The muon g-2 with four flavors of staggered quarks

- CHRISTOPHER AUBIN (FORDHAM U)
 - TOM BLUM (U CONN)
- MAARTEN GOLTERMAN (SAN FRANCISCO STATE)
 - SANTI PERIS (U A BARCELONA)

Introduction

Lattice Details

• Old & New Results

• Summary

OUTLINE

111 INTRODUCTION TO THE MYON $g-\frac{2}{3}$ Familiar to everyone here (light-quark connected only) *jµ* is the EM current [isospin limit]

$$\begin{split} a^{\rm HVP}_{\mu} &= 4\alpha^2 \int_0^\infty dq^2 f(q^2) \hat{\Pi}(q^2), \\ f(q^2) &= \frac{m_{\mu}^2 q^2 Z^3 (1-q^2 Z)}{1+m_{\mu}^2 q^2 Z^2}, \\ Z &= -\frac{q^2 - \sqrt{q^4 + 4m_{\mu}^2 q^2}}{2m_{\mu}^2 q^2}. \\ \Pi^{\mu\nu}(q) &= \int d^4 x e^{iqx} \langle j^{\mu}(x) j^{\nu}(0) \rangle \\ &= \Pi(q^2) (-q^{\mu} q^{\nu} + q^2 \delta^{\mu\nu}), \end{split}$$

Time-momentum representation [Bernecker & Meyer, EPJA 47, 148]

$$\Pi(q^2) - \Pi(0) = \sum_{t} \left(\frac{\cos qt - 1}{q^2} + \frac{1}{2}t^2 \right)$$
$$C(t) = \frac{1}{2} \sum \langle i^i(\vec{x}, t) i^i(0) \rangle$$

$$C(i) = 3 \sum_{\vec{x},i} \sqrt{J(x,i)J(0)},$$

$$w(t) = 4\alpha^2 \int_0^\infty d\omega^2 f(\omega^2) \left[\frac{\cos \omega t - 1}{\omega^2} + \frac{1}{\omega^2} \right] d\omega^2 d\omega^2 f(\omega^2) \left[\frac{\cos \omega t - 1}{\omega^2} + \frac{1}{\omega^2} + \frac{1}{\omega^2} \right] d\omega^2 d\omega^2 f(\omega^2) \left[\frac{\cos \omega t - 1}{\omega^2} + \frac{1}{\omega^2} + \frac$$

$$a_{\mu}^{\text{HVP}}(T) = \sum_{t=-T/2}^{T/2} w(t)C(t)$$

NNLO FINITE VOLUME CORRECTIONS

- Finite-volume effects can be significant even on large volumes (L~6 fm, m_{π} ~ physical)
- These long-distance effects can be largely corrected using Chiral Perturbation Theory
- Can't extract g-2 with ChPT calculate difference between the infinite-volume and the FV result
- Have done so with full staggered ChPT (shown) to

Above the sums over X,Y include the eight pion tastes for staggered quarks Problem with ChPT? No! — Aubin et al, PRD 102 094511, arXiv:2008.03809

$$\Delta a_{\mu}^{\text{HVP}} = \lim_{L \to \infty} a_{\mu}^{\text{HVP}}(L) - a_{\mu}^{\text{HVP}}(L)$$

$$C(t) = \frac{1}{48L^3} \sum_{\vec{p}} \sum_{X} \frac{\vec{p}^2}{E_X^2(p)} e^{-2E_X(p)t} \left(1 - \frac{1}{4f^2} \sum_{Y} D_Y(0) - \frac{16\ell_6(\vec{p}^2 + m_X^2)}{f^2} + \frac{1}{24f^2} \frac{1}{L^3} \sum_{\vec{q}} \sum_{Y} \frac{\vec{q}^2}{E_Y(q)} \frac{1}{\vec{q}^2 - \vec{p}^2 + m_Y^2} - E_Y(k) = \sqrt{k^2 + m_Y^2}$$

$$D_Y(0) = \frac{1}{L^3} \sum_{\vec{p}} \frac{1}{2E_Y(k)}$$

k

LATTICE DETAILS - CONFIGURATIONS

Old results

$m_{\pi} \; ({ m MeV})$	$a \ (fm)$	L^3	$L \ (fm)$	$m_{\pi}L$	LM	# confs	traj. sep.
133	0.12121(64)	48^{3}	5.82	3.91	4000	26	40
130	0.08787(46)	64^{3}	5.62	3.66	4000	36(40)	12
134	0.05684(30)	96^{3}	5.46	3.73	6000	22(23)	48

New results [no updated 0.12 fm results]

$m_{\pi}~({ m MeV})$	$a~({\rm fm})$	L^3	$L \ (fm)$	$m_{\pi}L$	LM	# confs	traj. sep.
133	0.15148(80)	32^{3}	4.83	3.26	8000	48	40
130	0.08787(46)	64^{3}	5.62	3.66	8000	38	100
134	0.05684(30)	96^{3}	5.46	3.73	8000	35	60

Have not yet combined old + new 64^3 , 96^3 data

All (near) physical pion masses, HISQ ensembles generated by the MILC collaboration

We use a combination of all-mode mode averaging and low-mode averaging

RESULTS

Compare summand for original 96³ data vs. new data:

RESULTS

FV corrections for the window (x1010)

			m_{π_5}	taste-breaking	m_{π}	
a	Volume	$m_{\pi_5}({ m MeV})$	FV corr.	FV corr.	retuning	total
0.06	96^{3}	134	0.727538	0.759853	-0.0687552	1.4186
0.09	64^{3}	130	0.697276	3.51669	-0.516077	3.6979
0.12	48^{3}	133	0.560572	7.99304	-0.21689	8.3367
0.15	32^3	133	1.24171	10.3470	-0.186605	11.4021

These corrections are NLO for the window method only (we also have the full NNLO corrections)

$t_0 = 0.4, t_1 = 1.0$ fm, $\Delta = 0.15$

Intermediate window method

$$u_{\mu}^{W} = 2 \sum_{t=0}^{T/2} C(t) w(t) (\Theta(t, t_{0}, \Delta) - \Theta(t, t_{1}, \Delta))$$

$$\Theta(t, t', \Delta) = \frac{1}{2} \left(1 + \tanh((t - t')/\Delta) \right)$$

RESULTS

Updated 0.06 fm & 0.09 fm + 0.15 fm results

Difference in the lowest two results could be caused by autocorrelations, scale setting? (still studying)

(a=0.12 fm result isn't "new," but is included in fits to the new data)

With the FV corrections added in, our negative slope becomes positive, but "cleaner" remaining *a*² effects?

RESULIS

A simple linear-in- a^2 fit gives consistent results for the corrected vs. uncorrected data

The uncorrected data does not show a^2 scaling

Does this mean the lattice result is inconsistent with the R-ratio?

 a_{μ}^{win}

Both fits are inconsistent with the R-ratio result

RESULTS What if we include the *R*-ratio in the

Simple quadratic fit gives mixed results. If we include the coarsest data point, the agreement with the *R*-ratio is not great (better than the linear fit)

What if we include the R-ratio in the fits? Would the lattice result be consistent?

RESULIS

Husung, Marquard, Sommer, EPJC 80, 200 (2020)]

SUMMARY & OUTLOOK

- All fits have p-values > 0.10
- Results are not inconsistent with each other or the R-ratio
- the 32³ here) [thanks to CalLat]
- g-2 theory initiative.

• Important to simulate at smaller a to understand cutoff effects (the uncorrected data is evidence for this)

• To fully understand the FV effects, we are currently studying an a=0.15 fm lattice with 48³ (as opposed to

• Thanks as always to the MILC collaboration for their lattices, as well as the many fruitful discussions from the

