Data analysis on two-point correlation function with sequential Bayesian method

Benjamin J. Choi (Speaker)
Tanmoy Bhattacharya, Rajan Gupta, Yong-Chull Jang, Seungyeob Jwa, Sunkyu Lee, Weonjong Lee, Jeonghwan Pak and Sungwoo Park
(LANL-SWME Collaboration)
Lattice Gauge Theory Research Center Department of Physics and Astronomy Seoul National University

LATTICE 2021 MIT via Zoom
21:45 EDT, July 29, 2021

Motivation

- To find decay constants (e.g. $f_{B_{(s)}}, f_{D_{(s)}}, \cdots$) and semileptonic form factor (e.g. $\left.h_{A_{1}}(w), h_{A_{2}}(w), \cdots\right)$, the data analysis on the 2-point correlation function should be done first.
- The data analysis should determine not only the ground state but also the excited states.

Sequential Bayesian method

(1) Step 1: Do the 1 st fitting. ex) $1+0$ fit (2 parameters)
(2) Step 2: Feed the results as prior information for the 2nd fitting. ex) $1+1$ fit (4 parameters +2 prior information)
(3) Step 3: Do stability test and find optimal prior information.
(9) Step 4: Move the 2nd fitting results into the 1st fitting.
(0) Step 5: Make the next fitting (e.g. $2+1$ fit) the 2 nd fitting.
© Step 6: Go back to "Step 2".
((ex) $1+0 \rightarrow 1+1 \rightarrow 2+1 \rightarrow 2+2 \rightarrow 3+2 \rightarrow \cdots$

Measurement information

Motivation: we provide information on sea and valance quarks.
(1) MILC HISQ ensemble with $N_{f}=2+1+1$ [PRD 87 054505] Example of this talk: a12m220 (Ensemble ID)

$a(\mathrm{fm})$	$N_{s}^{3} \times N_{t}$	$M_{\pi}(\mathrm{MeV})$	$a m_{l}$	$a m_{s}$	$a m_{c}$	$N_{\text {cfg }}$
$0.1184(10)$	$32^{3} \times 64$	$216.9(2)$	0.00507	0.0507	0.628	1000

(2) Hopping parameter of Oktay-Kronfeld action for valance b quark $\kappa_{\text {crit }}=0.051218$
$\kappa_{b}=0.04070$
(3) HISQ action parameter for valance light quark $m_{x}=m_{s}=0.0507$

Correlator fit

Motivation: fitting functional form

- 2-point correlation function for B meson [PoS(LAT2019)050]

$$
\begin{aligned}
C(t) & =\sum_{\alpha=1}^{4} \sum_{\mathbf{x}}\left\langle\mathcal{O}_{\alpha}^{\dagger}(t, \mathbf{x}) \mathcal{O}_{\alpha}(0)\right\rangle \\
\mathcal{O}_{\alpha}(t, \mathbf{x}) & =\left[\bar{\psi}_{b}(t, \mathbf{x}) \gamma_{5} \Omega(t, \mathbf{x})\right]_{\alpha} \chi_{\ell}(t, \mathbf{x}), \\
\Omega(t, \mathbf{x}) & \equiv \gamma_{1}^{x_{1}} \gamma_{2}^{x_{2}} \gamma_{3}^{x_{3}} \gamma_{4}^{t}
\end{aligned}
$$

- Fitting function

$$
\begin{aligned}
f(t)=g(t)+ & g(T-t) \\
g(t)=A_{0} e^{-E_{0} t}[& {\left[1+R_{2} e^{-\Delta E_{2} t}\left(1+R_{4} e^{-\Delta E_{4} t}(1+\cdots)\right)\right.} \\
& \left.\quad-(-1)^{t} R_{1} e^{-\Delta E_{1} t}\left(1+R_{3} e^{-\Delta E_{3} t}(1+\cdots)\right)\right]
\end{aligned}
$$

where $R_{i}=\frac{A_{i}}{A_{i-2}}, \Delta E_{i}=E_{i}-E_{i-2}, A_{-1}=A_{0}$ and $E_{-1}=E_{0}$.

Effective mass plot

$$
\begin{aligned}
& \text { (2.2 } \\
& m_{\mathrm{eff}}^{(j)}(t)=\frac{1}{j} \ln \left(\frac{C(t)}{C(t+j)}\right)
\end{aligned}
$$

Motivation: we determine fit range for $1+0$ fit

$$
21 \leq t \leq 29
$$

Results for $1+0$ fit

Motivation: we provide fitting results for $1+0$ fit.

- Fitting function:

$$
\begin{aligned}
& f(t)=g(t)+g(T-t) \\
& g(t)=A_{0} e^{-E_{0} t}
\end{aligned}
$$

- Fit results:

parameter	$\mathbf{p}=(0,0,0)$
A_{0}	$0.0182(29)$
E_{0}	$2.0468(76)$
$\chi^{2} /$ d.o.f.	$0.319(14)$

Residual plot of $1+0$ fit

(1) Blue solid line represents the fit range $(21 \leq t \leq 29)$.

$$
r(t)=\frac{C(t)-f(t)}{|C(t)|}
$$

$C(t)$: correlator data, $\quad f(t)$: fitting function
(2) Motivation: we want to determine the next fitting.

Data for $t \leq 21$ oscillate $\rightarrow 1+1$ fit.

Step up from $1+0$ fit to $1+1$ fit

Motivation: we step up from $1+0$ to $1+1$ fit.
(1) $1+1$ fitting function

$$
\begin{aligned}
& f(t)=g(t)+g(T-t) \\
& g(t)=A_{0} e^{-E_{0} t}\left(1-(-1)^{t} R_{1} e^{-\Delta E_{1} t}\right)
\end{aligned}
$$

where $\Delta E_{1}=E_{1}-E_{0}$ and $R_{1}=\frac{A_{1}}{A_{0}}$.
(2) Use the $1+0$ fit results for A_{0} and E_{0} as the prior information for $1+1$ fit.

Determination of prior width for $1+1$ fit

(1) Effective mass: $m_{\text {eff }}^{(j)}(t)=\frac{1}{j} \ln \left(\frac{C(t)}{C(t+j)}\right)$
(2) Magenta solid (dotted) line: average (error) of $1+0$ fit.
(3) Red dotted line: prior width for E_{0}.
(9) Motivation: we choose the maximal fluctuation of effective mass as prior width for E_{0}.

Results for $1+1$ fit

Motivation: we provide fitting results for $1+1$ fit.
(1) $1+1$ fitting function:

$$
\begin{aligned}
& f(t)=g(t)+g(T-t) \\
& g(t)=A_{0} e^{-E_{0} t}\left(1-(-1)^{t} R_{1} e^{-\Delta E_{1} t}\right)
\end{aligned}
$$

where $\Delta E_{1}=E_{1}-E_{0}$ and $R_{1}=\frac{A_{1}}{A_{0}}$.
(2) Fit results:

parameter	$\mathbf{p}=(0,0,0)$	prior	width
A_{0}	$0.01724(52)$	$0.0182(144)$	5.0σ
E_{0}	$2.0448(22)$	$2.0468(1101)$	14.53σ
R_{1}	$3.5(58)$		
ΔE_{1}	$0.36(12)$		
$\chi^{2} /$ d.o.f.	$0.2306(80)$		

Residual plot of $1+1$ fit

(1) Blue solid line represents the fit range $(13 \leq t \leq 29)$.

$$
r(t)=\frac{C(t)-f(t)}{|C(t)|}
$$

$C(t)$: correlator data, $\quad f(t)$: fitting function
(2) Motivation: we want to determine the next fitting.

Data for $t \leq 13$ oscillate $\rightarrow 2+2$ fit.

Fitting function for $2+2$ fit

Motivation: we provide $2+2$ fitting function.
(1) $2+2$ fitting function

$$
\begin{aligned}
& f(t)=g(t)+g(T-t) \\
& g(t)=A_{0} e^{-E_{0} t}\left[1+R_{2} e^{-\Delta E_{2} t}\right. \\
& \left.\quad \quad-(-1)^{t} R_{1} e^{-\Delta E_{1} t}\left(1+R_{3} e^{-\Delta E_{3} t}\right)\right]
\end{aligned}
$$

where $\Delta E_{2}=E_{2}-E_{0}, \Delta E_{1}=E_{1}-E_{0}, \Delta E_{3}=E_{3}-E_{1}$,
$R_{2}=\frac{A_{2}}{A_{0}}, R_{1}=\frac{A_{1}}{A_{0}}$ and $R_{3}=\frac{A_{3}}{A_{1}}$.
(2) Use $1+1$ fit results for $A_{0}, E_{0}, R_{1}, \Delta E_{1}$ as the prior information for the $2+2$ fit.

Numerical precision problem on covariance matrix

During the $1+1$ fit data analysis, we found a problem.
(1) Problem: covariance matrix inversion did not work with many time slices (e.g. $15 \leq t \leq 29$).

- Inversed covariance matrix is used in χ^{2}.

$$
\chi^{2}=\left[C\left(t_{i}\right)-f\left(t_{i}\right)\right] V^{-1}\left(t_{i}, t_{j}\right)\left[C\left(t_{j}\right)-f\left(t_{j}\right)\right]
$$

(2) Reason:
$\lambda_{L}=$ largest eigenvalue of $V \cong 10^{-35}$
$\lambda_{S}=$ smallest eigenvalue of $V \cong 10^{-60}$
(3) Solution:

1) rescaling method
2) correlation matrix method

Solution 1: rescaling method

(1) Step 1: determine $R(t)$, the rescaling factor,

$$
R(t)=A_{0}^{\text {rsc }} \exp \left[-E_{0}^{\mathrm{rsc}} t\right]+A_{0}^{\mathrm{rsc}} \exp \left[-E_{0}^{\mathrm{rsc}}(T-t)\right]
$$

with a fit range (e.g. $23 \leq t \leq 29$).
(2) Step 2: rescale the correlator value so that $\tilde{C}(t)=C(t) / R(t)$, and get rescaled covariance matrix $\tilde{V}\left(t_{i}, t_{j}\right)$.
(3) Step 3: in the χ^{2}-minimizer, fitting function $f(t)$ should also be rescaled by $R(t)$,

$$
\chi^{2}=\left[\tilde{C}\left(t_{i}\right)-\tilde{f}\left(t_{i}\right)\right] \tilde{V}^{-1}\left(t_{i}, t_{j}\right)\left[\tilde{C}\left(t_{j}\right)-\tilde{f}\left(t_{j}\right)\right]
$$

that is, $R(t)$ must not change the final fitting result.
(9) This method solves the numerical precision problem.

Solution 2: correlation matrix method

(1) Step 1: For given covariance matrix $V\left(t_{i}, t_{j}\right)$, obtain correlation matrix

$$
\rho\left(t_{i}, t_{j}\right)=\frac{V\left(t_{i}, t_{j}\right)}{\sigma\left(t_{i}\right) \sigma\left(t_{j}\right)}
$$

where $\sigma\left(t_{i}\right)=\sqrt{V\left(t_{i}, t_{i}\right)}$.
(2) Step 2: The inversed covariance matrix is

$$
V^{-1}\left(t_{i}, t_{j}\right)=\operatorname{diag}\left[\frac{1}{\sigma\left(t_{i}\right)}\right] \rho^{-1}\left(t_{i}, t_{j}\right) \operatorname{diag}\left[\frac{1}{\sigma\left(t_{j}\right)}\right]
$$

(3) This method also solves the numerical precision problem.

Comparison

Motivation: we compare the two methods.

- $1+1$ fit result with fit range $13 \leq t \leq 29$

parameter	rescaling	correlation
A_{0}	$0.01724(52)$	$0.01724(52)$
E_{0}	$2.0448(22)$	$2.0448(22)$
R_{1}	$3.5(58)$	$3.5(58)$
ΔE_{1}	$0.36(12)$	$0.36(12)$
$\chi^{2} /$ d.o.f.	$0.2306(80)$	$0.2306(80)$
run time	$\mathbf{7 3 . 3 s}$	$\mathbf{7 2 . 8 s}$

- Both methods give the same fitting results.
- Correlation matrix method is slightly faster (0.7 \%) than rescaling method but this difference is negligible.
- Both methods are good.

Fitting function for $2+2$ fit

Motivation: we provide $2+2$ fitting function.
(1) Use $1+1$ fit results on $A_{0}, E_{0}, R_{1}, \Delta E_{1}$ as the prior information for the $2+2$ fit.
(2) $2+2$ fitting function

$$
\begin{aligned}
& f(t)=g(t)+g(T-t) \\
& g(t)=A_{0} e^{-E_{0} t}\left[1+R_{2} e^{-\Delta E_{2} t}\right. \\
& \left.\quad \quad-(-1)^{t} R_{1} e^{-\Delta E_{1} t}\left(1+R_{3} e^{-\Delta E_{3} t}\right)\right]
\end{aligned}
$$

where $\Delta E_{2}=E_{2}-E_{0}, \Delta E_{1}=E_{1}-E_{0}, \Delta E_{3}=E_{3}-E_{1}$,
$R_{2}=\frac{A_{2}}{A_{0}}, R_{1}=\frac{A_{1}}{A_{0}}$ and $R_{3}=\frac{A_{3}}{A_{1}}$.

Stability test on A_{0} and E_{0} (at $2+2$ fit)

- Motivation: we find stable prior width for A_{0} and E_{0}.
- X-axis tics: $\sigma_{A_{0}}^{\text {prior }}=(10 \sigma, 20 \sigma, 30 \sigma, 33.1 \sigma($ signal cut: $N / S=1))$
- symbol color: $\sigma_{E_{0}}^{\text {prior }}=(10 \sigma, 20 \sigma, 30 \sigma, 40 \sigma)$.
- Y-axis: $2+2$ fit results for E_{0} at $\left(\sigma_{A_{0}}^{\text {prior }}, \sigma_{E_{0}}^{\text {prior }}\right)$ in $10 \leq t \leq 29$

- Stability test: find smallest possible $\sigma^{\text {prior }}$ giving stable error.

$$
\rightarrow\left(\sigma_{A_{0}}^{\text {prior }}, \sigma_{E_{0}}^{\text {prior }}\right)=(30 \sigma, 20 \sigma) .
$$

Results for $2+2$ fit

Motivation: we provide fitting results for $2+2$ fit.

parameter	$\mathbf{p}=(0,0,0)$	prior	width
A_{0}	$0.0161(35)$	$0.01724(1562)$	30.0σ
E_{0}	$2.0418(81)$	$2.0448(449)$	20.0σ
R_{1}	$0.64(24)$	$3.5(35)$	0.61σ
ΔE_{1}	$0.240(31)$	$0.36(36)$	2.96σ
R_{2}	$0.24(21)$		
ΔE_{2}	$0.15(25)$		
R_{3}	$0.033(75)$		
ΔE_{3}	$0.5(36)$		
$\chi^{2} /$ d.o.f.	$0.3668(91)$		

- Stability test: find smallest possible $\sigma^{\text {prior }}$ giving stable error.

$$
\rightarrow\left(\sigma_{A_{0}}^{\text {prior }}, \sigma_{E_{0}}^{\text {prior }}\right)=(30 \sigma, 20 \sigma)
$$

- No stability test for R_{1} and ΔE_{1}, because their N / S results are $\operatorname{not} \operatorname{good}(N / S>1)$

Residual plot of $2+2$ fit

(1) Blue solid line represents the fitting range $(10 \leq t \leq 29)$.

$$
r(t)=\frac{C(t)-f(t)}{|C(t)|}
$$

$C(t)$: correlator data, $\quad f(t)$: fitting function
(2) Motivation: we want to determine the next fitting.

Data for $t \leq 10$ behave exponentially $\rightarrow 3+2$ fit.

Problem in initial guess ($3+2$ fit)

Motivation: we want to fix the problem on initial guess for the χ^{2}-minimizer.
(1) Problem:
(A) The old initial guess for χ^{2} minimizer does not come from data.
(B) If no prior is given, the old initial guess is

$$
\begin{aligned}
R_{2 j} & =2.5 j \\
R_{2 j-1} & =0.025 j \\
\Delta E_{2 j}=\Delta E_{2 j-1} & =0.1 E_{0}
\end{aligned}
$$

(c) For example, in $3+2$ fit, $R_{4}=2.5 \times 2=5.0, \Delta E_{4}=0.1 E_{0}$, regardless of the data. \rightarrow slow down the fitting code.
(D) In our fitting, $R_{i} \lesssim 1$. \rightarrow The problem gets worse with larger j.
(2) Solution: The new initial guess must come from data.
\rightarrow Newton's method

Newton's method for initial guess

Motivation: we use Newton's method for initial guess.
(1) We have already determined eight fit parameters from $2+2$ fit.
(2) For $3+2$ fit, two more fit parameters, R_{4} and ΔE_{4}, should be determined by initial guess.
(3) For given time slices t_{1}, t_{2}, we solve the following equations using Newton's method

$$
\begin{aligned}
& f\left(t_{1}\right)=C\left(t_{1}\right) \\
& f\left(t_{2}\right)=C\left(t_{2}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& f(t)=\text { fitting function for } 3+2 \text { fit } \\
& C(t)=\text { correlator data }
\end{aligned}
$$

(9) Solution: the initial guess comes from data. \leftarrow Newton's method

To-do List

- We have applied Newton's method to initial guess for $1+1$ fit. \rightarrow speed up by $\approx 10 \%$.
- Similarly, we plan to implement Newton's method up to $3+3$ fit.
- Hence, we want to obtain initial guess directly from the data.
- Results of this data analysis will be used as input parameters to fit data of decay constants and semileptonic form factors.
- We need to do the non-perturbative renormalization (NPR) for the OK action to get the physical results for the decay constants and semileptonic form factors.

Thank you so much for your attention!

