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1) How the method works;


2) The main novelties of our paper;


3) Applications and Main Results;


4) Outlook to future goals.
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We revisited a method introduced by L. Lellouch in an existing work [L. Lellouch, Nucl. Phys. B 
479 (1996)] bringing novelties and new results. 


The talk is organized as follows:




How the method works: the starting point 
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The imaginary part of the longitudinal and transverse polarization functions are related to their derivatives with respect  byq2

χ0+(q2) = ∂
∂q2 [q2Π0+(q2)] = 1

π ∫
∞

0
dz

zImΠ0+

(z − q2)2 , χ1−(q2) = 1
2 ( ∂

∂q2 )
2

[q2Π1−(q2)] = 1
π ∫

∞

0
dz

zImΠ1−

(z − q2)3 ,

where for a generic current J

ImΠ0+,1− = 1
2 ∑

n
∫ dμ(n)(2π)4δ(4)(q − pn) |⟨0 |J |n⟩ | .

We can restrict our attention to a subset of hadronic states and thus produce, using analyticity, a strict inequality

1
2πi ∫|z|=1

dz
z

|ϕ(z, q2)f(z) |2 ≤ χ(q2),

where  is a generic form factor and  an associated kinematical function which may contain 
subtraction of resonances.

f ϕ



How the method works: inner product formalism and the matrix 

We can introduce the inner product 

⟨g |h⟩ = 1
2πi ∫|z|=1

dz
z

ḡ(z)h(z) .

Using this formalism, the inequality can be simply written as

0 ≤ ⟨ϕf |ϕf⟩ ≤ χ(q2) .

Introducing the function   and using the definition of the inner product we can definegt(z) = 1
1 − z̄(t)z

⟨gt |ϕf⟩ = ϕ(z(t), q2)f(z(t)), ⟨gtm |gtn⟩ = 1
1 − z(tl)z̄(tm) .We can use these three 

quantities to build a 
matrix!! 
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The values  correspond to the squared 4-momenta at which 
the FFs have been computed while the first element is the quantity 

directly related to the susceptibility  . The point  is the unknown 
point where we want to extract the value of the FF.

t1, t2, . . . , tn

χ(q2) t

 is such that  

  

where for  

z(t)
1 + z
1 − z

=
t+ − t
t+ − t−

D → K
t± = (mD ± mK)2



How the method works: the bounds 

The positivity of the inner product guarantees that

det M ≥ 0.
This condition leads to a constraints on the form factor  computed in the generic unknown point f t

flo(t) ≤ f(t) ≤ fup(t),

 and  are determinants of minors of  
depending only on kinematical factors.

α Δ1(t) M
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flo(up)(t) = f(t) ∓ 1
αϕ

Δ1(t)Δf
2

 depends on the FF and on  but not on . 
It is a crucial quantity because, depending 

on the susceptibility, it contains information 
on the unitarity!

Δf
2 χ t

The crucial point is that  must be positive!

If  the unitarity is always satisfied !

Δ1(t) > 0 ∀t ⟶ Δf
2

Δf
2 > 0 ∀t

where

 are defined if unitarity is satisfied. Then, the bounds that we can obtain imposing  in the Dispersive 
Matrix method always satisfy unitarity!!!

flo(up) Δf
2 > 0



 The novelties of our work 

With respect to the proposal by L. Lellouch and other previous studies, we introduced two main novelties:

1) We determined non perturbatively all the relevant two-point current correlation functions on the lattice which are 
fundamental to implement the dispersive bounds (i.e. the susceptibilities  that appear in the matrix). We also 
proposed to reduce discretisation errors of the two-point correlation functions by using a combination of non-
perturbative and perturbative subtractions  which were found very effective in the past;

2) A quite simpler treatment of the lattice uncertainties with respect to the method proposed by Lellouch.

χ

Long story… See the paper 
arXiv:2105.02497v1 [hep-lat] in 

Sections IV and VII.

Using the matrix method we can compute the lower/upper bounds of  once 
we have chosen our set of  input data 

f0(+)(t)
2(n + 1) {χ0+(1−), f0(+)(t1), . . . , f0(+)(tn)} .

How to propagate the uncertainties 
related to these quantities?
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The DM method allows to reconstruct the interval of the possible values of the form factor in a generic 
point  in a total model independent way and without any assumption or truncation (differently from CLN, 

BGL…) starting from (also few) known points and the susceptibilities!
t

No assumptions 
on the  
functional 

dependence of 
the FF!!

q2



 The novelties of our work: statistical uncertainties and KC 

We build a multivariate Gaussian distribution of  bootstrap events both for the form factors extracted from the three-point 
functions and for the susceptibilities (properly correlated if we have access to the data of the simulations) in our numerical simulation 

and covariance matrix  

Nboot

Σij = ρijσiσj .

Non-Perturbative Bounds for Semileptonic Decays in Lattice QCD                                           Manuel Naviglio (Unipi, INFN Pisa)                             5/11

To take into account in our analysis the Kinematical Constraint for each of the  events we defineNboot

f*lo(0) = min[ f+,lo(0), f0,lo(0)],

f*up(0) = max[ f+,up(0), f0,up(0)] .
f*lo(0) ≤ f(0) ≤ f*up(0) .

If we consider  to be uniformly distributed in this range, we can generate  values, obtaining a sample of 
, that we can add to the input data set as a new point at 

f(0) N0
N̄boot = Nboot × N0 tn+1 = 0.

We can do the analysis as before using now a further information that takes into account 
the KC. This can be done for each of the  events.N0

At the end of this second analysis we recombine the  events choosing N0
f̄lo(t) = min[ f1

lo(t), . . . , fN0
lo (t)],

f̄up(t) = max[ f1
up(t), . . . , fN0

up(t)] .



 The novelties of our work: Recombinations of the Bootstraps 
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To recombine the  events we generate the corresponding histograms and fit them with 
a Gaussian Ansatz.  We can then extract for every value of  average values  
standard deviations  and the corresponding correlation 

Nboot
t flo(up)(t),

σlo(up) ρlo,up(t) = ρup,lo(t) .

By combining the flat distribution that we have between  and  with a multivariate 
Gaussian distribution necessary to mediate over the whole set of bootstrap events, we can 
obtain the final values for the form factor  and its variance  using 

flo fup

f(t) σ2
f (t)

f(t) =
flo(t) + fup(t)

2 ,

σ2
f (t) = 1

12 [ fup(t) − flo(t)]2 + 1
3 [σ2

lo(t) + σup(t)2 + ρlo,up(t)σlo(t)σup(t)] .



Results: Test the method 

Then, we redid the analysis using the matrix method with the susceptibilities computed on the same 
ensembles and bootstrap by bootstrap.

The idea has been to mimic what happens in lattice calculations of B decays where all the 
lattice data are concentrated at . Then we have chosen only two points at large 

values of  and we tested the ability of the method to make prediction at small .  
q2 = q2

max
q2 q2

We have access to original data of [V. Lubicz et al. [ETM], Phys. Rev. D 96 (2017)].

The great advantage of studying the  decay is that we can compare our results obtained with the unitarity 
procedure to the ones obtained from a direct calculation of the form factors that cover indeed all the kinematical 

region in .

D → K

q2
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Is the method effective?



Results: Lattice Results 
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The figures show the bands obtained by using as inputs 
only the red points and the rest of the lattice points that 
are not used as input in our analysis in the case of the 

ETMC ensembles B25.32 and D30.48.

The agreement is excellent!

These results suggest that it will be possible to obtain 
quite precise determinations of the form factors for B 
decays by combining form factors at large  with the 

non perturbative calculation of the susceptibilities. 
q2
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The red points 
are the only 
data used as 
input for the 
DM method!!

see arXiv:2105.02497v1 [hep-lat] for details!



Results: Continuum Limit 
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This demonstrates that the Dispersive Matrix (DM) method allows to make predictions 
in the whole kinematical range with a quality comparable to the one obtained by the 
direct calculations, even if only a quite limited number of input lattice data are used!

Also after the extrapolation to the physical pion mass and to the continuum limit, the bands agree with the results of      
[V. Lubicz et al. [ETM], Phys. Rev. D 96 (2017)], indicated with the blue and green points, and exhibit a good 

precision.
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Results: an application 

0.0 0.5 1.0 1.5
q2 (GeV2 )

0.8

1.0

1.2

1.4

FF

Recently, a new paper [Chakraborty et al.: arXiv:2104.09883] treated the computation of the form factors of  form 
factors extracting very precise results. For  they found

D → K
q2 = 0

We applied the dispersive analysis using only three of the eight points for each FF at 
large  computed in the paper. Also with less information we obtain a very close resultq2

We can make two considerations based on these results:

1) The results of the aforementioned paper surely satisfy unitarity which 
is always automatically satisfied by the bands builded using the DM 
method by construction;

2) The fact that we obtain comparable results using much less 
information suggests that using the DM method it could be 
unnecessary the computation of lattice points in all the kinematic 
region. Differently, it could be a better idea to focus on the 
computation of less but more precise points at high values of . q2
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f(0) = 0.7384 ± 0.0052.

f(0) = 0.7380 ± 0.0043.

For the analysis 
we used as input 

data only the 
three blue 
points!!!



Conclusions and Outlook 
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The Dispersive Matrix method is very effective and precise in its prediction. It contains principally three advantages:

1) The method doesn’t rely on any assumption about the functional dependence of the FF on the momentum transferred. 
Then, in this sense, it is model independent;

2) It’s entirely based on first principles. The susceptibilities are non perturbative and we don’t have series expansions;

3) It gives very precise and accurate predictions at  even if we insert few data inputs at high values of . q2 = 0 q2

The DM method has been already successfully applied to B D,D* to obtain new theoretical estimates of Vcb and of the 
anomalies R(D(*)) (see arXiv:2105.08674 [hep-ph]) and to compute non perturbative constraints for the b->c transition (see 

arXiv:2105.07851 [hep-lat]).

⟶

New applications: work in progress…



The End 
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Thanks for your attention!


