. The improve estimator is constructed from $C\left(U ; \mathbf{z}_{0}\right)$

$$
\text { and }\left\{C^{(a p p x)}\left(U ; \mathbf{z}_{i}\right)\right\}_{i=0,1 \cdots N_{s}}
$$

$$
C^{(i m p)}(U)=C\left(U ; \mathbf{z}_{0}\right)-C^{(a p p x)}\left(U ; \mathbf{z}_{0}\right)+\frac{1}{N_{s}} \sum_{i=1}^{N_{s}} C^{(a p p x)}\left(U ; \mathbf{z}_{i}\right)
$$

this satisfies

$$
\begin{aligned}
\left\langle C^{(i m p)}(U)\right\rangle & =\left\langle C\left(U ; \mathbf{z}_{0}\right)\right\rangle-\left\langle C^{(a p p x)}\left(U ; \mathbf{z}_{0}\right)\right\rangle+\frac{\frac{1}{N_{s}} \sum_{i=1}^{N_{s}}\left\langle C^{(a p p x)}\left(U ; \mathbf{z}_{i}\right)\right\rangle}{=\left\langle C^{(a p p x)}\left(U ; \mathbf{z}_{0}\right)\right\rangle} \\
& =\left\langle C\left(U ; \mathbf{z}_{0}\right)\right\rangle
\end{aligned}
$$

Test for the non-locality contributions from smeared sink

- smearing function at the sink:

$$
f_{A, B}(\mathbf{x})=\left\{\begin{array}{ll}
A e^{-B|\mathbf{x}|} & \left(|\mathbf{x}|<\frac{L-1}{2}\right) \\
1 & (|\mathbf{x}|=0) \\
0 & \left(|\mathbf{x}| \geq \frac{L-1}{2}\right)
\end{array} \quad \mathrm{W} /(A, B)=(1.0,1 / 0.7)\right.
$$

- potential of S-wave $N K \mathrm{w} / m_{s}=m_{l}$

$$
\begin{aligned}
& \text { blue } \cdots \text { point sink } \\
& \text { red } \cdots \text { smeared sink }
\end{aligned}
$$

Test for the non-locality contributions

- phase shift of S-wave $N K \mathrm{w} / m_{s}=m_{l}(\mathrm{t}=8)$
blue: point sink (l=0) red: smeared sink ($\mathrm{l}=0$) green: point sink ($\mathrm{l}=1$) orange: smeared sink (l=1)

we can ignore the non-locality contributions in $0<E_{t h} \lesssim 100 \mathrm{MeV}$

Details of setups

- 3-point functions are projected onto H_{g} representation
- smaering function: $f_{A, B}(\mathbf{x})((A, B)=(1.0,0.38)$ for source,
$(A, B)=(1.0,1 / 0.7)$ for sink)
- dilution for stochastic estimation: time, color, spinor, s2
- CAA+TSM: $\epsilon=10^{-4}$ for relaxed condition
- we neglect $O\left(\Delta W_{n}^{2}\right)$ term for $N \pi$ and $O\left(\Delta W_{n}^{4}\right)$ term for $\Xi \bar{K}$

Direct comparison to $N \pi$ and $\Xi \bar{K}$ potentials

- $\Xi \bar{K}$ potential is slightly deeper
$\rightarrow\left|\left(k_{\text {bound }}^{(N \pi)}\right)^{2}\right|<\left|\left(k_{\text {bound }}^{(\Xi \bar{K})}\right)^{2}\right|$ and depper bound for $\Xi \bar{K}$?

Setup for the fittings

- Fitting function:
- 3 Gaussians

$$
V^{3 G}(\mathbf{r})=a_{0} e^{-\left(r / a_{1}\right)^{2}}+a_{2} e^{-\left(r / a_{3}\right)^{2}}+a_{4} e^{-\left(r l a_{5}\right)^{2}}
$$

- 3 Gaussians with finite volume effect [Akahoshi et al., 2020]

$$
V_{p}^{3 G}(\mathbf{r})=V^{3 G}(\mathbf{r})+\sum_{\mathbf{n} \in\{(0,0, \pm 1),(0, \pm 1,0),(\pm 1,0,0)\}} V^{3 G}(\mathbf{r}+L \mathbf{n})
$$

- Fit in the following 4 cases to see the lattice artifact in the short range
potentials $\underline{\mathrm{W} / /}$ and $\underline{\mathrm{w} / \mathrm{O}}$ data at $r=a \quad \times \quad$ potentials whose laplacian term is calculated w/ 2nd and 4th precision
- Estimate systematic error by including the 4 cases, fitting function, and different timeslices

Problem in the naive fittings

- It was found that some fitting results have the following behavior

- This is due to the deep potential in a short distance with small statistical error
- Indeed, this does not happen in the case w/o the shortest data and w/ 2nd-prec. laplacian
- In order to avoid this behavior, I used Bayesian analysis

Bayesian analysis

- a fitting where we add the bias term to $\chi^{2} / d o f$
- fit by using function

$$
F=\chi^{2}+\lambda \phi
$$

where

$$
\phi=\sum_{n} \frac{\left(a_{n}-\tilde{a}_{n}\right)^{2}}{\tilde{\sigma}_{n}^{2}}
$$

- $\left\{a_{n}\right\}$: parameters we want to fit
- $\left\{\tilde{a}_{n}\right\}$: bias parameters, $\left\{\tilde{\sigma}_{n}\right\}$: relative weights
- λ : tunable parameter
- λ is tuned in the region where $\left\{a_{n}\right\}$ depend weakly on λ and take it as small value as possible

Setup for Bayesian analysis

(for convenience, each case is labeled as follows)

laplacian	2nd prec.	4th prec.
data at $r=a$		
removed	(1)	$(2$
not removed	$(3$	4

- fit in case (1) without Bayesian analysis and set $\left\{\tilde{a}_{n}\right\}$ and $\left\{\tilde{\sigma}_{n}\right\}$ as mean values and error of the results, respectively
- use Bayesian analysis in case (2), (3) and (4) with $\left\{\tilde{a}_{n}\right\}$ and $\left\{\tilde{\sigma}_{n}\right\}$ determined above
- use fitting potential in case (1) for the central values and statistical error of the observables while in other cases for the systematic error

Fitting results in case (1)

laplacian	2nd prec.	4th prec.
data at $r=a$	(1)	$(2$
removed	(3)	(4)

- it looks that the fitting works well in this case
- the range of the attraction becomes smaller when we take into account p.b.c.

Bayesian analysis in case (4)

laplacian	2nd prec.	4th prec.
data at $r=a$ (1)	(2)	
removed	not removed	(3)
4		

- sum of the parameters for XiKbar

- λ is set to the minimum value in the region after the large gap in each case
- if there is no large gap, λ is set to zero (w/o Bayesian)

Fitting results in case (4)

laplacian	2nd prec.	4th prec.
data at $r=a$	(1)	(2)
removed	not removed	(3)

XiKbar (zoomed)

- in the long distance, the results are the same as those in case (1)
- in the short distance, the bound becomes deeper

Fitting results with systematic error
$N \pi$

$\Xi \bar{K}$

Binding energy in all cases

(o: usual, \square : periodic)

$$
\begin{aligned}
& E_{B}^{N \pi}=82.6(8.2)_{\text {stat }}\binom{+90.3}{-38.4}_{\text {sys }} \mathrm{MeV} \\
& E_{B}^{\Xi \bar{K}}=193.9(3.2)_{\text {stat }}\binom{+163.9}{-11.4}_{\text {sys }} \mathrm{MeV}
\end{aligned}
$$

Quark contraction for the 4-point function with $N \pi$ source

point-to-all + stochastic+ one-end trick

