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Motivation

e To find decay constants (e.g. fB(s), fD(s), -++) and semileptonic
form factor (e.g. ha,(w), ha,(w), ---), the data analysis on the
2-point correlation function should be done first.

@ The data analysis should determine not only the ground state but
also the excited states.



Sequential Bayesian method

@ Step 1: Do the 1st fitting. ex) 1+0 fit (2 parameters)

@ Step 2: Feed the results as prior information for the 2nd fitting.
ex) 141 fit (4 parameters + 2 prior information)

© Step 3: Do stability test and find optimal prior information.
@ Step 4: Move the 2nd fitting results into the 1st fitting.

© Step 5: Make the next fitting (e.g. 2 + 1 fit) the 2nd fitting.
@ Step 6: Go back to “Step 2".

@ ex) 140 — 141 - 241 -5 242 - 342 — - --



Measurement information

Motivation: we provide information on sea and valance quarks.

@ MILC HISQ ensemble with N =2+ 1+ 1 [PRD 87 054505]
Example of this talk: a12m220 (Ensemble ID)

a (fm) N2 x Ny | M, (MeV) | am, ams amg Netg
0.1184(10) | 32° x 64 | 216.9(2) | 0.00507 0.0507 0.628 | 1000

@ Hopping parameter of Oktay-Kronfeld action for valance b quark
Kerit = 0.051218
kp = 0.04070

© HISQ action parameter for valance light quark
m, = ms = 0.0507



Correlator fit

Motivation: fitting functional form
@ 2-point correlation function for B meson [PoS(LAT2019)050]
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where R,‘ = ) AE,' = E,' — E,',g, A_l = Ao and E_1 = Eo.




Effective mass plot
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Motivation: we determine fit range for 14-0 fit
21 <t <29.



Results for 140 fit

Motivation: we provide fitting results for 140 fit.

e Fitting function:

F(t) = g(t) +&(T —t)
g(t) = Aoe_Eot

o Fit results:

parameter

p =(0,0,0)

Ao
Eo

0.0182(29)
2.0468(76)

x?/d.o.f.

0.310(14)




Residual plot of 140 fit
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@ Blue solid line represents the fit range (21 < t < 29).
C(t) — (1)
r(t) = —————=
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C(t): correlator data , f(t): fitting function

@ Motivation: we want to determine the next fitting.
Data for t < 21 oscillate — 1+1 fit.



Step up from 14-0 fit to 141 fit

Motivation: we step up from 140 to 1+1 fit.

@ 1+1 fitting function
f(t) =g(t) +g(T —1t)
g(t) = Aoe’E"t(l — (—l)tRle’AElt)

A
where AE; = E; — Ey and Ry = /Tl'
0

@ Use the 1+0 fit results for Ay and Eg as the prior information for
1+1 fit.



Determination of prior width for 141 fit
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@ Effective mass: m(t) 7 n <C(t—|—j)

@ Magenta solid (dotted) line: average (error) of 14-0 fit.
© Red dotted line: prior width for Ep.

@ Motivation: we choose the maximal fluctuation of effective mass
as prior width for Eg.



Results for 1+1 fit

Motivation: we provide fitting results for 141 fit.
Q@ 1+1 fitting function:

f(t) =g(t) +&(T —1t)
g(t) = Age Bot(1 — (—1)tR e 2E1Y)

where AEl = E1 — EO and Rl = é
Ao
@ Fit results:
parameter | p = (0,0,0) | prior width
Ao | 0.01724(52) | 0.0182(144) 5.00
Eo | 2.0448(22) | 2.0468(1101) | 14.53¢
Ry | 3.5(58)
AE; | 0.36(12)
x?/d.o.f. | 0.2306(80)




Residual plot of 1+1 fit
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@ Blue solid line represents the fit range (13 < t < 29).
r(t) _ C(t) — f(t)
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C(t): correlator data , f(t): fitting function

@ Motivation: we want to determine the next fitting.
Data for t < 13 oscillate — 242 fit.



Fitting function for 242 fit

Motivation: we provide 242 fitting function.
@ 2+2 fitting function
f(t) =g(t) +&(T — 1)
g(t) = Age Bot[1 4 Rye 2B
_ (_1)tRle—AE1t(1 + R3e—AE3t)]
where AE2 = E2 — Eo, AEl = E1 — Eo, AE3 = E3 — El,
2 Ay As
2T A T A TR T A

@ Use 1+1 fit results for Ag, Eg, R1, AE; as the prior information
for the 242 fit.



Numerical precision problem on covariance matrix

During the 1+1 fit data analysis, we found a problem.

© Problem: covariance matrix inversion did not work with many
time slices (e.g. 15 <t < 29).
o Inversed covariance matrix is used in 2.

x> = [C(t) — F(t)] Vi, 8) [Cg) — F(57)]

@ Reason:
AL = largest eigenvalue of V 2210735
As = smallest eigenvalue of V =107

© Solution:
1) rescaling method
2) correlation matrix method



Solution 1: rescaling method

@ Step 1: determine R(t), the rescaling factor,
R(t) = ApC exp[—Ep>t] + AT  exp[—E> (T — t)]
with a fit range (e.g. 23 <t < 29).

© Step 2: rescale the correlator value so that C(t) = C(t)/R(1),
and get rescaled covariance matrix V/(t;, t;).

© Step 3: in the x?-minimizer, fitting function f(t) should also be
rescaled by R(t),

W = €)= ()] V7w 8) [ Et) - Fy)]
that is, R(t) must not change the final fitting result.

© This method solves the numerical precision problem.



Solution 2: correlation matrix method

@ Step 1: For given covariance matrix V/(t;, tj), obtain correlation
matrix

\/(t,', tj)

S OZ0)

where U(t,') =/ V(t,', t,').

@ Step 2: The inversed covariance matrix is

V=l(t;, ) = diag L(lt,)] p~ (i, tj) diag [

|

1
o(t))

© This method also solves the numerical precision problem.



Comparison

Motivation: we compare the two methods.
@ 1+1 fit result with fit range 13 <t < 29

parameter | rescaling correlation
Ao | 0.01724(52) | 0.01724(52)
Ep | 2.0448(22) | 2.0448(22)
R1 | 3.5(58) 3.5(58)
AE; | 0.36(12) 0.36(12)
x?/d.o.f. | 0.2306(80) | 0.2306(80)

run time \ 73.3s \ 72.8s

@ Both methods give the same fitting results.

e Correlation matrix method is slightly faster (0.7 %) than rescaling
method but this difference is negligible.

@ Both methods are good.



Fitting function for 242 fit

Motivation: we provide 242 fitting function.

@ Use 1+1 fit results on Ag, Ep, R1, AE; as the prior information
for the 2+2 fit.

@ 2+2 fitting function

f(t) = g(t) +&(T - 1)
g(t) = Aoe_EOt[l + Rge_AE2t
_ (_1)tRle—AE1t(1 + R3e—AE3t)]
WhereAAE2 = E2 — EQ, AEl = E1 — Eo, AE3 = E3 — El,
2

Ag Az
2 AO AYS AO an 3 Al



Stability test on Ag and Ey (at 2+2 fit)

@ Motivation: we find stable prior width for Ag and Eg.
e X-axis tics: apr'or = (100, 200, 300, 33.10(signal cut: N/S = 1))

@ symbol color: aZ”or = (100, 200, 300, 400).
o Y-axis: 242 fit results for Eg at (o p”°r ag'm) in10 <t <29
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@ Stability test: find smallest possible oP"or giving stable error.
— (ag‘gor, ogr'or) (300,200).



Results for 242 fit

Motivation: we provide fitting results for 24-2 fit.

parameter | p = (0,0,0) | prior width
Ao | 0.0161(35) | 0.01724(1562) | 30.00
Eo | 2.0418(81) | 2.0448(449) | 20.00

Ry | 0.64(24) 3.5(35) 0.61c
AE; | 0.240(31) | 0.36(36) 2.960
Ry | 0.24(21)

AE; | 0.15(25)
Rs | 0.033(75)
AE; | 0.5(36)
x?/d.o.f. | 0.3668(91)
@ Stability test: find smallest possible oP"r giving stable error.
— (af‘zor,og'or) = (300, 200).
@ No stability test for Ry and AE;, because their N/S results are
not good (N/S > 1)




Residual plot of 242 fit
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@ Bilue solid line represents the fitting range (10 < t < 29).
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C(t): correlator data , f(t): fitting function

@ Motivation: we want to determine the next fitting.
Data for t < 10 behave exponentially — 3 + 2 fit.



Problem in initial guess (3+2 fit)

Motivation: we want to fix the problem on initial guess for the
x2-minimizer.

@ Problem:

@ The old initial guess for x> minimizer does not come from data.

@ If no prior is given, the old initial guess is

Ryj =25
Ryj—1 =0.025
AEy; = AEyj_1 = 0.1E
@ For example, in 342 fit, Ry =25 x2=5.0, AE, = 0.1 Ep,
regardless of the data. — slow down the fitting code.
@ In our fitting, R; < 1. — The problem gets worse with larger ;.

@ Solution: The new initial guess must come from data.
— Newton’s method



Newton's method for initial guess

Motivation: we use Newton's method for initial guess.

@ We have already determined eight fit parameters from 242 fit.

@ For 342 fit, two more fit parameters, R4 and AE,, should be
determined by initial guess.

© For given time slices t1, t», we solve the following equations using
Newton’s method

where

f(t) = fitting function for 342 fit
C(t) = correlator data

@ Solution: the initial guess comes from data. <~ Newton’s method



To-do List

@ We have applied Newton's method to initial guess for 1+1 fit. —
speed up by ~ 10 %.

@ Similarly, we plan to implement Newton’'s method up to 3+3 fit.
@ Hence, we want to obtain initial guess directly from the data.

@ Results of this data analysis will be used as input parameters to
fit data of decay constants and semileptonic form factors.

@ We need to do the non-perturbative renormalization (NPR) for
the OK action to get the physical results for the decay constants
and semileptonic form factors.



Thank you so much for your attention!



