Controlling unwanted exponentials in lattice calculations of radiative leptonic decays

Christopher Kane¹

In collaboration with: Davide Giusti², Christoph Lehner^{2,3}, Stefan Meinel¹, Amarjit Soni³

Lattice 2021

July 26, 2021

¹University of Arizona

²University of Regensburg

³Brookhaven National Lab

$B^- o \ell^- \bar{\nu} \gamma$

- Hard photon removes helicity suppression $(m_\ell/m_B)^2$
- For large E⁽⁰⁾_γ, simplest decay that probes the inverse moment of the B meson light-cone distribution amplitude

$$\frac{1}{\lambda_B} = \int_0^\infty \mathrm{d}\omega \,\, \frac{\Phi_{B+}(\omega)}{\omega}$$

• λ_B important input in QCD factorization approach to exclusive B decays, currently not well known [See e.g., Beneke, Braun, Ji, Wei, arXiv:1804.04962/JHEP 2018;

Beneke, Buchalla, Neubert, Sachrajda, arXiv:hep-ph/9905312/PRL 1999]

• Belle: $\mathcal{B}(B^+
ightarrow \ell^+
u \gamma) < 3.0 imes 10^{-6}~(E_{\gamma}^{(0)} > 1~{
m GeV})$

[arXiv:1810.12976/PRD 2018]

Hadronic Tensor and Form Factors

$$\begin{aligned} J_{\mu}^{em} &= \sum_{q} e_{q} \bar{q} \gamma_{\mu} q, \qquad J_{\nu}^{weak} = \bar{u} \gamma_{\nu} (1 - \gamma_{5}) b \\ T_{\mu\nu} &= -i \int d^{4}x \, e^{i p_{\gamma} \cdot x} \left\langle 0 \right| \mathbf{T} \left(J_{\mu}^{em}(x) J_{\nu}^{weak}(0) \right) \left| B^{-}(\vec{\mathbf{p}}_{B}) \right\rangle \end{aligned}$$

Hadronic Tensor and Form Factors

$$\begin{aligned} J_{\mu}^{em} &= \sum_{q} e_{q} \bar{q} \gamma_{\mu} q, \qquad J_{\nu}^{weak} = \bar{u} \gamma_{\nu} (1 - \gamma_{5}) b \\ T_{\mu\nu} &= -i \int d^{4}x \ e^{i p_{\gamma} \cdot x} \left\langle 0 \right| \mathbf{T} \left(J_{\mu}^{em}(x) J_{\nu}^{weak}(0) \right) \left| B^{-}(\vec{\mathbf{p}}_{B}) \right\rangle \\ &= \epsilon_{\mu\nu\tau\rho} p_{\gamma}^{\tau} v^{\rho} F_{V} + i \left[-g_{\mu\nu} (v \cdot p_{\gamma}) + v_{\mu} (p_{\gamma})_{\nu} \right] F_{A} - i \frac{v_{\mu} v_{\nu}}{(v \cdot p_{\gamma})} m_{B} f_{B} \\ &+ (p_{\gamma})_{\mu} \text{-terms} \end{aligned}$$

$$F_{A,SD} = F_A + f_B / E_{\gamma}^{(0)}, \qquad E_{\gamma}^{(0)} = p_B \cdot p_{\gamma} / m_B$$

Hadronic Tensor and Form Factors

$$J_{\mu}^{em} = \sum_{q} e_{q} \bar{q} \gamma_{\mu} q, \qquad J_{\nu}^{weak} = \bar{u} \gamma_{\nu} (1 - \gamma_{5}) b$$

$$T_{\mu\nu} = -i \int d^{4}x \ e^{ip_{\gamma} \cdot x} \left\langle 0 \right| \mathbf{T} \left(J_{\mu}^{em}(x) J_{\nu}^{weak}(0) \right) \left| B^{-}(\vec{\mathbf{p}}_{B}) \right\rangle$$

$$= \epsilon_{\mu\nu\tau\rho} p_{\gamma}^{\tau} v^{\rho} F_{\mathbf{V}} + i \left[-g_{\mu\nu} (v \cdot p_{\gamma}) + v_{\mu} (p_{\gamma})_{\nu} \right] F_{A} - i \frac{v_{\mu} v_{\nu}}{(v \cdot p_{\gamma})} m_{B} f_{B}$$

$$+ (p_{\gamma})_{\mu} \text{-terms}$$

$$F_{A,SD} = F_{A} + f_{B} / E_{\gamma}^{(0)}, \qquad E_{\gamma}^{(0)} = p_{B} \cdot p_{\gamma} / m_{B}$$

Goal: Calculate F_V , $F_{A,SD}$ as a function of $E_{\gamma}^{(0)}$

(* all times are now Euclidean)

$$\begin{split} C_{3,\mu\nu}(t_{em},t_{H}) &= \int d^{3}x \int d^{3}y \ e^{-i\vec{\mathbf{p}}_{\gamma}\cdot\vec{\mathbf{x}}} e^{i\vec{\mathbf{p}}_{H}\cdot\vec{\mathbf{y}}} \langle J_{\mu}^{\text{em}}(t_{em},\vec{\mathbf{x}}) J_{\nu}^{\text{weak}}(0) \phi_{H}^{\dagger}(t_{H},\vec{\mathbf{y}}) \rangle \\ &\phi_{H}^{\dagger} \sim \bar{Q}\gamma_{5}u \end{split}$$

(* all times are now Euclidean)

$$I_{\mu\nu}^{<}(T, t_{H}) = \int_{-T}^{0} dt_{em} e^{E_{\gamma} t_{em}} C_{3,\mu\nu}(t_{em}, t_{H})$$
$$I_{\mu\nu}^{>}(T, t_{H}) = \int_{0}^{T} dt_{em} e^{E_{\gamma} t_{em}} C_{3,\mu\nu}(t_{em}, t_{H})$$

(* all times are now Euclidean)

$$C_{3,\mu\nu}(t_{em},t_{H}) = \int d^{3}x \int d^{3}y \ e^{-i\vec{\mathbf{p}}_{\gamma}\cdot\vec{\mathbf{x}}} e^{i\vec{\mathbf{p}}_{H}\cdot\vec{\mathbf{y}}} \langle J_{\mu}^{em}(t_{em},\vec{\mathbf{x}})J_{\nu}^{weak}(0)\phi_{H}^{\dagger}(t_{H},\vec{\mathbf{y}}) \rangle$$
$$\phi_{H}^{\dagger} \sim \bar{Q}\gamma_{5}u$$

$$I_{\mu\nu}^{<}(T, t_{H}) = \int_{-T}^{0} dt_{em} e^{E_{\gamma} t_{em}} C_{3,\mu\nu}(t_{em}, t_{H})$$
$$I_{\mu\nu}^{>}(T, t_{H}) = \int_{0}^{T} dt_{em} e^{E_{\gamma} t_{em}} C_{3,\mu\nu}(t_{em}, t_{H})$$
$$I_{\mu\nu}(T, t_{H}) = I^{<}(T, t_{H}) + I^{>}(T, t_{H})$$

(* all times are now Euclidean)

$$C_{3,\mu\nu}(t_{em},t_{H}) = \int d^{3}x \int d^{3}y \ e^{-i\vec{\mathbf{p}}_{\gamma}\cdot\vec{\mathbf{x}}} e^{i\vec{\mathbf{p}}_{H}\cdot\vec{\mathbf{y}}} \langle J_{\mu}^{em}(t_{em},\vec{\mathbf{x}})J_{\nu}^{weak}(0)\phi_{H}^{\dagger}(t_{H},\vec{\mathbf{y}}) \rangle$$
$$\phi_{H}^{\dagger} \sim \bar{Q}\gamma_{5}u$$

$$I_{\mu\nu}^{<}(T, t_{H}) = \int_{-T}^{0} dt_{em} e^{E_{\gamma} t_{em}} C_{3,\mu\nu}(t_{em}, t_{H})$$
$$I_{\mu\nu}^{>}(T, t_{H}) = \int_{0}^{T} dt_{em} e^{E_{\gamma} t_{em}} C_{3,\mu\nu}(t_{em}, t_{H})$$
$$I_{\mu\nu}(T, t_{H}) = I^{<}(T, t_{H}) + I^{>}(T, t_{H})$$

Show relation between $I_{\mu\nu}(T, t_H)$ and $T_{\mu\nu}$

ightarrow compare spectral decompositions of both time orderings of $I_{\mu
u}$ and $T_{\mu
u}$

Euclidean spectral decomposition of $I^{>}_{\mu u}$

$$T_{\mu\nu}^{>} = -\sum_{n} \frac{\langle 0 | J_{\mu}^{em}(0) | n(\vec{\mathbf{p}}_{\gamma}) \rangle \langle n(\vec{\mathbf{p}}_{\gamma}) | J_{\nu}^{weak}(0) | H(\vec{\mathbf{p}}_{H}) \rangle}{2E_{n,\vec{\mathbf{p}}_{\gamma}}(E_{\gamma} - E_{n,\vec{\mathbf{p}}_{\gamma}})}$$

Euclidean spectral decomposition of $I^>_{\mu u}$

$$T_{\mu\nu}^{>} = -\sum_{n} \frac{\langle 0 | J_{\mu}^{em}(0) | n(\vec{\mathbf{p}}_{\gamma}) \rangle \langle n(\vec{\mathbf{p}}_{\gamma}) | J_{\nu}^{weak}(0) | H(\vec{\mathbf{p}}_{H}) \rangle}{2E_{n,\vec{\mathbf{p}}_{\gamma}}(E_{\gamma} - E_{n,\vec{\mathbf{p}}_{\gamma}})}$$

$$I_{\mu\nu}^{>}(t_{H},T) = \int_{0}^{T} dt_{em} \ e^{E_{\gamma}t_{em}}C_{\mu\nu}(t_{em},t_{H})$$

Euclidean spectral decomposition of $I^{>}_{\mu u}$

$$T_{\mu\nu}^{>} = -\sum_{n} \frac{\langle 0 | J_{\mu}^{em}(0) | n(\vec{\mathbf{p}}_{\gamma}) \rangle \langle n(\vec{\mathbf{p}}_{\gamma}) | J_{\nu}^{weak}(0) | H(\vec{\mathbf{p}}_{H}) \rangle}{2E_{n,\vec{\mathbf{p}}_{\gamma}}(E_{\gamma} - E_{n,\vec{\mathbf{p}}_{\gamma}})}$$

$$\begin{split} I_{\mu\nu}^{>}(t_{H},T) &= \int_{0}^{T} dt_{em} \ e^{E_{\gamma}t_{em}} C_{\mu\nu}(t_{em},t_{H}) \\ &= -\sum_{m} e^{E_{m}t_{H}} \frac{\langle m(\vec{\mathbf{p}}_{H}) | \ \phi_{H}^{\dagger}(0) | 0 \rangle}{2E_{m,\vec{\mathbf{p}}_{H}}} \\ &\times \sum_{n} \frac{\langle 0 | \ J_{\mu}^{em}(0) | n(\vec{\mathbf{p}}_{\gamma}) \rangle \langle n(\vec{\mathbf{p}}_{\gamma}) | \ J_{\nu}^{weak}(0) | m(\vec{\mathbf{p}}_{H}) \rangle}{2E_{n,\vec{\mathbf{p}}_{\gamma}}(E_{\gamma}-E_{n,\vec{\mathbf{p}}_{\gamma}})} \left[1 - e^{(E_{\gamma}-E_{n,\vec{\mathbf{p}}_{\gamma}})T} \right] \end{split}$$

Euclidean spectral decomposition of $I^>_{\mu u}$

$$T_{\mu\nu}^{>} = -\sum_{n} \frac{\langle 0 | J_{\mu}^{em}(0) | n(\vec{\mathbf{p}}_{\gamma}) \rangle \langle n(\vec{\mathbf{p}}_{\gamma}) | J_{\nu}^{weak}(0) | H(\vec{\mathbf{p}}_{H}) \rangle}{2E_{n,\vec{\mathbf{p}}_{\gamma}}(E_{\gamma} - E_{n,\vec{\mathbf{p}}_{\gamma}})}$$

$$\begin{split} I_{\mu\nu}^{>}(t_{H},T) &= \int_{0}^{T} dt_{em} \ e^{E_{\gamma}t_{em}} C_{\mu\nu}(t_{em},t_{H}) & t_{H} \to -\infty \text{ to achieve} \\ &= -\sum_{m} e^{E_{m}t_{H}} \frac{\langle m(\vec{\mathbf{p}}_{H}) | \ \phi_{H}^{\dagger}(0) | 0 \rangle}{2E_{m,\vec{\mathbf{p}}_{H}}} & \text{ground state saturation} \\ &\times \sum_{n} \frac{\langle 0 | \ J_{\mu}^{em}(0) | n(\vec{\mathbf{p}}_{\gamma}) \rangle \langle n(\vec{\mathbf{p}}_{\gamma}) | \ J_{\nu}^{weak}(0) | m(\vec{\mathbf{p}}_{H}) \rangle}{2E_{n,\vec{\mathbf{p}}_{\gamma}}(E_{\gamma} - E_{n,\vec{\mathbf{p}}_{\gamma}})} \left[1 - e^{(E_{\gamma} - E_{n,\vec{\mathbf{p}}_{\gamma}})T} \right] \end{split}$$

Euclidean spectral decomposition of $I^{>}_{\mu u}$

Time ordering: $t_{em} > 0$ H J_{ν}^{weak} J_{μ}^{em}

$$T_{\mu\nu}^{>} = -\sum_{n} \frac{\langle 0 | J_{\mu}^{em}(0) | n(\vec{\mathbf{p}}_{\gamma}) \rangle \langle n(\vec{\mathbf{p}}_{\gamma}) | J_{\nu}^{weak}(0) | H(\vec{\mathbf{p}}_{H}) \rangle}{2E_{n,\vec{\mathbf{p}}_{\gamma}}(E_{\gamma} - E_{n,\vec{\mathbf{p}}_{\gamma}})}$$

$$\begin{split} I_{\mu\nu}^{>}(t_{H},T) &= \int_{0}^{T} dt_{em} \; e^{E_{\gamma} t_{em}} C_{\mu\nu}(t_{em},t_{H}) & t_{H} \to -\infty \text{ to achieve} \\ &= -\sum_{m} e^{E_{m} t_{H}} \frac{\langle m(\vec{\mathbf{p}}_{H}) | \; \phi_{H}^{\dagger}(0) \, | 0 \rangle}{2E_{m,\vec{\mathbf{p}}_{H}}} & \text{state saturation} \\ &\times \sum_{n} \frac{\langle 0 | \; J_{\mu}^{em}(0) \; | n(\vec{\mathbf{p}}_{\gamma}) \rangle \, \langle n(\vec{\mathbf{p}}_{\gamma}) | \; J_{\nu}^{weak}(0) \; | m(\vec{\mathbf{p}}_{H}) \rangle}{2E_{n,\vec{\mathbf{p}}_{\gamma}}(E_{\gamma} - E_{n,\vec{\mathbf{p}}_{\gamma}})} \left[1 - e^{(E_{\gamma} - E_{n,\vec{\mathbf{p}}_{\gamma}})T} \right] \\ & T \to \infty \text{ to remove unwanted exponentials} \\ & \text{ that come with intermediate states} \end{split}$$

For
$$\mathbf{p}_{\gamma} \neq \mathbf{0}$$
,

$$T_{\mu\nu} = \lim_{T \to \infty} \lim_{t_H \to -\infty} \frac{-2E_H e^{-E_H t_H}}{\langle H(\vec{\mathbf{p}}_H) | \phi_H^{\dagger} | 0 \rangle} \underbrace{\int_{-T}^{T} dt_{em} \ e^{E_{\gamma} t_{em}} C_{3,\mu\nu}(t_{em}, t_H)}_{I_{\mu\nu}(T, t_H)}$$

$$T_{\mu\nu} = \lim_{T \to \infty} \lim_{t_H \to -\infty} \frac{-2E_H e^{-E_H t_H}}{\langle H(\vec{\mathbf{p}}_H) | \phi_H^{\dagger} | 0 \rangle} \underbrace{\int_{-T}^{T} dt_{em} \ e^{E_\gamma t_{em}} C_{3,\mu\nu}(t_{em}, t_H)}_{I_{\mu\nu}(T, t_H)}$$

Two methods to calculate $I_{\mu\nu}(T, t_H)$:

$$T_{\mu\nu} = \lim_{T \to \infty} \lim_{t_H \to -\infty} \frac{-2E_H e^{-E_H t_H}}{\langle H(\vec{\mathbf{p}}_H) | \phi_H^{\dagger} | 0 \rangle} \underbrace{\int_{-T}^{T} dt_{em} \ e^{E_\gamma t_{em}} C_{3,\mu\nu}(t_{em}, t_H)}_{I_{\mu\nu}(T, t_H)}$$

Two methods to calculate $I_{\mu\nu}(T, t_H)$:

$$T_{\mu\nu} = \lim_{T \to \infty} \lim_{t_H \to -\infty} \frac{-2E_H e^{-E_H t_H}}{\langle H(\vec{\mathbf{p}}_H) | \phi_H^{\dagger} | 0 \rangle} \underbrace{\int_{-T}^{T} dt_{em} \ e^{E_{\gamma} t_{em}} C_{3,\mu\nu}(t_{em}, t_H)}_{I_{\mu\nu}(T, t_H)}$$

Two methods to calculate $I_{\mu\nu}(T, t_H)$:

$$T_{\mu\nu} = \lim_{T \to \infty} \lim_{t_H \to -\infty} \frac{-2E_H e^{-E_H t_H}}{\langle H(\vec{\mathbf{p}}_H) | \phi_H^{\dagger} | 0 \rangle} \underbrace{\int_{-T}^{T} dt_{em} \ e^{E_\gamma t_{em}} C_{3,\mu\nu}(t_{em}, t_H)}_{I_{\mu\nu}(T, t_H)}$$

Two methods to calculate $I_{\mu\nu}(T, t_H)$:

$$T_{\mu\nu} = \lim_{T \to \infty} \lim_{t_H \to -\infty} \frac{-2E_H e^{-E_H t_H}}{\langle H(\vec{\mathbf{p}}_H) | \phi_H^{\dagger} | 0 \rangle} \underbrace{\int_{-T}^{T} dt_{em} \ e^{E_{\gamma} t_{em}} C_{3,\mu\nu}(t_{em}, t_H)}_{I_{\mu\nu}(T, t_H)}$$

Two methods to calculate $I_{\mu\nu}(T, t_H)$:

$$T_{\mu\nu} = \lim_{T \to \infty} \lim_{t_H \to -\infty} \frac{-2E_H e^{-E_H t_H}}{\langle H(\vec{\mathbf{p}}_H) | \phi_H^{\dagger} | 0 \rangle} \underbrace{\int_{-T}^{T} dt_{em} \ e^{E_{\gamma} t_{em}} C_{3,\mu\nu}(t_{em}, t_H)}_{I_{\mu\nu}(T, t_H)}$$

Two methods to calculate $I_{\mu\nu}(T, t_H)$:

$$T_{\mu\nu} = \lim_{T \to \infty} \lim_{t_H \to -\infty} \frac{-2E_H e^{-E_H t_H}}{\langle H(\vec{\mathbf{p}}_H) | \phi_H^{\dagger} | 0 \rangle} \underbrace{\int_{-T}^{T} dt_{em} \ e^{E_{\gamma} t_{em}} C_{3,\mu\nu}(t_{em}, t_H)}_{I_{\mu\nu}(T, t_H)}$$

Two methods to calculate $I_{\mu\nu}(T, t_H)$:

Past lattice studies

$$T_{\mu\nu} = \lim_{T \to \infty} \lim_{t_H \to -\infty} \frac{-2E_H e^{-E_H t_H}}{\langle H(\vec{\mathbf{p}}_H) | \phi_H^{\dagger} | 0 \rangle} \underbrace{\int_{-T}^{T} dt_{em} \ e^{E_\gamma t_{em}} C_{3,\mu\nu}(t_{em}, t_H)}_{I_{\mu\nu}(T, t_H)}$$

- [1] we presented results at Lattice 2019 using 3d method
 - fitting to a constant looking for plateaus in T and t_H
 - all calculations were done in the rest frame of the meson
- [2] use 4d method to perform realistic physical calculation
 - set $T = N_T/2$ and fit to constant in t_H where data has plateaued
- [1] [Kane, Lehner, Meinel, Soni, arXiv:1907.00279]
- [2] [Desiderio, Frezzotti, Garofalo, Giusti, Hansen, Lubicz, Martinelli, Sachrajda, Sanfilippo, Simula, Tantalo, PRD 2021, arXiv:2006.05358]

Past lattice studies

$$T_{\mu\nu} = \lim_{T \to \infty} \lim_{t_H \to -\infty} \frac{-2E_H e^{-E_H t_H}}{\langle H(\vec{\mathbf{p}}_H) | \phi_H^{\dagger} | 0 \rangle} \underbrace{\int_{-T}^{T} dt_{em} \ e^{E_\gamma t_{em}} C_{3,\mu\nu}(t_{em}, t_H)}_{I_{\mu\nu}(T, t_H)}$$

- [1] we presented results at Lattice 2019 using 3d method
 - fitting to a constant looking for plateaus in T and t_H
 - all calculations were done in the rest frame of the meson
- [2] use 4d method to perform realistic physical calculation
 - set $T = N_T/2$ and fit to constant in t_H where data has plateaued
- [1] [Kane, Lehner, Meinel, Soni, arXiv:1907.00279]
- [2] [Desiderio, Frezzotti, Garofalo, Giusti, Hansen, Lubicz, Martinelli, Sachrajda, Sanfilippo, Simula, Tantalo, PRD 2021, arXiv:2006.05358]
- We have new data in moving frame of meson where fitting to a constant is not possible

$K^- o \gamma \ell^- ar u_\ell$: $p_K = rac{2\pi}{L}(0,0,1)$, $p_\gamma = rac{2\pi}{L}(0,0,1)$

3d method $t_{em} < 0$ time ordering

$K^- o \gamma \ell^- ar u_\ell$: $p_K = rac{2\pi}{L}(0,0,1)$, $p_\gamma = rac{2\pi}{L}(0,0,1)$

3d method $t_{em} < 0$ time ordering

Must perform more complicated fits to take $\lim_{T\to\infty}$ and $\lim_{t_H} \to -\infty$

Developed fitting methods to take $\lim_{\mathcal{T}\to\infty}$ and $\lim_{t_H}\to-\infty$ by:

- fitting only 3d sequential propagator data
- fitting only 4d sequential propagator data
- performing global fits to both 3d and 4d method data

Compare each of the fitting methods

Simulation parameters

So far we have considered:

$$K^- \to \gamma \ell^- \bar{\nu}, \qquad D^+ \to \gamma \ell^+ \nu, \qquad D^+_s \to \gamma \ell^+ \nu$$

- RBC/UKQCD: 24³ imes 64, $m_{\pi} \approx$ 340 MeV, $a \approx$ 0.11 fm (K^-, D^+, D_s^+)
- RBC/UKQCD: $32^3 \times 64$, $m_\pi \approx 340$ MeV, $a \approx 0.11$ fm (K^-)
- $\bullet~\mathbb{Z}_2$ random wall sources at weak current location
- Up/down/strange valence quarks: same domain-wall action as sea quarks
- Neglect disconnected diagrams
- Charm valence quarks: Möbius domain-wall with "stout" smearing
- "Mostly nonperturbative" renormalization
- All-mode averaging with 16 sloppy and 1 exact samples per config

see [Kane, Lehner, Meinel, Soni, arXiv:1907.00279] for more details

$K^- ightarrow \gamma \ell^- \bar{ u} \, \, { m runs}$

RBC/UKQCD Ensembles: $32^3 \times 64$, $m_{\pi} \approx 340$ (MeV), $a \approx 0.11$ (fm)

RBC/UKQCD Ensembles: $32^3 \times 64$, $m_{\pi} \approx 340$ (MeV), $a \approx 0.11$ (fm)

3d method:

$$\begin{array}{c|c|c|c|c|c|c|c|c|}\hline -t_{\mathcal{K}}/a & \frac{L}{2\pi}\mathbf{p}_{\mathcal{K}} & \frac{L}{2\pi}\mathbf{p}_{\gamma} & \# \text{ configs} \\\hline \hline \{6,9,12\} & (0,0,1) & (0,0,1) & 20 \\ & (0,0,2) & & \\ \hline \end{array}$$

RBC/UKQCD Ensembles: $32^3 \times 64$, $m_{\pi} \approx 340$ (MeV), $a \approx 0.11$ (fm)

3d method:

$$\begin{array}{c|c|c|c|c|c|c|c|}\hline -t_{\mathcal{K}}/a & \frac{L}{2\pi}\mathbf{p}_{\mathcal{K}} & \frac{L}{2\pi}\mathbf{p}_{\gamma} & \# \text{ configs} \\\hline \hline \{6,9,12\} & (0,0,1) & (0,0,1) & 20 \\ & (0,0,2) & & \\ \hline \end{array}$$

4d method:

$$\begin{array}{c|c|c|c|c|c|c|c|c|}\hline T/a & \frac{L}{2\pi} \mathbf{p}_{\mathcal{K}} & \frac{L}{2\pi} \mathbf{p}_{\gamma} & \# \text{ configs} \\\hline \{6,9,12\} & (0,0,1) & (0,0,1) & 20 \\& & (0,0,2) & & \\ \hline \end{array}$$

Include terms to fit

- (1) unwanted exponential from first intermediate state
- (2) first excited state

Include terms to fit

- (1) unwanted exponential from first intermediate state
- (2) first excited state

Fit form factors F_V and $F_{A,SD}$ directly instead of $I_{\mu\nu}$

Include terms to fit

- (1) unwanted exponential from first intermediate state
- (2) first excited state

Fit form factors F_V and $F_{A,SD}$ directly instead of $I_{\mu\nu}$

Time ordering $t_{em} < 0$:

$$F^{<}(t_{H}, T) = F^{<} + B_{F}^{<}(1 + B_{F,\text{exc}}^{<} e^{\Delta E(T+t_{H})}) e^{-(E_{\gamma} - E_{H} + E^{<})T} + C_{F}^{<} e^{\Delta E t_{H}}$$

$$\blacksquare \text{ fit parameters}$$

Include terms to fit

- (1) unwanted exponential from first intermediate state
- (2) first excited state

Fit form factors F_V and $F_{A,SD}$ directly instead of $I_{\mu\nu}$

Time ordering $t_{em} < 0$:

$$F^{<}(t_{H}, T) = F^{<} + B_{F}^{<}(1 + B_{F,\text{exc}}^{<} e^{\Delta E(T+t_{H})}) e^{-(E_{\gamma} - E_{H} + E^{<})T} + C_{F}^{<} e^{\Delta E t_{H}}$$

$$\blacksquare \text{ fit parameters}$$

Include terms to fit

- (1) unwanted exponential from first intermediate state
- (2) first excited state

Fit form factors F_V and $F_{A,SD}$ directly instead of $I_{\mu\nu}$

Time ordering $t_{em} < 0$:

$$F^{<}(t_{H},T) = F^{<} + B_{F}^{<}(1 + B_{F,\text{exc}}^{<} e^{\Delta E(T+t_{H})}) e^{-(E_{\gamma} - E_{H} + E^{<})T} + C_{F}^{<} e^{\Delta E t_{H}}$$

$$\blacksquare \text{ fit parameters}$$

Include terms to fit

- (1) unwanted exponential from first intermediate state
- (2) first excited state

Fit form factors F_V and $F_{A,SD}$ directly instead of $I_{\mu\nu}$

Time ordering $t_{em} < 0$:

$$F^{<}(t_{H}, T) = F^{<} + B_{F}^{<}(1 + B_{F, exc}^{<} e^{\Delta E(T+t_{H})}) e^{-(E_{\gamma} - E_{H} + E^{<})T} + C_{F}^{<} e^{\Delta E t_{H}}$$

$$\blacksquare \text{ fit parameters}$$

Only have three values of t_H , fitting multiple exponentials not possible

Include terms to fit

- (1) unwanted exponential from first intermediate state
- (2) first excited state

Fit form factors F_V and $F_{A,SD}$ directly instead of $I_{\mu\nu}$

Time ordering $t_{em} < 0$:

$$F^{<}(t_{H}, T) = F^{<} + B_{F}^{<}(1 + B_{F, exc}^{<} e^{\Delta E(T + t_{H})}) e^{-(E_{\gamma} - E_{H} + E^{<})T} + C_{F}^{<} e^{\Delta E t_{H}}$$

$$\blacksquare \text{ fit parameters}$$

Only have three values of t_H , fitting multiple exponentials not possible \rightarrow Determine ΔE from the pseudoscalar two-point correlation function \rightarrow use result as Gaussian prior in form factor fits

Include terms to fit

- (1) unwanted exponential from first intermediate state
- (2) first excited state

Fit form factors F_V and $F_{A,SD}$ directly instead of $I_{\mu\nu}$

Time ordering $t_{em} < 0$:

$$F^{<}(t_{H}, T) = F^{<} + B_{F}^{<}(1 + B_{F, exc}^{<} e^{\Delta E(T + t_{H})}) e^{-(E_{\gamma} - E_{H} + E^{<})T} + C_{F}^{<} e^{\Delta E t_{H}}$$

$$\blacksquare \text{ fit parameters}$$

Only have three values of t_H , fitting multiple exponentials not possible \rightarrow Determine ΔE from the pseudoscalar two-point correlation function \rightarrow use result as Gaussian prior in form factor fits

Look at preliminary data and fit results for $K^- \to \gamma \ell^- \bar{\nu}_\ell$

$K^- \rightarrow \gamma \ell^- \bar{\nu}_\ell$: 3d method $p_K = \frac{2\pi}{l}(0,0,1) \ p_\gamma = \frac{2\pi}{l}(0,0,1)$

Time ordering $t_{em} < 0$:

 $F_{A,SD}^{<}(t_{H},T) = F_{A,SD}^{<} + B_{F_{A,SD}}^{<}(1 + B_{F_{A,SD},\text{exc}}^{<}e^{\Delta E(T+t_{H})})e^{-(E_{\gamma} - E_{\kappa} + E_{A}^{<})T} + C_{F_{A,SD}}^{<}e^{\Delta Et_{H}}$

$K^- \rightarrow \gamma \ell^- \bar{\nu}_\ell$: 3d method $p_K = \frac{2\pi}{l}(0,0,1) \ p_\gamma = \frac{2\pi}{l}(0,0,1)$

Time ordering $t_{em} < 0$:

 $F_{A,SD}^{<}(t_{H},T) = F_{A,SD}^{<} + B_{F_{A,SD}}^{<}(1 + B_{F_{A,SD},\text{exc}}^{<}e^{\Delta E(T+t_{H})})e^{-(E_{\gamma} - E_{\kappa} + E_{A}^{<})T} + C_{F_{A,SD}}^{<}e^{\Delta Et_{H}}$

14 / 18

Use fit ranges where data has plateaued in t_H , i.e. $t_H
ightarrow -\infty$

Include terms to fit (1) unwanted exponential from first intermediate state

Use fit ranges where data has plateaued in t_H , i.e. $t_H
ightarrow -\infty$

Include terms to fit (1) unwanted exponential from first intermediate state

Sum of both time orderings $I_{\mu\nu}(T, t_H) = I^{<}_{\mu\nu}(T, t_H) + I^{>}_{\mu\nu}(T, t_H)$

Use fit ranges where data has plateaued in t_H , i.e. $t_H
ightarrow -\infty$

Include terms to fit (1) unwanted exponential from first intermediate state

Sum of both time orderings $I_{\mu\nu}(T, t_H) = I^{<}_{\mu\nu}(T, t_H) + I^{>}_{\mu\nu}(T, t_H)$

$$F(t_{H}, T) = F + B_{F}^{<} e^{-(E_{\gamma} - E_{H} + E^{<})T} + B_{F}^{>} e^{(E_{\gamma} - E^{>})T}$$

fit parameters

Use fit ranges where data has plateaued in t_H , i.e. $t_H
ightarrow -\infty$

Include terms to fit (1) unwanted exponential from first intermediate state

Sum of both time orderings $I_{\mu\nu}(T,t_H) = I^<_{\mu\nu}(T,t_H) + I^>_{\mu\nu}(T,t_H)$

Use fit ranges where data has plateaued in t_H , i.e. $t_H
ightarrow -\infty$

Include terms to fit (1) unwanted exponential from first intermediate state

Sum of both time orderings $I_{\mu\nu}(T, t_H) = I^<_{\mu\nu}(T, t_H) + I^>_{\mu\nu}(T, t_H)$

$$F(t_H, T) = F + B_F^{<} \underbrace{e^{-(E_{\gamma} - E_H + E^{<})T}}_{t_{em} < 0} + B_F^{>} \underbrace{e^{(E_{\gamma} - E^{>})T}}_{t_{em} > 0}$$

$$\blacksquare \text{ fit parameters}$$

Only have three values of T, fitting multiple exponentials not possible \rightarrow Use broad Gaussian prior on $E^>$ exclude unphysical values

Use fit ranges where data has plateaued in t_H , i.e. $t_H
ightarrow -\infty$

Include terms to fit (1) unwanted exponential from first intermediate state

Sum of both time orderings $I_{\mu\nu}(T, t_H) = I^<_{\mu\nu}(T, t_H) + I^>_{\mu\nu}(T, t_H)$

$$F(t_H, T) = F + B_F^{<} \underbrace{e^{-(E_{\gamma} - E_H + E^{<})T}}_{t_{em} < 0} + B_F^{>} \underbrace{e^{(E_{\gamma} - E^{>})T}}_{t_{em} > 0}$$

$$fit \text{ parameters}$$

Only have three values of T, fitting multiple exponentials not possible \rightarrow Use broad Gaussian prior on $E^>$ exclude unphysical values

Look at preliminary data and fit results for $K^- o \gamma \ell^- \bar{\nu}_\ell$

$K^- o \gamma \ell^- ar u_\ell$: 4d method $p_K = rac{2\pi}{L}(0,0,1) \ p_\gamma = rac{2\pi}{L}(0,0,1)$

Sum of both time orderings $t_{em} < 0 + t_{em} > 0$:

$$F_{A}(t_{H},T) = F_{A} + B_{F_{A}}^{<} e^{-(E_{\gamma}-E_{K}+E_{A}^{<})T} + B_{F_{A}}^{>} e^{(E_{\gamma}-E_{A}^{>})T}$$

$K^- \rightarrow \gamma \ell^- \bar{\nu}_\ell$: 4d method $p_K = \frac{2\pi}{l}(0,0,1) \ p_\gamma = \frac{2\pi}{l}(0,0,1)$

Sum of both time orderings $t_{em} < 0 + t_{em} > 0$:

$$F_{\mathcal{A}}(t_{\mathcal{H}},T) = F_{\mathcal{A}} + B_{F_{\mathcal{A}}}^{<} e^{-(E_{\gamma} - E_{\mathcal{K}} + E_{\mathcal{A}}^{<})T} + B_{F_{\mathcal{A}}}^{>} e^{(E_{\gamma} - E_{\mathcal{A}}^{>})T}$$

$K^- \rightarrow \gamma \ell^- \bar{\nu}_\ell$: Independent 3d and 4d analysis results

 $0 < x_{\gamma} < 1$

$K^- \rightarrow \gamma \ell^- \bar{\nu}_\ell$: Combined 3d and 4d analysis results

 $0 < x_{\gamma} < 1$

$K^- ightarrow \gamma \ell^- \bar{ u}_\ell$: 3d and 4d analysis results

- Combined analysis \rightarrow remove prior on the parameter $E^>$
- Still need two-point function to constrain excited state energy gap ΔE
- Combined fits have error similar or larger to 3d fits alone
- Similar findings for the $D_s^+ \rightarrow \gamma \ell^+ \nu_\ell$ decay process

$$T_{\mu\nu} = \lim_{T \to \infty} \lim_{t_H \to -\infty} \frac{-2E_H e^{-E_H t_H}}{\langle H(\vec{\mathbf{p}}_H) | \phi_H^{\dagger} | 0 \rangle} \underbrace{\int_{-T}^{T} dt_{em} \ e^{E_\gamma t_{em}} C_{3,\mu\nu}(t_{em}, t_H)}_{I_{\mu\nu}(T, t_H)}$$

- Calculate $I^{<}_{\mu\nu}(T,t_{H})$ and $I^{>}_{\mu\nu}(T,t)$ separately using the 4d method
- Twisted boundary conditions to get to small photon energies $E_{\gamma}^{(0)}$
- Realistic physical calculation for K and $D_{(s)}$, $B_{(s)}$ mesons

Backup slides

$$T_{\mu\nu} = \lim_{T \to \infty} \lim_{t_B \to -\infty} \frac{-2E_B e^{-E_B t_B}}{\langle B(\vec{\mathbf{p}}_B) | \phi_B^{\dagger} | 0 \rangle} \underbrace{\int_{-T}^{T} dt_{em} e^{E_{\gamma} t_{em}} C_{3,\mu\nu}(t_{em}, t_B)}_{I_{\mu\nu}(T, t_H)}$$

Not always possible to fit to a constant in T and t_H

3d sequential propagator: fixed t_B get all t_{em} for free

- good control over $\lim_{\mathcal{T}\to\infty}$ for both $t_{em}>0$ and $t_{em}<0$
- $\bullet\,$ need two-point function to constrain excited state energy to take $\lim_{t_B\to -\infty}$

4d sequential propagator: fixed T get all t_B for free

- good control over $\lim_{t_B \to -\infty}$
- cannot resolve separate time orderings for $t_{em},$ need prior on energy to take $\lim_{T\to\infty}$

Global fit result:

- do not need prior on 4d fit parameter
- error similar or greater in size to only 3d data fits

$D^+ \to \gamma \ell^+ \nu$ and $D^+_s \to \gamma \ell^+ \nu$ runs

RBC/UKQCD Ensemble: 24³ imes 64, $m_\pi pprox$ 340 MeV, a pprox 0.11 fm

3d method:

$$\begin{tabular}{|c|c|c|c|c|} \hline Lattice & -t_{D_s}/a & {\bf p}_{D_{(s)}}/(\frac{2\pi}{L}) & {\bf p}_{\gamma}^2/(\frac{2\pi}{L})^2 & \# \mbox{ configs} \\ \hline \hline 24^3 \times 64 & \{6,9,12\} & (0,0,0) & \{1,2,3,4\} & 25 \end{tabular}$$

4d method:

Lattice	T/a	$\mathbf{p}_{D_{(s)}}/(\frac{2\pi}{L})$	$ \mathbf{p}_{\gamma}/(rac{2\pi}{L}) $	# configs
$24^3 \times 64$	{6,9,12}	(0,0,0)	(0,0,1)	25
		(0,0,1)		
		(0,0,2)		
		(0,0,-1)		

$D_s^+ \rightarrow \gamma \ell^+ \nu_\ell$: Combined 3d and 4d analysis results

Minkowski spectral decomposition of $T_{\mu\nu}$

Time ordering $t_{em} < 0$:

$$\widehat{1} = |0\rangle \langle 0| + \sum_{n} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{1}{2E_{n}(\vec{\mathbf{p}})} |n(\vec{\mathbf{p}})\rangle \langle n(\vec{\mathbf{p}})|$$

$$\begin{split} T^{<}_{\mu\nu} &= -i \int_{-\infty(1-i\epsilon)}^{0} dt_{em} \int \mathrm{d}^{3} x \; e^{ip_{\gamma} \cdot x} \left\langle 0 \right| J^{weak}_{\nu}(0) \widehat{1} J^{em}_{\mu}(x) \left| B^{-}(\vec{\mathbf{p}}_{B}) \right\rangle \\ &= -\sum_{n} \frac{1}{2E_{n,\vec{\mathbf{p}}_{B}-\vec{\mathbf{p}}_{\gamma}}} \frac{1}{E_{\gamma} + E_{n,\vec{\mathbf{p}}_{B}-\vec{\mathbf{p}}_{\gamma}} - E_{B,\vec{\mathbf{p}}_{B}} - i\epsilon} \\ &\times \left\langle 0 \right| J^{weak}_{\nu}(0) \left| n(\vec{\mathbf{p}}_{B} - \vec{\mathbf{p}}_{\gamma}) \right\rangle \left\langle n(\vec{\mathbf{p}}_{B} - \vec{\mathbf{p}}_{\gamma}) \right| J^{em}_{\mu}(0) \left| B(\vec{\mathbf{p}}_{B}) \right\rangle \end{split}$$

(In infinite volume, the sum over n includes an integral over the continuous spectrum of multi-particle states.)

Euclidean spectral decomposition of $I_{\mu\nu}$

Time ordering $t_{em} < 0$: (for large negative t_B)

$$\begin{split} I_{\mu\nu}^{<}(t_{B},T) &= \int_{-T}^{0} dt_{em} \ e^{E_{\gamma}t} C_{3,\mu\nu}(t_{em},t_{B}) \qquad (* \text{ all times are now Euclidean }) \\ &= \langle B(\vec{\mathbf{p}}_{B}) | \ \phi_{B}^{\dagger}(0) | 0 \rangle \frac{1}{2E_{B,\vec{\mathbf{p}}_{B}}} e^{E_{B}t_{B}} \\ &\times \sum_{n} \frac{1}{2E_{n,\vec{\mathbf{p}}_{B}-\vec{\mathbf{p}}_{\gamma}}} \frac{\langle 0 | \ J_{\nu}^{weak}(0) | n(\vec{\mathbf{p}}_{B}-\vec{\mathbf{p}}_{\gamma}) \rangle \langle n(\vec{\mathbf{p}}_{B}-\vec{\mathbf{p}}_{\gamma}) | \ J_{\mu}^{em}(0) | B(\vec{\mathbf{p}}_{B}) \rangle}{E_{\gamma}+E_{n,\vec{\mathbf{p}}_{B}-\vec{\mathbf{p}}_{\gamma}}-E_{B,\vec{\mathbf{p}}_{B}}} \\ &\times \left[1 - e^{-(E_{\gamma}+E_{n,\vec{\mathbf{p}}_{B}-\vec{\mathbf{p}}_{\gamma}}-E_{B,\vec{\mathbf{p}}_{B}})T} \right] \end{aligned}$$
Require $E_{\gamma}+E_{n,\vec{\mathbf{p}}_{B}-\vec{\mathbf{p}}_{\gamma}}-E_{B,\vec{\mathbf{p}}_{B}} > 0$ to get rid of unwanted exponential States $|n(\vec{\mathbf{p}}_{B}-\vec{\mathbf{p}}_{\gamma})\rangle$ has same flavor quantum numbers as B meson

 $\begin{array}{l} \rightarrow \ E_{n,\mathbf{p}_B-\mathbf{p}_{\gamma}} \geq E_{B,\mathbf{p}_B-\mathbf{p}_{\gamma}} = \sqrt{m_B^2 + (\mathbf{p}_B - \mathbf{p}_{\gamma})^2} \\ \text{For } \mathbf{p}_{\gamma} \neq 0, \ |\mathbf{p}_{\gamma}| + \sqrt{m_n^2 + (\mathbf{p}_B - \mathbf{p}_{\gamma})^2} > \sqrt{m_B^2 + \mathbf{p}_B} \text{ is automatically} \\ \text{satisfied} \end{array}$

Minkowski spectral decomposition of $T_{\mu\nu}$

Time ordering $t_{em} > 0$:

$$T_{\mu\nu}^{>} = -i \int_{0}^{\infty(1-i\epsilon)} dt_{em} \int d^{3}x \ e^{ip_{\gamma} \cdot x} \left\langle 0 \right| J_{\mu}^{em}(t_{em}, \vec{\mathbf{x}}) J_{\nu}^{weak}(0) \left| B^{-}(\vec{\mathbf{p}}_{B}) \right\rangle$$
$$= \sum_{m} \frac{1}{2E_{m,\vec{\mathbf{p}}_{\gamma}}} \frac{1}{E_{\gamma} - E_{m,\vec{\mathbf{p}}_{\gamma}} - i\epsilon}$$
$$\times \left\langle 0 \right| J_{\mu}^{em}(0) \left| m(\vec{\mathbf{p}}_{\gamma}) \right\rangle \left\langle m(\vec{\mathbf{p}}_{\gamma}) \right| J_{\nu}^{weak}(0) \left| B(\vec{\mathbf{p}}_{B}) \right\rangle$$

(In infinite volume, the sum over n includes an integral over the continuous spectrum of multi-particle states.)

Euclidean spectral decomposition of $I_{\mu\nu}$

Time ordering: $t_{em} > 0$ (for large negative t_B)

$$\begin{split} I_{\mu\nu}^{>}(t_{B},T) &= \int_{0}^{T} dt_{em} \; e^{E_{\gamma}t} C_{\mu\nu}(t_{em},t_{B}) \quad (\text{* all times are now Euclidean }) \\ &= - \left\langle B(\vec{\mathbf{p}}_{B}) \right| \phi_{B}^{\dagger}(0) \left| 0 \right\rangle \frac{1}{2E_{B,\vec{\mathbf{p}}_{B}}} e^{E_{B}t_{B}} \\ &\times \sum_{n} \frac{1}{2E_{n,\vec{\mathbf{p}}_{\gamma}}} \left\langle 0 \right| J_{\mu}^{em}(0) \left| n(\vec{\mathbf{p}}_{\gamma}) \right\rangle \left\langle n(\vec{\mathbf{p}}_{\gamma}) \right| J_{\nu}^{weak}(0) \left| B(\vec{\mathbf{p}}_{B}) \right\rangle \\ &\times \frac{1}{E_{\gamma} - E_{n,\vec{\mathbf{p}}_{\gamma}}} \left[1 - e^{(E_{\gamma} - E_{n,\vec{\mathbf{p}}_{\gamma}})T} \right] \end{split}$$

Require $E_{\gamma} - E_{n,\vec{\mathbf{p}}_{\gamma}} < 0$ Because the states $|n(\mathbf{p}_{\gamma})\rangle$ have mass, $\sqrt{m_n^2 + \mathbf{p}_{\gamma}^2} > |\mathbf{p}_{\gamma}|$ is automatically satisfied

$K^- \rightarrow \gamma \ell^- \bar{\nu}_\ell$: 3d method $p_K = \frac{2\pi}{l}(0,0,1) \ p_\gamma = \frac{2\pi}{l}(0,0,1)$

Time ordering $t_{em} < 0$: Stability fits

 $F_{A,SD}^{<}(t_{H},T) = F_{A,SD}^{<} + B_{F_{A,SD}}^{<}(1 + B_{F_{A,SD},exc}^{<}e^{\Delta E(T+t_{H})})e^{-(E_{\gamma} - E_{K} + E_{A}^{<})T} + C_{F_{A,SD}}^{<}e^{\Delta Et_{H}}$

Right: result of the $F_{A,SD}^{<}$ parameter for different fit ranges. The red data point/band shows the chosen fit range. Left: result of the fit for that chosen fit range on top of the data.