Calculation of kaon semileptonic form factor with the PACS10 configurations

Takeshi Yamazaki

University of Tsukuba

Center for Computational Sciences

K.-I. Ishikawa, N. Ishizuka, Y. Kuramashi, Y. Nakamura, Y. Namekawa,Y. Taniguchi, N. Ukita, T. Yoshié for PACS Collaboration

Ref: PACS:PRD101,9,094504(2020)

Lattice 2021 @ MIT/Zoom, July 26-30 2021

Outline

- 1. Introduction
- 2. Simulation parameters
- 3. Calculation method
- 4. Preliminary results
 - K_{l3} form factors $f_+(q^2), f_0(q^2)$
 - $-q^2$ interpolation for $f_+(q^2), f_0(q^2)$
 - -a = 0 extrapolations: $f_{+}(0)$, slope and curvatures for $f_{+}(q^{2}), f_{0}(q^{2})$
- 5. Summary

Introduction

Urgent task: search for signal beyond standard model (BSM)

Muon g-2 @ FNAL 2021 : 4.2 σ away from SM

 $|V_{us}|$: a candidate of BSM signal Most accurate $|V_{us}|$ from K_{l3} decay $\sim 2\sigma$ from SM (gray band) using CKM unitarity $|V_{us}| \approx \sqrt{1 - |V_{ud}|^2}$ $\sim 5\sigma$ from SM w/ new $|V_{ud}|$ (cyan band) [Seng *et al.*:PRL121,241804(2018)]

Important to confirm by several different calculations

[PACS:PRD101,9,094504(2020)]

 K_{l3} form factors with one of PACS10 configurations [PACS20] L = 10.9[fm] at physical point, but single *a* Negligible finite *L* effect, tiny q^2 region, without chiral extrapolation Largest uncertainty: finite *a* effect \rightarrow smaller *a* calculation

Simulation parameters

 $N_f = 2 + 1$ six-stout-smeared non-perturbative O(a) Clover action + Iwasaki gauge action

PACS10 configurations: $L \gtrsim 10$ [fm] at physical point

β	$L^{3} \cdot T$	L[fm]	a^{-1} [GeV]	M_{π} [MeV]	M_K [MeV]	$N_{\rm conf}$
1.82	128 ⁴	10.9	2.3162	135	497	20
2.00	160 ⁴	10.2	3.09	137	501	20

Parameters for K_{l3} form factors

β	source	$t_{sep}[fm]$	current
1.82	R-local	3.1, 3.6, 4.1	local*, conserved
2.00	R-local	3.2, 3.7, 4.1	local, conserved
	R-smear	2.3, 2.7, 3.1, 3.5	local, conserved

R-local: $Z(2) \times Z(2)$ random source spread in spatial volume, spin, color spaces R-smear: R-local + exponential smearing [RBC-UKQCD:JHEP07,112(2008)]

*reported in PACS:PRD101,9,094504(2020)

Calculation at smaller a + continuum extrapolationAll results are preliminary.

Calculation method R-local source with local current

Details in PACS:PRD101,9,094504(2020)

$$C_{V_{\mu}}(t,p) = \langle 0|O_{K}(t_{\text{sep}},0)V_{\mu}(t,p)O_{\pi}^{\dagger}(0,p)|0\rangle \qquad p \equiv |\mathbf{p}| = \left|\frac{2\pi}{L}\mathbf{n}\right|, \ |\mathbf{n}| = 0-6$$
$$= \frac{Z_{\pi}Z_{K}}{Z_{V}}\frac{M_{\mu}(p)}{4E_{\pi}M_{K}}e^{-E_{\pi}t}e^{-M_{K}(t_{\text{sep}}-t)} + \cdots \qquad \text{with periodic boundary}$$

2-point function*
$$X = \pi, K$$

 $C_X(t,p) = \langle 0|O_X(t,p)O_X^{\dagger}(0,p)|0\rangle = \frac{Z_X^2}{2E_X} \left(e^{-E_X t} + e^{-E_X(2T-t)}\right) + \cdots$

*Averaging ones with periodic, anti-periodic temporal boundary conditions reducing wrapping around effect in 3pt, and doubling periodicity in 2pt $Z_V = \sqrt{Z_V^{\pi} Z_V^K}$ from electromagnetic form factor $F_{\pi,K}(0) = 1$

Ratio
$$R_{\mu}(t,p)$$

 $R_{\mu}(t,p) = \frac{Z_{\pi}Z_{K}Z_{V}C_{V_{\mu}}(t,p)}{C_{\pi}(t,p)C_{K}(t_{\text{sep}}-t,0)} = M_{\mu}(p) + \cdots$

3-point function*

Constant in $R_{\mu}(t,p)$ corresponds to $M_{\mu}(p) = \langle \pi(p) | V_{\mu} | K(0) \rangle$ Conserved current case: $V_{\mu} \to \tilde{V}_{\mu}$ and $Z_{V} = 1$ R-smear source case: $Z_{\pi}, Z_{K} \to Z_{\pi}(p), Z_{K}(0)$

Calculation method

Constant in $R_{\mu}(t,p)$ corresponds to $M_{\mu}(p) = \langle \pi(p) | V_{\mu} | K(0) \rangle$ K_{l3} form factors $f_{+}(q^{2}), f_{0}(q^{2})$ $\langle \pi(p) | V_{\mu} | K(0) \rangle = (p_{K} + p_{\pi})_{\mu} f_{+}(q^{2}) + (p_{K} - p_{\pi})_{\mu} f_{-}(q^{2})$ $f_{0}(q^{2}) = f_{+}(q^{2}) - \frac{q^{2}}{M_{K}^{2} - M_{\pi}^{2}} f_{-}(q^{2})$ $p_{K} = (M_{K}, 0), p_{\pi} = (E_{\pi}, \vec{p})$ $q^{2} = -(M_{K} - E_{\pi})^{2} + p^{2}$

Calculation of physical quantities

$$\begin{aligned} R_4(t,p), R_i(t,p) \to M_4(p), M_i(p) \to f_+(q^2), f_0(q^2) \text{ at each } q^2 \\ \text{except for } p = 0, \text{ where only } f_0(q^2) \end{aligned}$$

$$\rightarrow q^2$$
 interpolations to $q^2 = 0$ for $f_+(q^2), f_0(q^2)$

1.
$$f_+(0) (= f_0(0)) \to |V_{us}|$$

 $|V_{us}|f_{+}(0) = 0.21654(41)$ [Moulson:PoS(CKM2016)033(2017)]

2. slope and curvature

$$\lambda_{+}^{(n)} = \frac{M_{\pi^{-}}^{2n}}{f_{+}(0)} \frac{d^{n} f_{+}(0)}{d(-q^{2})^{n}}, \ \lambda_{0}^{(n)} = \frac{M_{\pi^{-}}^{2n}}{f_{+}(0)} \frac{d^{n} f_{0}(0)}{d(-q^{2})^{n}}$$

Result: $f_+(q^2)$ and $f_0(q^2)$ at $\beta = 2.00$

Access tiny q^2 region thanks to $L \sim 10$ [fm]

Clear discrepancy between local and conserved currents due to different finite lattice spacing effects Calculation with unimproved local and conserved currents Similar, but larger discrepancy at $\beta = 1.82$

Result: q^2 interpolation at $\beta = 2.00$

Fit based on SU(3) NLO ChPT with $f_{+}(0) = f_{0}(0)$ [PACS:PRD101,9,094504(2020)] $f_{+}(q^{2}) = 1 - \frac{4}{F_{0}^{2}}L_{9}(\mu)q^{2} + K_{+}(q^{2}, M_{\pi}^{2}, M_{K}^{2}, F_{0}, \mu) + c_{0} + c_{2}^{+}q^{4}$ $f_{0}(q^{2}) = 1 - \frac{8}{F_{0}^{2}}L_{5}(\mu)q^{2} + K_{0}(q^{2}, M_{\pi}^{2}, M_{K}^{2}, F_{0}, \mu) + c_{0} + c_{2}^{0}q^{4}$

free parameters:

 $L_5(\mu), L_9(\mu), c_0, c_2^+, c_2^0$

fixed parameters:

 $F_0 = 0.11205 \text{ GeV}, \ \mu = 770 \text{ MeV}$

FLAG $F^{SU(2)}/F_0 = 1.08 - 1.23 \rightarrow 1.15$

with Our $F^{SU(2)} = 0.129 \text{ GeV}$

 K_+, K_0 : known functions [Gasser, Leutwyler:NPB250,465 and 517(1985)]

Simultaneous fit works well.

Tiny extrapolation to physical M_{π^-} and M_{K^0} using same formulas

Result: Continuum extrapolation of $f_+(0)$

local current: almost flat conserved current: clear *a* dependence

Similar trend seen in HVP calculation [PACS:PRD100,3,034517(2019)]

Simultaneous fit: e.g. (lcl,cns)= (a^2,a) $f_+^{\text{lcl}}(0) = A + B^{\text{lcl}}a^2, \quad f_+^{\text{cns}}(0) = A + B^{\text{cns}}a$

Result: Continuum extrapolation of $f_+(0)$

local current: almost flat

conserved current: clear a dependence

Similar trend seen in HVP calculation [PACS:PRD100,3,034517(2019)]

Simultaneous fit: *e.g.* (lcl,cns)= (a^2,a) : $f_+^{lcl}(0) = A + B^{lcl}a^2$, $f_+^{cns}(0) = A + B^{cns}a$

Preliminary $f_+(0) = 0.9605(39)(27)$

central value + statistical from (a^2, a) ; systematic from difference from (a^2, a^2) Need smaller a data for more reliable extrapolation

Result: Continuum extrapolation of $f_+(0)$

$f_+(0)$: Consistent with PACS20 result little smaller than recent lattice calculations

 $|V_{us}|$ using $|V_{us}|f_+(0) = 0.21654(41)$ [Moulson:PoS(CKM2016)033(2017)] agree with $|V_{us}|$ from K_{l2} (f_K/f_π) and SM prediction (gray band) $\sim 2\sigma$ difference from new SM prediction (cyan band)

local current: flat behavior in λ'_+ , but little *a* dependence in others Smaller *a* data is important for $a \to 0$ extrapolation of λ''_+ , λ'_0 , λ''_0

Comparable with experiment and dispersive representation, [Antonelli *et al.*10; Moulson17; Bernard *et al.*09] and also previous lattice calculations of λ'_+ , λ'_0 [ETM09,16; JLQCD17]

Summary

- K_{l3} form factors with 2nd PACS10 configuration at $a^{-1} = 3.09$ [GeV] L = 10.2[fm] at physical point smaller *a* than [PACS:PRD101,9,094504(2020)]
 - $f_+(q^2), f_0(q^2)$ in tiny q^2 region
 - Clear difference in local and conserved currents
 - Reasonable q^2 interpolation
 - Flat(clear) a dependence for local(conserved) current for $f_+(0)$
 - Preliminary result $f_+(0) = 0.9605(39)(27)$ in continuum limit Consistent with PACS20, little smaller than recent lattice calculations
 - Slopes and curvatures: comparable with experiment and previous lattice calculations

Future works

- $-a \rightarrow 0$ extrapolation of $f_+(q^2), f_0(q^2)$
- Estimate systematic uncertainties
- Calculations with 3rd PACS10 configuration in smaller \boldsymbol{a}

more reliable $a \rightarrow 0$ extrapolations