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Outline

We revisited a method introduced by L. Lellouch in an existing work [L. Lellouch, Nucl. Phys. B
479 (1996)] bringing novelties and new results.

The talk is organized as follows:

1) How the method works;
2) The main novelties of our paper;
3) Applications and Main Results;

4) Outlook to future goals.
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How the method works: the starting point

The imaginary part of the longitudinal and transverse polarization functions are related to their derivatives with respect q2 by

0 1 (®  zImll,. 1/ 9 \* 1 (®  zImll,_
+2=—2H+2=—[d " _2=( >2H_2=—[d =
Xo+(q") 9°TI+(q7)] Z(z—qz)Z x1-(q7) 2\ g2 |9°11,-(¢?) 7, Z(Z_qz)s

0qg* N

where for a generic current J

L
Il =— > | du(m@n)*69 (g = p,) 1017 1m) |

We can restrict our attention to a subset of hadronic states and thus produce, using analyticity, a strict inequality

—~ 1@ g < 1))

zZl=1 <

where fis a generic form factor and ¢ an associated kinematical function which may contain
subtraction of resonances.
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How the method works: inner product formalism and the matrix

We can introduce the inner product

1 [ d
(gl =5—|  —8@he).
=1 <

Using this formalism, the inequality can be simply written as

Introducing the function g,(z) = [—20) and using the definition of the inner product we can define
— SZ\L)<

z(?) 1s such that

1+Z_ t_|__lL
1-z \1, -t
where for D — K
t, = (mp £ my)?

We can use these three
quantities to build a

matrix!!

(GFI8F) (6fl9) (6flgn) - (@Flgn)

(9:l6f) (9elge) (9el9n) -+ (9elge.) | | The values t,2,,...,t, correspond to the squared 4-momenta at which |
(90165 (glgs) (geilge) - (gnlge) | -} the FFs have been computed while the first element is the quantity

: { directly related to the susceptibility v(g?). The point t is the unknown !
point where we want to extract the value of the FF.

\ (96, 19F) (9. 19) (9tnlge1) -+ (Genlgtn) /
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How the method works: the bounds

The positivity of the inner product guarantees that

det M > 0.

This condition leads to a constraints on the form factor f computed in the generic unknown point ¢

fi.(0) < () < 1,0,

where

' FF but not on 7.

a and A (¢) are determinants of minors of M ~

| It 1s a crucial quantity because, depending
_ depending only on kinematical factors. | ~

i on the susceptibility, it contains information
: - on the unitarity!

|
flO(up)(t) = f(t) F E\/Al(f)A/;

The crucial point is that A;(r) > 0 Vi — A]; must be positive!
If A]; > () the unitarity is always satisfied V!

—— — e — __ N — __

E— — —_— S ———

S |

Jiowup) are defined if unitarity is satisfied. Then, the bounds that we can obtain imposing A]; 0 in the Dispersive ‘

| l

|

»*

Matrix method always satisfy unitarity!!!

_— = == = —_———— e ——————
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The novelties of our work

No assumptions

= —— e —— = —_—— _— . p— p— — —————————

The DM method allows to reconstruct the 1nterval of the p0551ble valuesof thefm factor in a generic 7 on the q2
| point 7 in a total model independent way and without any assumption or truncation (differently from CLN, ""P functional
BGL...) starting from (also few) known pomts and the susceptlbllltles' ’ dependence of
T - S - the FF!!

With respect to the proposal by L. Lellouch and other previous studies, we introduced two main novelties:

( 1) We determined non perturbatively all the relevant two-point current correlation functions on the lattice which are
— fundamental to implement the dispersive bounds (i.e. the susceptibilities y that appear in the matrix). We also
proposed to reduce discretisation errors of the two-point correlation functions by using a combination of non-
perturbative and perturbative subtractions which were found very effective in the past;

@ A quite simpler treatment of the lattice uncertainties with respect to the method proposed by Lellouch.

Using the matrix method we can compute the lower/upper bounds of f, ,,(¢) once

we have chosen our set of 2(n + 1) input data { )(0+(1 y Joo +)(t1) o) 1 -

| | Long story See

arXiv:2105.02497v1 [hep-lat] in |
~ Sections IV and VII. »

| HOW to propagate the uncertalntles
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The novelties of our work: statistical uncertainties and KC

We build a multivariate Gaussian distribution of /V, . bootstrap events both for the form factors extracted from the three-point

functions and for the susceptibilities (properly correlated if we have access to the data of the simulations) in our numerical simulation
and covariance matrix 2, = p;:0,0;

To take 1nto account in our analysis the Kinematical Constraint for each of the NbO ,; €vents we define
F5(0) = minlf, ,(0), fo 1, (O],

5 (0) = maxl fy ) (0), foup(O)]

If we eon51der f(O) to be umformly dlstrlbuted in this range, we can generate No Values, obtalmng a sample Of k
N boot = NbOOt X NO, that we can add to the input data set as a new pomt at ¢, 41 = O

|

g‘

— e ——

[ bfl6f)  (6fla)  (Bflgn) --- (6fle)  (bflen.) | We can do the analysis as before using now a further information that takes into account
(9¢|of) (9¢|9¢) (9elge,) -+ (9tlgen) (9¢|9t,41) the KC. This can be dOFl@fOl" each Ofthe NO events.
M = <g“!¢f> <g“:|gt> <g“!g“) <g“{gt"> <gtl|gf"“) . At the end of this second analysis we recombine the N, events choosing
. . . . . . i | N
(G |f)  (9talge)  (9talgt) -+ (9tal9tn)  (9tal9tnin) flo(t) = mm[fllo(t), e ’floo(t)]’

\ <gtn+1 |¢f> (gtn+1 |gt> <gtn+1 |gt1> e (gtn+1 |gtn> (gtn+1 |gtn+1> )

Fup® = max(f3 (), ..., fir(D].
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The novelties of our work: Recombinations of the Bootstraps

600 1 B S ]
: | gaussian : . . . .
0 T Comesons To recombine the N, , events we generate the corresponding histograms and fit them with
200 | L//' ‘\ : | aGaussian Ansatz. We can then extract for every value of ¢ average values f;,,,,(?),
i - ) \\ standard deviations oy, and the corresponding correlation py, ,.(f) = p,,, ;,(?) -
- f \
=200 | b \\
| i \
100 y N
| ) \
.63 070 07 080 055 oo By combining the flat distribution that we have between f;, and f,,, with a multivariate
600 —————————————— 1 Gaussian distribution necessary to mediate over the whole set of bootstrap events, we can
- i gassian obtain the final values for the form factor f(7) and its variance ng(t) using
- i \ fio = 0.750 & 0.031
AR 2GRS PO
5300 { \ : f(t) B 2 ,
IS L/ \ :
S 200 /I/ \ ] 1 1
, | | 2(4) — 2 2 2
100 i ' \ ) Gf (t) - 1_2[](;4p(l-) _ﬁo(t)] + 5[6[0(1.) + Gup(t) + plo,up(t)o-lo(t)aup(t)] .
0 ” ‘ (i .
0.65 0.70 0.75 0.80 0.85 0.90
T
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Results: Test the method

Is the method effective?

We have access to original data of [ V. Lubicz et al. [ETM], Phys. Rev. D 96 (2017)].

Then, we redid the analysis using the matrix method with the susceptibilities computed on the same
ensembles and bootstrap by bootstrap.

J

The 1dea has been to mimic what happens in lattlce ealeulatlons of B decays where all the |

. lattice data are concentrated at g° = g>_ . Then we have chosen only two points at large $
Values of q 2 and we tested the ablhty of the method to make predlctlon at small q |

—

| ————

— e — e
= ———- —_— —

e

e ——— - __ __|

= _ —— —

The great advantage of studying the D — K decay 1s that we can compare our results obtained with the unitarity
procedure to the ones obtained from a direct calculation of the form factors that cover indeed all the kinematical
: : )
region in g-.
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Results: Lattice Results

 fo(¢?) band A |

1.4} fo(q?) band ensemble B25.32 -

. f+(¢*) points @ © ; . . .

Lo|  Jola®) points —— i _ The figures show the bands obtained by using as inputs
I e only the red points and the rest of the lattice points that
T o ¥ : are not used as 1nput in our analysis in the case of the

S | ETMC ensembles B25.32 and D30.48.

08 f .

¢ .
| The red points
T s 10 s 20 are the only
e re data used as The agreement is excellent!
) band input for the
LAE fo(q?) band DM method!!

[ f+(¢?) points —@—
1ol fo(a?) points =

== e - P == =

T nput points @ " T hese results suggest that 1t W111 be poss1ble to obtam :
=10l | quite precise determinations of the form factors for B ,i
| | decays by combining form factors at large q 2 with the t
S § $ Tion perturbatlve ealeulatlon of the suseept1 O1TTHES
: " 7 e - - “Wsee arXiv:2105.02497v1 [hep-lat] for details!
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Results: Continuum Limit

Also after the extrapolation to the physical pion mass and to the continuum limit, the bands agree with the results of
[V. Lubicz et al. [ETM], Phys. Rev. D 96 (2017)], indicated with the blue and green points, and exhibit a good

precision.
D — K final bands

1-5_ - *(GeV?)| f+(@*)|oep| f+(@*) | fo(@®)|oep| folg?)

L4T ¢ (%) band + ‘ 0.0 || 0.765(31) 10.724(43)|| 0.765(31) |0.724(43)

131 fo(q?) band ] 0.2692 || 0.815(31) |0.790(40)| 0.792(28) |0.754(37)

12 J+() points ~@= ¢ ‘ 0.5385 | 0.872(31) |0.866(40)|| 0.820(25) |0.790(33)
— fo(g®) points —p— + ) ' ' . . .
= | 0.8077 || 0.937(32) |0.953(40)| 0.849(23) |0.831(31)
< 10 ¢ é ¢ 7 . 2 1.0769 | 1.013(34) |1.050(40)| 0.879(21) |0.876(29)

09t z s * ¢ ‘_ 13461 | 1.102(38) [1.155(42)| 0.911(19) [0.924(24)

0.8 ‘ > '_ 1.6154 || 1.208(44) |1.265(48)| 0.944(19) |0.965(21)

0.7T '_ 1.8846 || 1.336(54) |1.384(58)| 0.979(19) |1.005(23)

Y0 o5 10 1y a0

¢° (GeV?)

"ﬁ This demonstrates that the Dispersive Matrix (DM) method allows to make predictions f
| 1n the whole kinematical range with a quality comparable to the one obtained by the |
| direct calculations, even if only a quite limited number of input lattice data are used!
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Results: an application

Recently, a new paper [Chakraborty et al.: arXiv:2104.09883] treated the computation of the form factors of D — K form
factors extracting very precise results. For q2 = 0 they found

f(0) = 0.7380 £ 0.0043.

{

CE | For the analysis }.
we used as input
data only the
. three blue |
. points!!! |

We applied the dispersive analysis using only three of the eight points for each FF at
large g computed in the paper. Also with less information we obtain a very close result

f(0) =0.7384 £ 0.0052.

We can make two considerations based on these results:

1.4

[ 1) The rsultsof th aforemntoned paper surely satisfynitrity Wh |
- 1s always automatically satisfied by the bands builded using the DM
. method by construction;

1.2

1.0

|

12) The fact that we obtain comparable results using much less i
information suggests that using the DM method it could be '
unnecessary the computation of lattice points in all the kinematic l

- g°(GeV?)| region. Differently, it could be a better idea to focus on the )

0.0 0.5 1.0 1.5 n computation of less but more precise points at high values of q°.

0.8
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Conclusions and Outlook

The Dispersive Matrix method is very effective and precise in its prediction. It contains principally three advantages:

1) The method doesn’t rely on any assumption about the functional dependence of the FF on the momentum transferred.
Then, 1n this sense, it 1s model independent;

2) It’s entirely based on first principles. The susceptibilities are non perturbative and we don’t have series expansions;

3) It gives very precise and accurate predictions at g2 = 0 even if we insert few data inputs at high values of g~.

The DM method has been already successfully applied to B — D ,D* to obtain new theoretical estimates of Vcb and of the

anomalies R(D(*)) (see arXiv:2105.08674 [hep-ph]) and to compute non perturbative constraints for the b->c transition (see
arXiv:2105.07851 [hep-lat]).

= =

| New applications: work in progress...
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