Data analysis on two-point correlation function with sequential Bayesian method

Benjamin J. Choi (Speaker) Tanmoy Bhattacharya, Rajan Gupta, Yong-Chull Jang, Seungyeob Jwa, Sunkyu Lee, Weonjong Lee, Jeonghwan Pak and Sungwoo Park (LANL-SWME Collaboration)

> Lattice Gauge Theory Research Center Department of Physics and Astronomy Seoul National University

> LATTICE 2021 MIT via Zoom 21:45 EDT, July 29, 2021

• To find decay constants (e.g. $f_{B_{(s)}}$, $f_{D_{(s)}}$, \cdots) and semileptonic form factor (e.g. $h_{A_1}(w)$, $h_{A_2}(w)$, \cdots), the data analysis on the 2-point correlation function should be done first.

• The data analysis should determine not only the ground state but also the excited states.

- Step 1: Do the 1st fitting. ex) 1+0 fit (2 parameters)
- Step 2: Feed the results as prior information for the 2nd fitting. ex) 1+1 fit (4 parameters + 2 prior information)
- Step 3: Do stability test and find optimal prior information.
- Step 4: Move the 2nd fitting results into the 1st fitting.
- Step 5: Make the next fitting (e.g. 2+1 fit) the 2nd fitting.
- Step 6: Go back to "Step 2".

Motivation: we provide information on sea and valance quarks.

• MILC HISQ ensemble with $N_f = 2 + 1 + 1$ [PRD **87** 054505] Example of this talk: a12m220 (Ensemble ID)

· · ·		M_{π} (MeV)				. 0
0.1184(10)	$32^{3} \times 64$	216.9(2)	0.00507	0.0507	0.628	1000

Observe the second second

• HISQ action parameter for valance light quark $m_x = m_s = 0.0507$

Correlator fit

Motivation: fitting functional form

• 2-point correlation function for B meson [PoS(LAT2019)050]

$$\begin{split} \mathcal{C}(t) &= \sum_{\alpha=1}^{4} \sum_{\mathbf{x}} \left\langle \mathcal{O}_{\alpha}^{\dagger}(t,\mathbf{x}) \mathcal{O}_{\alpha}(0) \right\rangle \,, \\ \mathcal{O}_{\alpha}(t,\mathbf{x}) &= \left[\bar{\psi}_{b}(t,\mathbf{x}) \gamma_{5} \Omega(t,\mathbf{x}) \right]_{\alpha} \chi_{\ell}(t,\mathbf{x}) \,, \\ \Omega(t,\mathbf{x}) &\equiv \gamma_{1}^{x_{1}} \gamma_{2}^{x_{2}} \gamma_{3}^{x_{3}} \gamma_{4}^{t} \,, \end{split}$$

• Fitting function

$$f(t) = g(t) + g(T - t)$$

$$g(t) = A_0 e^{-E_0 t} \left[1 + R_2 e^{-\Delta E_2 t} \left(1 + R_4 e^{-\Delta E_4 t} (1 + \cdots) \right) - (-1)^t R_1 e^{-\Delta E_1 t} \left(1 + R_3 e^{-\Delta E_3 t} (1 + \cdots) \right) \right]$$

where
$$R_i = \frac{A_i}{A_{i-2}}$$
, $\Delta E_i = E_i - E_{i-2}$, $A_{-1} = A_0$ and $E_{-1} = E_0$.

Effective mass plot

Motivation: we determine fit range for 1+0 fit $21 \le t \le 29$.

Motivation: we provide fitting results for 1+0 fit.

• Fitting function:

$$f(t) = g(t) + g(T - t)$$
$$g(t) = A_0 e^{-E_0 t}$$

• Fit results:

parameter	p = (0, 0, 0)	
A ₀	0.0182(29)	
E_0	2.0468(76)	
$\chi^2/d.o.f.$	0.319(14)	

Residual plot of 1+0 fit

1 Blue solid line represents the fit range $(21 \le t \le 29)$.

$$r(t) = \frac{C(t) - f(t)}{|C(t)|}$$

C(t): correlator data , f(t): fitting function
Motivation: we want to determine the next fitting. Data for t ≤ 21 oscillate → 1+1 fit. **Motivation:** we step up from 1+0 to 1+1 fit.

1+1 fitting function

$$f(t) = g(t) + g(T - t)$$
$$g(t) = A_0 e^{-E_0 t} (1 - (-1)^t R_1 e^{-\Delta E_1 t})$$
where $\Delta E_1 = E_1 - E_0$ and $R_1 = \frac{A_1}{A_0}$.

Use the 1+0 fit results for A₀ and E₀ as the prior information for 1+1 fit.

Determination of prior width for 1+1 fit

• Effective mass: $m_{\text{eff}}^{(j)}(t) = \frac{1}{j} \ln \left(\frac{C(t)}{C(t+j)} \right)$

- Magenta solid (dotted) line: average (error) of 1+0 fit.
- Sed dotted line: prior width for E₀.
- Motivation: we choose the maximal fluctuation of effective mass as prior width for E₀.

Motivation: we provide fitting results for 1+1 fit. **1**+1 fitting function:

$$f(t) = g(t) + g(T - t)$$

$$g(t) = A_0 e^{-E_0 t} (1 - (-1)^t R_1 e^{-\Delta E_1 t})$$

where
$$\Delta E_1 = E_1 - E_0$$
 and $R_1 = \frac{A_1}{A_0}$.

2 Fit results:

parameter	p = (0, 0, 0)	prior	width
A_0	0.01724(52)	0.0182(144)	5.0σ
E_0	2.0448(22)	2.0468(1101)	14.53σ
R_1	3.5(58)		
ΔE_1	0.36(12)		
$\chi^2/{ m d.o.f.}$	0.2306(80)		

Residual plot of 1+1 fit

1 Blue solid line represents the fit range $(13 \le t \le 29)$.

$$r(t) = \frac{C(t) - f(t)}{|C(t)|}$$

C(t): correlator data , f(t): fitting function
Motivation: we want to determine the next fitting. Data for t ≤ 13 oscillate → 2+2 fit. **Motivation:** we provide 2+2 fitting function.

2+2 fitting function

$$f(t) = g(t) + g(T - t)$$

$$g(t) = A_0 e^{-E_0 t} [1 + R_2 e^{-\Delta E_2 t} - (-1)^t R_1 e^{-\Delta E_1 t} (1 + R_3 e^{-\Delta E_3 t})]$$

where
$$\Delta E_2 = E_2 - E_0$$
, $\Delta E_1 = E_1 - E_0$, $\Delta E_3 = E_3 - E_1$,
 $R_2 = \frac{A_2}{A_0}$, $R_1 = \frac{A_1}{A_0}$ and $R_3 = \frac{A_3}{A_1}$.

2 Use 1+1 fit results for A_0 , E_0 , R_1 , ΔE_1 as the prior information for the 2+2 fit.

During the 1+1 fit data analysis, we found a problem.

- Problem: covariance matrix inversion did not work with many time slices (e.g. $15 \le t \le 29$).
 - Inversed covariance matrix is used in χ^2 .

$$\chi^2 = [C(t_i) - f(t_i)] V^{-1}(t_i, t_j) [C(t_j) - f(t_j)]$$

2 Reason:

$$\lambda_L =$$
largest eigenvalue of $V \cong 10^{-35}$

 $\lambda_S =$ smallest eigenvalue of $V \cong 10^{-60}$

Solution:

- 1) rescaling method
- 2) correlation matrix method

Solution 1: rescaling method

Step 1: determine R(t), the rescaling factor,

$$R(t) = A_0^{\text{rsc}} \exp[-E_0^{\text{rsc}}t] + A_0^{\text{rsc}} \exp[-E_0^{\text{rsc}}(T-t)]$$

with a fit range (e.g. $23 \le t \le 29$).

- Step 2: rescale the correlator value so that $\tilde{C}(t) = C(t)/R(t)$, and get rescaled covariance matrix $\tilde{V}(t_i, t_i)$.
- Step 3: in the χ²-minimizer, fitting function f(t) should also be rescaled by R(t),

$$\chi^2 = \left[\tilde{C}(t_i) - \tilde{f}(t_i)\right]\tilde{V}^{-1}(t_i, t_j)\left[\tilde{C}(t_j) - \tilde{f}(t_j)\right],$$

that is, R(t) must not change the final fitting result.

This method solves the numerical precision problem.

Solution 2: correlation matrix method

Step 1: For given covariance matrix V(t_i, t_j), obtain correlation matrix

$$\rho(t_i, t_j) = \frac{V(t_i, t_j)}{\sigma(t_i)\sigma(t_j)}$$

where $\sigma(t_i) = \sqrt{V(t_i, t_i)}$.

Step 2: The inversed covariance matrix is

$$V^{-1}(t_i, t_j) = \operatorname{diag}\left[rac{1}{\sigma(t_i)}
ight]
ho^{-1}(t_i, t_j) \operatorname{diag}\left[rac{1}{\sigma(t_j)}
ight]$$

Solution of the second seco

Motivation: we compare the two methods.

• 1+1 fit result with fit range $13 \le t \le 29$

$\frac{\Delta E_1}{\chi^2/\text{d.o.f.}}$	0.36(12)	0.36(12)
R_1	3.5(58)	3.5(58)
E_0	2.0448(22)	2.0448(22)
A ₀	0.01724(52)	0.01724(52)
parameter	rescaling	correlation

- Both methods give the same fitting results.
- Correlation matrix method is slightly faster (0.7 %) than rescaling method but this difference is negligible.
- Both methods are good.

Motivation: we provide 2+2 fitting function.

- Use 1+1 fit results on A_0 , E_0 , R_1 , ΔE_1 as the prior information for the 2+2 fit.
- 2+2 fitting function

$$f(t) = g(t) + g(T - t)$$

$$g(t) = A_0 e^{-E_0 t} [1 + R_2 e^{-\Delta E_2 t} - (-1)^t R_1 e^{-\Delta E_1 t} (1 + R_3 e^{-\Delta E_3 t})]$$

where
$$\Delta E_2 = E_2 - E_0$$
, $\Delta E_1 = E_1 - E_0$, $\Delta E_3 = E_3 - E_1$,
 $R_2 = \frac{A_2}{A_0}$, $R_1 = \frac{A_1}{A_0}$ and $R_3 = \frac{A_3}{A_1}$.

Stability test on A_0 and E_0 (at 2+2 fit)

- Motivation: we find stable prior width for A_0 and E_0 .
- X-axis tics: $\sigma_{A_0}^{\text{prior}} = (10\sigma, 20\sigma, 30\sigma, 33.1\sigma(\text{signal cut: } N/S = 1))$
- symbol color: $\sigma_{E_0}^{\text{prior}} = (10\sigma, 20\sigma, 30\sigma, 40\sigma).$

• Stability test: find smallest possible σ^{prior} giving stable error. $\rightarrow (\sigma_{A_0}^{\text{prior}}, \sigma_{E_0}^{\text{prior}}) = (30\sigma, 20\sigma).$ **Motivation:** we provide fitting results for 2+2 fit.

parameter	$\mathbf{p} = (0, 0, 0)$	prior	width
A ₀	0.0161(35)	0.01724(1562)	30.0σ
E_0	2.0418(81)	2.0448(449)	20.0σ
R_1	0.64(24)	3.5(35)	0.61σ
ΔE_1	0.240(31)	0.36(36)	2.96σ
R_2	0.24(21)		
ΔE_2	0.15(25)		
R_3	0.033(75)		
ΔE_3	0.5(36)		
$\chi^2/{ m d.o.f.}$	0.3668(91)		

- Stability test: find smallest possible σ^{prior} giving stable error. $\rightarrow (\sigma_{A_0}^{\text{prior}}, \sigma_{E_0}^{\text{prior}}) = (30\sigma, 20\sigma).$
- No stability test for R_1 and ΔE_1 , because their N/S results are not good (N/S>1)

Residual plot of 2+2 fit

1 Blue solid line represents the fitting range $(10 \le t \le 29)$.

$$r(t) = \frac{C(t) - f(t)}{|C(t)|}$$

C(t): correlator data, f(t): fitting function
Motivation: we want to determine the next fitting. Data for t ≤ 10 behave exponentially → 3 + 2 fit.

Problem in initial guess (3+2 fit)

Motivation: we want to fix the problem on initial guess for the $\chi^2\text{-minimizer.}$

Problem:

- Solution The old initial guess for χ^2 minimizer does not come from data.
- If no prior is given, the old initial guess is

$$R_{2j} = 2.5 \ j$$

 $R_{2j-1} = 0.025 \ j$
 $\Delta E_{2j} = \Delta E_{2j-1} = 0.1 E_0$

- For example, in 3+2 fit, $R_4 = 2.5 \times 2 = 5.0$, $\Delta E_4 = 0.1 E_0$, regardless of the data. \rightarrow slow down the fitting code.
- **(**) In our fitting, $R_i \leq 1$. \rightarrow The problem gets worse with larger *j*.

Solution: The new initial guess must come from data. → Newton's method Motivation: we use Newton's method for initial guess.

- We have already determined eight fit parameters from 2+2 fit.
- Por 3+2 fit, two more fit parameters, R₄ and ΔE₄, should be determined by initial guess.
- Sor given time slices t₁, t₂, we solve the following equations using Newton's method

 $f(t_1) = C(t_1)$ $f(t_2) = C(t_2)$

where

$$f(t) =$$
 fitting function for 3+2 fit
 $C(t) =$ correlator data

Solution: the initial guess comes from data. ← Newton's method

To-do List

- We have applied Newton's method to initial guess for 1+1 fit. \rightarrow speed up by \approx 10 %.
- Similarly, we plan to implement Newton's method up to 3+3 fit.
- Hence, we want to obtain initial guess directly from the data.
- Results of this data analysis will be used as input parameters to fit data of decay constants and semileptonic form factors.
- We need to do the non-perturbative renormalization (NPR) for the OK action to get the physical results for the decay constants and semileptonic form factors.

Thank you so much for your attention!