The $B \rightarrow D^{*} \ell \nu$ semileptonic decay at non-zero recoil and its implications for $\left|V_{c b}\right|$ and $R\left(D^{*}\right)$

Alejandro Vaquero

University of Utah

July $29^{\text {th }}, 2021$

Carleton DeTar, University of Utah Aida El-Khadra, University of Illinois and FNAL

Elvira Gamiz, Universidad de Granada
Andreas Kronfeld, FNAL
John Laiho, Syracuse University

The $V_{c b}$ matrix element: Tensions

$$
\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right) \quad \begin{array}{c|c|c|c}
\left|V_{c b}\right|\left(\cdot 10^{-3}\right) & \text { PDG 2016 } & \text { PDG 2018 } & \text { PDG } 2020 \\
\hline \text { Exclusive } & 39.2 \pm 0.7 & 41.9 \pm 2.0 & 39.5 \pm 0.9 \\
\text { Inclusive } & 42.2 \pm 0.8 & 42.2 \pm 0.8 & 42.2 \pm 0.8
\end{array}
$$

- Matrix must be unitary
- Current tensions (2021) stand at $\approx 3 \sigma$ (preserve the norm)

Break: Reminder of $\left|V_{u b}\right|$ vs $\left|V_{c b}\right|$

Current status of $\left|V_{u b}\right|$ vs $\left|V_{c b}\right|$ (HFLAV 2019)

The $V_{c b}$ matrix element: Tensions in lepton universality

- Current $\approx 3 \sigma$ tension with the SM

The $V_{c b}$ matrix element: Measurement from exclusive

processes

$$
\underbrace{\frac{d \Gamma}{d w}\left(\bar{B} \rightarrow D^{*} \ell \bar{\nu}_{\ell}\right)}_{\text {Experiment }}=[\underbrace{K_{1}\left(w, m_{\ell}\right)}_{\text {Known factors }} \underbrace{|\mathcal{F}(w)|^{2}}_{\text {Theory }}+\underbrace{K_{2}\left(w, m_{\ell}\right)}_{\text {Known factors }} \underbrace{\left|\mathcal{F}_{2}(w)\right|^{2}}_{\text {Theory }}] \times\left|V_{c b}\right|^{2}
$$

- The amplitude \mathcal{F} must be calculated in the theory
- Can use effective theories (HQET) to say something about $\mathcal{F}(1)$
- $K_{i}\left(w, m_{\ell}\right) \propto\left(w^{2}-1\right)^{\frac{1}{2}}$ factor requires extrapolation of experimental data
- $R\left(D^{*}\right)$ requires an extra term that only contributes with the τ

$$
R\left(D^{*}\right)=\frac{\int_{1}^{w_{\mathrm{Max}, \tau}} d w\left[K_{1}\left(w, m_{\tau}\right)|\mathcal{F}(w)|^{2}+K_{2}\left(w, m_{\tau}\right)\left|\mathcal{F}_{2}(w)\right|^{2}\right] \times \square \mathbb{N}^{2}}{\int_{1}^{w_{\mathrm{Max}}} d w\left[K_{1}(w, 0)|\mathcal{F}(w)|^{2}\right] \times \mathbb{D} \mathbb{N}^{2}}
$$

- It is possible to extract $R\left(D^{*}\right)$ without experimental data!

The $V_{c b}$ matrix element: The parametrization issue

All the parametrizations perform an expansion in the z parameter

$$
z=\frac{\sqrt{w+1}-\sqrt{2 N}}{\sqrt{w+1}+\sqrt{2 N}}
$$

- Boyd-Grinstein-Lebed (BGL)

$$
f_{X}(w)=\frac{1}{B_{f_{X}}(z) \phi_{f_{X}}(z)} \sum_{n=0}^{\infty} a_{n} z^{n}
$$

- $B_{f_{X}}$ Blaschke factors, includes contributions from the poles
- $\phi_{f_{X}}$ is called outer function and must be computed for each form factor
- Weak unitarity constraints $\sum_{n}\left|a_{n}\right|^{2} \leq 1$
- Caprini-Lellouch-Neubert (CLN)

$$
\mathcal{F}(w) \propto 1-\rho^{2} z+c z^{2}-d z^{3}, \quad \text { with } c=f_{c}(\rho), d=f_{d}(\rho)
$$

- Relies strongly on HQET, spin symmetry and (old) inputs
- Tightly constrains $\mathcal{F}(w)$: four independent parameters, one relevant at $w=1$

The $V_{c b}$ matrix element: The parametrization issue

- CLN + LCSR
- BGL+LCSR
- CLN seems to underestimate the slope at low recoil
- The BGL value of $\left|V_{c b}\right|$ is compatible with the inclusive one

$$
\left|V_{c b}\right|=41.7 \pm 2.0\left(\times 10^{-3}\right)
$$

From Phys. Lett. $B 769$ (2017) 441-445 using Belle data from
arXiv:1702.01521 and the Fermilab/MILC'14 value at zero recoil

- Latest Belle dataset and Babar analysis seem to contradict this picture
- From Babar's paper PRL 123, 091801 (2019) BGL is compatible with CLN and far from the inclusive value
- Belle's paper PRD 100, 052007 (2019) finds similar results in its last revision
- The discrepancy inclusive-exclusive is not well understood
- Data at $w \gtrsim 1$ is urgently needed to settle the issue
- Experimental measurements perform badly at low recoil

We would benefit enormously from a high precision lattice calculation at $w_{\equiv} \gtrsim 1$

Calculating $V_{c b}$ on the lattice: Formalism

- Form factors

$$
\begin{gathered}
\frac{\left\langle D^{*}\left(p_{D^{*}}, \epsilon^{\nu}\right)\right| \mathcal{V}^{\mu}\left|\bar{B}\left(p_{B}\right)\right\rangle}{2 \sqrt{m_{B} m_{D^{*}}}}=\frac{1}{2} \epsilon^{\nu *} \varepsilon_{\rho \sigma}^{\mu \nu} v_{B}^{\rho} v_{D^{*}}^{\sigma} \boldsymbol{h}_{\boldsymbol{V}}(w) \\
\frac{\left\langle D^{*}\left(p_{D^{*}}, \epsilon^{\nu}\right)\right| \mathcal{A}^{\mu}\left|\bar{B}\left(p_{B}\right)\right\rangle}{2 \sqrt{m_{B} m_{D^{*}}}}= \\
\frac{i}{2} \epsilon^{\nu *}\left[g^{\mu \nu}(1+w) \boldsymbol{h}_{\boldsymbol{A}_{\mathbf{1}}}(w)-v_{B}^{\nu}\left(v_{B}^{\mu} \boldsymbol{h}_{\boldsymbol{A}_{\mathbf{2}}}(w)+v_{D^{*}}^{\mu} \boldsymbol{h}_{\boldsymbol{A}_{\mathbf{3}}}(w)\right)\right]
\end{gathered}
$$

- \mathcal{V} and \mathcal{A} are the vector/axial currents in the continuum
- The h_{X} enter in the definition of \mathcal{F}
- We can calculate $h_{A_{1,2,3}, V}$ directly from the lattice

Calculating $V_{c b}$ on the lattice: Formalism

- Helicity amplitudes

$$
H_{ \pm}=\sqrt{m_{B} m_{D^{*}}}(w+1)\left(\boldsymbol{h}_{\boldsymbol{A}_{\mathbf{1}}}(w) \mp \sqrt{\frac{w-1}{w+1}} \boldsymbol{h}_{\boldsymbol{V}}(w)\right)
$$

$$
H_{0}=\sqrt{m_{B} m_{D^{*}}}(w+1) m_{B}\left[(w-r) \boldsymbol{h}_{\boldsymbol{A}_{\mathbf{1}}}(w)-(w-1)\left(r \boldsymbol{h}_{\boldsymbol{A}_{\mathbf{2}}}(w)+\boldsymbol{h}_{\boldsymbol{A}_{\mathbf{3}}}(w)\right)\right] / \sqrt{q^{2}}
$$

$$
H_{S}=\sqrt{\frac{w^{2}-1}{r\left(1+r^{2}-2 w r\right)}}\left[(1+w) \boldsymbol{h}_{\boldsymbol{A}_{\mathbf{1}}}(w)+(w r-1) \boldsymbol{h}_{\boldsymbol{A}_{\mathbf{2}}}(w)+(r-w) \boldsymbol{h}_{\boldsymbol{A}_{\mathbf{3}}}(w)\right]
$$

- Form factor in terms of the helicity amplitudes

$$
\chi(w)|\mathcal{F}|^{2}=\frac{1-2 w r+r^{2}}{12 m_{B} m_{D^{*}}(1-r)^{2}}\left(H_{0}^{2}(w)+H_{+}^{2}(w)+H_{-}^{2}(w)\right)
$$

Introduction: Available data and simulations

- Using $15 N_{f}=2+1$ MILC ensembles of sea asqtad quarks
- The heavy quarks are treated using the Fermilab action

Analysis: Chiral-continuum fits

- Our data represents the form factors at nonzero a and unphysical m_{π}
- Extrapolation to the physical pion mass described by EFTs
- The EFT describe the a and the m_{π} dependence
- Functional form explicitly known

$$
\begin{gathered}
h_{A_{1}}(w)=\underbrace{\left[1+\frac{X_{A_{1}}\left(\Lambda_{\chi}\right)}{m_{c}^{2}}+\frac{g_{D^{*} D \pi}^{2}}{48 \pi^{2} f_{\pi}^{2} r_{1}^{2}} \operatorname{logs}_{\mathrm{SU} 3}\left(a, m_{l}, m_{s}, \Lambda_{Q C D}\right)\right.}_{\mathrm{NLO} \chi \mathrm{PT}+\mathrm{HQET}} \\
\underbrace{+c_{1} x_{l}+c_{a 1} x_{a^{2}}}_{\mathrm{NLO}_{\chi \mathrm{PT}}} \underbrace{-\rho_{A_{1}}^{2}(w-1)+k_{A_{1}}(w-1)^{2}}_{w \text { dependence }}+\underbrace{\left.+c_{2} x_{l}^{2}+c_{a 2} x_{a^{2}}^{2}+c_{a, m} x_{l} x_{a^{2}}\right]}_{\mathrm{NNLO} \chi \mathrm{PT}} \times \\
\underbrace{\left(1+\beta_{11}^{A_{1} \alpha_{s} a \Lambda_{\mathrm{QCD}}+\hat{\beta}_{02}^{A_{1}}{ }^{2} A_{\mathrm{QCD}}^{2}}+\beta_{03}^{\left.A_{1} a^{3} \Lambda_{\mathrm{QCD}}^{3}\right)}\right.}
\end{gathered}
$$

HQ discretization errors
with

$$
x_{l}=B_{0} \frac{m_{l}}{\left(2 \pi f_{\pi}\right)^{2}}, \quad x_{a^{2}}=\left(\frac{a}{4 \pi f_{\pi} r_{1}^{2}}\right)^{2}
$$

Analysis: Chiral-continuum fits

- Combined fit p - value $=0.96$
- $h_{A_{1}}(1)=0.909(17)$

Analysis: Chiral-continuum fits

- Combined fit p - value $=0.96$
- $h_{V}(1)=1.270(46)$

Analysis: Chiral-continuum fits

- Combined fit p - value $=0.96$
- $h_{A_{2}}(1)=-0.624(85)$

Analysis: Chiral-continuum fits

- Combined fit p - value $=0.96$
- $h_{A_{3}}(1)=1.259(79)$

Results: Stability of chiral-continuum fits

	Base	W/o NNLO	W/o large w	W/o $a=0.15 \mathrm{fm}$
$\chi^{2} /$ dof	$\mathbf{8 5 . 5 / 1 1 0}$	$86.1 / 111$	$71.5 / 93$	$79.7 / 101$
		W/o $a=0.045 \mathrm{fm}$	W/o HQ O $\left(a^{3}\right)$	
$\chi^{2} /$ dof		$81.9 / 101$	$85.6 / 111$	

Results: Stability of chiral-continuum fits

	Base	W/o NNLO	W/o large w	W/o $a=0.15 \mathrm{fm}$
$\chi^{2} /$ dof	$\mathbf{8 5 . 5 / 1 1 0}$	$86.1 / 111$	$71.5 / 93$	$79.7 / 101$
		W/o $a=0.045 \mathrm{fm}$	W/o HQ O $\left(a^{3}\right)$	
$\chi^{2} /$ dof		$81.9 / 101$	$85.6 / 111$	

Analysis: z-Expansion

- The BGL expansion is performed on different (more convenient) form factors

$$
\begin{aligned}
g & =\frac{h_{V}(w)}{\sqrt{m_{B} m_{D^{*}}}} \\
f & =\sqrt{m_{B} m_{D^{*}}}(1+w) h_{A_{1}}(w) \\
\mathcal{F}_{1} & =\sqrt{q^{2}} H_{0} \\
\mathcal{F}_{2} & =\frac{\sqrt{q^{2}}}{m_{D^{*}} \sqrt{w^{2}-1}} H_{S}
\end{aligned}
$$

$$
\text { Phys.Lett. B769, } 441 \text { (2017), Phys.Letet. B771, } 359
$$

$$
=\frac{1}{\phi_{g}(z) B_{g}(z)} \sum_{j} a_{j} z^{j}
$$

$$
=\frac{1}{\phi_{f}(z) B_{f}(z)} \sum_{j} b_{j} z^{j}
$$

$$
=\frac{1}{\phi_{\mathcal{F}_{1}}(z) B_{\mathcal{F}_{1}}(z)} \sum_{j} c_{j} z^{j}
$$

- Constraint $\mathcal{F}_{1}(z=0)=\left(m_{B}-m_{D^{*}}\right) f(z=0)$
- Constraint $(1+w) m_{B}^{2}(1-r) \mathcal{F}_{1}\left(z=z_{\text {Max }}\right)=(1+r) \mathcal{F}_{2}\left(z=z_{\text {Max }}\right)$
- BGL (weak) unitarity constraints

$$
\sum_{j} a_{j}^{2} \leq 1, \quad \sum_{j} b_{j}^{2}+c_{j}^{2} \leq 1, \quad \sum_{j} d_{j}^{2} \leq 1
$$

Analysis: z expansion fit procedure

- Several different datasets
- Our lattice data
- BaBar BGL fit
- Generate synthetic data and include the data points to our joint fit
- Limited by the order of BaBar BGL fit (222) \rightarrow Truncation errors?
- Fit dominated by Belle data anyway
- Belle untagged dataset
- Data binned in four variables: $w, \cos \theta_{v}, \cos \theta_{l}$ and χ
- Same normalization per binning $\sum \operatorname{Bins}(\alpha)=N, \quad \alpha=w, \cos \theta_{v}, \cos \theta_{l}, \chi$
- Correlation matrices should reflect the normalization constraints \rightarrow they don't
- We use the data as it is published anyway (in Phys.Rev. D, the arXiv correlation matrices are wrong, even on v3!!)
- Further details arXiv:2104.02094

All the experimental and theoretical correlations are included in all fits

Results: Separate fits and joint fit

Separate fits

Joint fit

Fit	Lattice	Exp	Lat + Belle	Lat + BaBar	Lat + Exp
p-Value	0.88	0.037	0.015	0.088	0.002

Results: Separate fits and joint fit

Separate fits

Joint fit

Unblinded, final result $\left|V_{c b}\right|=38.40(74) \times 10^{-3}$

Results: Update of $\left|V_{u b}\right|$ vs $\mid V_{c b}$

The $\left|V_{c b}\right|$ puzzle remains

Results: $R\left(D^{*}\right)$ in context

$$
R\left(D^{*}\right)_{\mathbf{L a t}}=0.265(13) \quad R\left(D^{*}\right)_{\mathbf{L a t}+\mathbf{E x p}}=0.2483(13)
$$

Phys.Rev.D92 (2015), 034506; Phys.Rev.D100 (2019), 052007; Phys.Rev.D103 (2021), 079901; Phys.Rev.Lett. 123 (2019), 091801

Conclusions

- This is the first, unquenched, completed $B \rightarrow D^{*} \ell \nu$ calculation at nonzero recoil on the lattice
- The main new information of this analysis comes from the behavior at small recoil of the form factors
- Our $\left|V_{c b}\right|$ agrees with previous determinations and the inclusive-exclusive tension remains unsolved
- Results show $R\left(D^{*}\right)$ very close to the theoretical prediction and a reduced tension with experiment
- Main sources of errors of our form factors are
- Statistics
- Light- and heavy-quark discretization errors
- Further lattice analysis and refinements of our analysis can potentially settle the $R\left(D^{*}\right)$ issue
- Pending JLQCD calculation on $B \rightarrow D^{(*)} \ell \nu$ form factor on the lattice
- Next FNAL/MILC calculation of $B_{(s)} \rightarrow D_{(s)}^{(*)} \ell \nu$ is in the queue

THANK YOU

