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Motivation

To find decay constants (e.g. fB(s)
, fD(s)

, · · · ) and semileptonic
form factor (e.g. hA1(w), hA2(w), · · · ), the data analysis on the
2-point correlation function should be done first.

The data analysis should determine not only the ground state but
also the excited states.
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Sequential Bayesian method

1 Step 1: Do the 1st fitting. ex) 1+0 fit (2 parameters)

2 Step 2: Feed the results as prior information for the 2nd fitting.
ex) 1+1 fit (4 parameters + 2 prior information)

3 Step 3: Do stability test and find optimal prior information.

4 Step 4: Move the 2nd fitting results into the 1st fitting.

5 Step 5: Make the next fitting (e.g. 2 + 1 fit) the 2nd fitting.

6 Step 6: Go back to “Step 2”.

7 ex) 1+0 → 1+1 → 2+1 → 2+2 → 3+2 → · · ·
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Measurement information

Motivation: we provide information on sea and valance quarks.

1 MILC HISQ ensemble with Nf = 2 + 1 + 1 [PRD 87 054505]
Example of this talk: a12m220 (Ensemble ID)

a (fm) N3
s × Nt Mπ (MeV) aml ams amc Ncfg

0.1184(10) 323 × 64 216.9(2) 0.00507 0.0507 0.628 1000

2 Hopping parameter of Oktay-Kronfeld action for valance b quark
κcrit = 0.051218
κb = 0.04070

3 HISQ action parameter for valance light quark
mx = ms = 0.0507
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Correlator fit

Motivation: fitting functional form

2-point correlation function for B meson [PoS(LAT2019)050]

C (t) =
4∑

α=1

∑
x

〈
O†

α(t, x)Oα(0)
〉
,

Oα(t, x) =
[
ψ̄b(t, x)γ5Ω(t, x)

]
α
χℓ(t, x) ,

Ω(t, x) ≡ γ x1
1 γ x2

2 γ x3
3 γ t

4 ,

Fitting function

f (t) = g(t) + g(T − t)

g(t) = A0e
−E0t

[
1 + R2e

−∆E2t
(
1 + R4e

−∆E4t(1 + · · · )
)

−(−1)tR1e
−∆E1t

(
1 + R3e

−∆E3t(1 + · · · )
)]

where Ri =
Ai

Ai−2
, ∆Ei = Ei − Ei−2, A−1 = A0 and E−1 = E0.
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Effective mass plot
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Motivation: we determine fit range for 1+0 fit

21 ≤ t ≤ 29.
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Results for 1+0 fit

Motivation: we provide fitting results for 1+0 fit.

Fitting function:

f (t) = g(t) + g(T − t)

g(t) = A0e
−E0t

Fit results:

parameter p = (0, 0, 0)

A0 0.0182(29)
E0 2.0468(76)

χ2/d.o.f. 0.319(14)
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Residual plot of 1+0 fit
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1 Blue solid line represents the fit range (21 ≤ t ≤ 29).

r(t) =
C (t)− f (t)

|C (t)|
C (t): correlator data , f (t): fitting function

2 Motivation: we want to determine the next fitting.
Data for t ≤ 21 oscillate → 1+1 fit.
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Step up from 1+0 fit to 1+1 fit

Motivation: we step up from 1+0 to 1+1 fit.

1 1+1 fitting function

f (t) = g(t) + g(T − t)

g(t) = A0e
−E0t(1− (−1)tR1e

−∆E1t)

where ∆E1 = E1 − E0 and R1 =
A1

A0
.

2 Use the 1+0 fit results for A0 and E0 as the prior information for
1+1 fit.
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Determination of prior width for 1+1 fit
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2 Magenta solid (dotted) line: average (error) of 1+0 fit.

3 Red dotted line: prior width for E0.

4 Motivation: we choose the maximal fluctuation of effective mass
as prior width for E0.
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Results for 1+1 fit

Motivation: we provide fitting results for 1+1 fit.

1 1+1 fitting function:

f (t) = g(t) + g(T − t)

g(t) = A0e
−E0t(1− (−1)tR1e

−∆E1t)

where ∆E1 = E1 − E0 and R1 =
A1

A0
.

2 Fit results:

parameter p = (0, 0, 0) prior width

A0 0.01724(52) 0.0182(144) 5.0σ
E0 2.0448(22) 2.0468(1101) 14.53σ
R1 3.5(58)

∆E1 0.36(12)

χ2/d.o.f. 0.2306(80)
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Residual plot of 1+1 fit
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C (t): correlator data , f (t): fitting function

2 Motivation: we want to determine the next fitting.
Data for t ≤ 13 oscillate → 2+2 fit.
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Fitting function for 2+2 fit

Motivation: we provide 2+2 fitting function.

1 2+2 fitting function

f (t) = g(t) + g(T − t)

g(t) = A0e
−E0t [1 + R2e

−∆E2t

− (−1)tR1e
−∆E1t(1 + R3e

−∆E3t)]

where ∆E2 = E2 − E0, ∆E1 = E1 − E0, ∆E3 = E3 − E1,

R2 =
A2

A0
, R1 =

A1

A0
and R3 =

A3

A1
.

2 Use 1+1 fit results for A0, E0, R1, ∆E1 as the prior information
for the 2+2 fit.
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Numerical precision problem on covariance matrix

During the 1+1 fit data analysis, we found a problem.

1 Problem: covariance matrix inversion did not work with many
time slices (e.g. 15 ≤ t ≤ 29).

Inversed covariance matrix is used in χ2.

χ2 = [C (ti )− f (ti )]V
−1(ti , tj) [C (tj)− f (tj)]

2 Reason:
λL = largest eigenvalue of V ∼= 10−35

λS = smallest eigenvalue of V ∼= 10−60

3 Solution:
1) rescaling method
2) correlation matrix method
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Solution 1: rescaling method

1 Step 1: determine R(t), the rescaling factor,

R(t) = Arsc
0 exp[−E rsc

0 t] + Arsc
0 exp[−E rsc

0 (T − t)]

with a fit range (e.g. 23 ≤ t ≤ 29).

2 Step 2: rescale the correlator value so that C̃ (t) = C (t)/R(t),
and get rescaled covariance matrix Ṽ (ti , tj).

3 Step 3: in the χ2-minimizer, fitting function f (t) should also be
rescaled by R(t),

χ2 =
[
C̃ (ti )− f̃ (ti )

]
Ṽ−1(ti , tj)

[
C̃ (tj)− f̃ (tj)

]
,

that is, R(t) must not change the final fitting result.

4 This method solves the numerical precision problem.
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Solution 2: correlation matrix method

1 Step 1: For given covariance matrix V (ti , tj), obtain correlation
matrix

ρ(ti , tj) =
V (ti , tj)

σ(ti )σ(tj)

where σ(ti ) =
√

V (ti , ti ).

2 Step 2: The inversed covariance matrix is

V−1(ti , tj) = diag

[
1

σ(ti )

]
ρ−1(ti , tj) diag

[
1

σ(tj)

]

3 This method also solves the numerical precision problem.
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Comparison

Motivation: we compare the two methods.

1+1 fit result with fit range 13 ≤ t ≤ 29

parameter rescaling correlation

A0 0.01724(52) 0.01724(52)
E0 2.0448(22) 2.0448(22)
R1 3.5(58) 3.5(58)

∆E1 0.36(12) 0.36(12)

χ2/d.o.f. 0.2306(80) 0.2306(80)

run time 73.3s 72.8s

Both methods give the same fitting results.

Correlation matrix method is slightly faster (0.7 %) than rescaling
method but this difference is negligible.

Both methods are good.
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Fitting function for 2+2 fit

Motivation: we provide 2+2 fitting function.

1 Use 1+1 fit results on A0, E0, R1, ∆E1 as the prior information
for the 2+2 fit.

2 2+2 fitting function

f (t) = g(t) + g(T − t)

g(t) = A0e
−E0t [1 + R2e

−∆E2t

− (−1)tR1e
−∆E1t(1 + R3e

−∆E3t)]

where ∆E2 = E2 − E0, ∆E1 = E1 − E0, ∆E3 = E3 − E1,

R2 =
A2

A0
, R1 =

A1

A0
and R3 =

A3

A1
.
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Stability test on A0 and E0 (at 2+2 fit)

Motivation: we find stable prior width for A0 and E0.

X -axis tics: σpriorA0
= (10σ, 20σ, 30σ, 33.1σ(signal cut: N/S = 1))

symbol color: σpriorE0
= (10σ, 20σ, 30σ, 40σ).

Y -axis: 2+2 fit results for E0 at (σpriorA0
, σpriorE0

) in 10 ≤ t ≤ 29
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E
0

prior width for A0

Stability test: find smallest possible σprior giving stable error.
→ (σpriorA0

, σpriorE0
) = (30σ, 20σ).
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Results for 2+2 fit

Motivation: we provide fitting results for 2+2 fit.

parameter p = (0, 0, 0) prior width

A0 0.0161(35) 0.01724(1562) 30.0σ
E0 2.0418(81) 2.0448(449) 20.0σ
R1 0.64(24) 3.5(35) 0.61σ

∆E1 0.240(31) 0.36(36) 2.96σ
R2 0.24(21)

∆E2 0.15(25)
R3 0.033(75)

∆E3 0.5(36)

χ2/d.o.f. 0.3668(91)

Stability test: find smallest possible σprior giving stable error.
→ (σpriorA0

, σpriorE0
) = (30σ, 20σ).

No stability test for R1 and ∆E1, because their N/S results are
not good (N/S > 1)
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Residual plot of 2+2 fit
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1 Blue solid line represents the fitting range (10 ≤ t ≤ 29).

r(t) =
C (t)− f (t)

|C (t)|
C (t): correlator data , f (t): fitting function

2 Motivation: we want to determine the next fitting.
Data for t ≤ 10 behave exponentially → 3 + 2 fit.
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Problem in initial guess (3+2 fit)

Motivation: we want to fix the problem on initial guess for the
χ2-minimizer.

1 Problem:
A The old initial guess for χ2 minimizer does not come from data.

B If no prior is given, the old initial guess is

R2j = 2.5 j

R2j−1 = 0.025 j

∆E2j = ∆E2j−1 = 0.1E0

C For example, in 3+2 fit, R4 = 2.5× 2 = 5.0, ∆E4 = 0.1 E0,
regardless of the data. → slow down the fitting code.

D In our fitting, Ri ≲ 1. → The problem gets worse with larger j .

2 Solution: The new initial guess must come from data.
→ Newton’s method
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Newton’s method for initial guess

Motivation: we use Newton’s method for initial guess.

1 We have already determined eight fit parameters from 2+2 fit.

2 For 3+2 fit, two more fit parameters, R4 and ∆E4, should be
determined by initial guess.

3 For given time slices t1, t2, we solve the following equations using
Newton’s method

f (t1) = C (t1)

f (t2) = C (t2)

where

f (t) = fitting function for 3+2 fit

C (t) = correlator data

4 Solution: the initial guess comes from data. ← Newton’s method



24/25

To-do List

We have applied Newton’s method to initial guess for 1+1 fit. →
speed up by ≈ 10 %.

Similarly, we plan to implement Newton’s method up to 3+3 fit.

Hence, we want to obtain initial guess directly from the data.

Results of this data analysis will be used as input parameters to
fit data of decay constants and semileptonic form factors.

We need to do the non-perturbative renormalization (NPR) for
the OK action to get the physical results for the decay constants
and semileptonic form factors.
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Thank you so much for your attention!


