
Introduction
Results
Outlook

Semileptonic D → π`ν, D → K `ν and Ds → K `ν decays
with 2+1f domain wall fermions

Peter Boyle, Luigi Del Debbio, Felix Erben, Jonathan Flynn, Andreas Jüttner,
Michael Marshall, Antonin Portelli, J Tobias Tsang, Oliver Witzel

RBC/UKQCD

The 38th International Symposium on Lattice Field Theory

Michael Marshall Semileptonic D → π`ν, D → K`ν and Ds → K`ν with 2+1f DWF 1 / 22



Introduction
Results
Outlook

RBC/UKQCD Collaboration

UC Berkeley/LBNL
Aaron Meyer

Milano Bicocca
Mattia Bruno

BNL and BNL/RBRC
Yasumichi Aoki (KEK)
Peter Boyle (Edinburgh)
Taku Izubuchi
Yong-Chull Jang
Chulwoo Jung
Christopher Kelly
Meifeng Lin
Hiroshi Ohki
Shigemi Ohta (KEK)
Amarjit Soni

CERN
Andreas Jüttner
(Southampton)

Columbia University
Norman Christ
Duo Guo
Yikai Huo
Yong-Chull Jang
Joseph Karpie
Bob Mawhinney
Ahmed Sheta
Bigeng Wang
Tianle Wang
Yidi Zhao

University of Connecticut
Tom Blum
Luchang Jin (RBRC)
Michael Riberdy
Masaaki Tomii

Uni. of Southern Denmark
Tobias Tsang

Edinburgh University
Matteo Di Carlo
Luigi Del Debbio
Felix Erben
Vera Gülpers
Tim Harris
Raoul Hodgson
Michael Marshall
Fionn Ó hÓgáin
Antonin Portelli
James Richings
Azusa Yamaguchi
Andrew Z. N. Yong

KEK
Julien Frison

University of Liverpool
Nicolas Garron

MI State U.
Dan Hoying

Peking University
Xu Feng

University of Regensburg
Davide Giusti
Christoph Lehner (BNL)

University of Siegen
Matthew Black
Oliver Witzel

University of Southampton
Nils Asmussen
Alessandro Barone
Jonathan Flynn
Ryan Hill
Rajnandini Mukherjee
Chris Sachrajda

Stony Brook University
Jun-Sik Yoo
Sergey Syritsyn (RBRC)

Michael Marshall Semileptonic D → π`ν, D → K`ν and Ds → K`ν with 2+1f DWF 2 / 22



Introduction
Results
Outlook

Related RBC/UKQCD talks

Felix Erben: BSM B − B̄ mixing [Wed 06:15 EST]

Ryan Hill: Semileptonic form factors for B → π`ν decays [Thu 13:45 EST]

Jonathan Flynn: Form factors for semileptonic Bs → K and Bs → Ds decays [Thu 14:00 EST]

This work used the DiRAC Extreme Scaling HPC Service (https://www.dirac.ac.uk)

Data produced using Grid [1] and Hadrons [2]
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Heavy-light semileptonic decays
Lattice set up

Heavy-light semileptonic decays

We are studying exclusive semileptonic decays of D(s) mesons to K/π`ν final states.

We are computing the form factors parameterising these decays, over the entire physical q2 range.

When combined with data from experiments such as CLEO-c and BESIII, this will allow us to extract the CKM
matrix elements |Vcs| and |Vcd |.

Precise determinations of these quantities are interesting because ultimately they help constrain BSM physics.

Other collaborations are working towards the same aim, e.g. ETM [3] [4],
FermiLab/MILC [5], HPQCD [6] [7] [8] and JLQCD [9].

I present a complementary approach from RBC/UKQCD
using domain wall fermions.

D(s) K/π

ν`

`

c d/s

s/d

W

q = pf − pi

pi pf
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Heavy-light semileptonic decays
Lattice set up

Lattice setup

All domain-wall fermions

RBC-UKQCD 2+1 flavour [10]

Stout-smeared Möebius charm

Shamir strange and down

cs/d

s/d

Γµ

q, t

Γsink Γsource

t ′, pipf , t ′ + ∆T

Exploratory, two-point study

• Z2 [11] stochastic average point-like sources

• Coulomb gauge-fixed wall-sources

• “Point-wall” diagonalisation

• I.e. optimal linear combination to remove excited-states

• C1: a−1 = 1.785(5) GeV; ( L/a )3 · T /a = 243 · 64; mπ ≈ 340MeV
• 35 configurations × 16 timeslices

First three-point results

• D → π`ν, D → K `ν and Ds → K `ν

• M1: a−1 = 2.383(9) GeV; ( L/a )3 · T /a = 323 · 64; mπ ≈ 304MeV
• 128 configurations × 1 timeslice
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Point-wall diagonalisation study
First three-point results – R1 and R2 ratios

Point-wall diagonalisation – good results from two-point studies

Two-point correlation functions for point/wall
interpolating operators with overlap
coefficients Af ,n = 〈Ω|Ôf |n〉

C(2)
fi (t) =

∞∑
n=0

Af ,nA∗i,n
2En

(
e−En t ± e−En(T−t)

)
Linear combinations can be formed to
reduce excited-state contamination

C(2)
mixed (t) =

CPP

AP,1
−

CWP

AW ,1

Exploratory study found mixed operators

Plateau earlier than their components

Compatible with published results

Showed far smaller error
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Point-wall diagonalisation study
First three-point results – R1 and R2 ratios

Point-wall diagonalisation – no clear improvement over wall-sources
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Heavy-light three-point functions with current Vµ have the form

C(3)
i→f (∆T , t) =

∞∑
m,n=0

Af ,mAi,n

4Ef ,mEi,n
〈Pf ,m|Vµ|Pi , n〉 e−(Ei,n−Ef ,m)t e−Ef ,m∆T

Linear combinations can again be formed

C3
mixed ≈

(γP + δW ) (αP + βW )

4Ef Ei
〈Pf |Vµ|Pi 〉 e−(Ei−Ef )t e−Ef ∆T

We introduced tunable mixing angles φ at sink and θ and source

α =
cos θ

Pi1
β =

sin θ

Wi1
γ =

cosφ

Pf1
δ =

sin θ

Wf1

but found that the optimal mixing angle involved using wall only
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Point-wall diagonalisation study
First three-point results – R1 and R2 ratios

Ratios used to examine three-point data

Preliminary

Preliminary

Correlators are constructed for vector current decays
(q = pf − pi is the momentum transfer to the lepton pair, and ~p = 2π

L
~n )

〈Pf (pf )|Vµ
(

q2
)
|Pi (pi )〉 = f+

(
q2
)

(pi + pf )µ + f−
(

q2
)

(pi − pf )µ

We construct (symmetric) double-ratios to extract the matrix element [12]

Rµα (pi , pi ) = 2

√
Ei Ef

Dα

√
Cµi→f (pi , pf ) Cµf→i (pf , pi )

≈ ZV 〈Pf (pf )|Vµ
(

q2
)
|Pi (pi )〉

Where we have a choice of denominator using two-point functions C (p)

R1 : D1 = Ci (pi ) Cf (pf )
/(

ZV ,heavyZV ,light
)

or using three-point functions Cµi→f

R2 : D2 = C0
i→i (pi , pi ) C0

f→f (pf , pf )
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Point-wall diagonalisation study
First three-point results – R1 and R2 ratios

Quality of the raw data

Preliminary

Preliminary

Error on 3-pt data grows with ∆T

2-pt data from timeslice ∆T enters R1

δZV is small and can be ignored here

Wall-separation determines ratio error
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Point-wall diagonalisation study
First three-point results – R1 and R2 ratios

R1 and R2 ratios, Ds → K

Preliminary
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Observations

The R1 and R2 ratios are compatible

Statistical errors of the same order

Excited-state contamination low ∆T

Saturates at high ∆T

We observe error growth at higher ∆T

R1 is ∼ 2× cheaper to produce, so we use R1 exclusively
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Point-wall diagonalisation study
First three-point results – R1 and R2 ratios

Extending to other decays, D → π

Preliminary

Preliminary

Observations

Noise grows as mPf
↓

Excited-states behaviour more
pronounced

Wall data may be better – not yet analysed
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=⇒ Increase statistics and carry out simultaneous fits to multiple ∆T
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Point-wall diagonalisation study
First three-point results – R1 and R2 ratios

Non-zero momentum

Preliminary

Preliminary

Increased data collection will be needed
√

N scaling alone prohibitively costly

Noise for larger ∆T motivates
excited-state modelling at smaller ∆T
We are seeking the right balance

Reduced statistical error at smaller ∆T
increased systematics arising from data
with higher excited state contamination
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We see a signal over the entire physical q2 range
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Point-wall diagonalisation study
First three-point results – R1 and R2 ratios

Ds → K at maximum momentum transfer (temporal)

Preliminary
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As expected, the signal is very noisy

∆T ≥ 24 have been removed from the
diagram because noise swamps signal

We are investigating

Whether at higher momenta we are
better off producing data over a smaller
range of ∆T in finer increments

Will produce more data to investigate
∆T = 16, 17, 18, 19, 20 simultaneous fit

Wall separation choices for p2 6= 0 may differ
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Next steps
Summary and outlook

Devising a fitting strategy

Preliminary Preliminary

Analysis and fitting strategies

Decay channels show excited-state contamination

Simultaneous fits using multiple ∆T and operators
(approach from above and below)

Quantify tradeoffs of systematics vs stat error

Extract q2 dependence of form factors

Data production

Complete data over all ensembles

After optimal strategy has been fully
determined on this ensemble

Increase statistics
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Next steps
Summary and outlook

Summary and outlook

Achieved to date

Point-wall diagonalisation study promising for
two-point functions

Did not translate to three-point functions –
wall-sources are close to optimal

Data produced for D(s) → K/π semileptonic
decays on first ensemble

Analysis in progress

Outlook

The target result is the q2-dependence of the
D(s) → K/π form factors

Covering the entire physical q2 range

Current data indicates percent-scale errors
are achievable

We expect to be able to address systematics
with simultaneous fits of multiple ∆T and
operators

This work used the DiRAC Extreme Scaling HPC Service (https://www.dirac.ac.uk)

Data produced using Grid [1] and Hadrons [2]
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Ratio cancellation – R1
Ratio cancellation – R2
Extracting ZV

Ratio cancellation – R1

Rµ1 (ti , t , tf ,pi ,pf ) = 2
√

Ei Ef

√√√√CµPi Pf
(ti , t , tf ,pi ,pf ) CµPf Pi

(ti , t , tf ,pf ,pi )

C̃Pi (tf − ti ,pi ) C̃Pf
(tf − ti ,pf )

(1)

i.e.

R1 =���
�√

4Ei Ef

√√√√√ZV
Z∗i Zf
��4Ei Ef

ZV
Z∗f Zi
4Ef Ei

|Zi |2
2Ei

|Zf |2
2Ef

〈Pf (pf )|Vµ
(

q2
)
|Pi (pi )〉 (2)

√
e−Ei (t−ti ) e−Ef (tf−t) e−Ef (t−ti ) e−Ei (tf−t)

e−Ei (tf−ti ) e−Ef (tf−ti )
(3)

= ZV 〈Pf (pf )|Vµ
(

q2
)
|Pi (pi )〉

√
e−Ef (tf−ti ) e−Ei (tf−ti )

e−Ei (tf−ti ) e−Ef (tf−ti )
(4)

i.e. R1 yields the renormalised matrix element when built with renormalised 3-pt correlators

R1 = ZV 〈Pf (pf )|Vµ (q)|Pi (pi )〉 (5)

More usefully, we can construct the ratio from bare correlators and multiply by ZV at the end
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Ratio cancellation – R1
Ratio cancellation – R2
Extracting ZV

Ratio cancellation – R2

Rµ2
(
t ,pPf

,pPi

)
= 2
√

Ei Ef

√√√√CµPi Pf
(ti , t , tf ,pi ,pf ) CµPf Pi

(ti , t , tf ,pf ,pi )

C0
Pi Pi

(ti , t , tf ,pi ,pi ) C0
Pf Pf

(ti , t , tf ,pf ,pf )
(6)

i.e.

R2 =

√√√√√√ZV
Z∗i Zf
4Ei Ef

ZV
Z∗f Zi
4Ef Ei

|Zi |2
4E2

i

|Zf |2

4E2
f

√
e−Ei (t−ti )���

�
e−Ef (tf−t) e−Ef (t−ti )

XXXXe−Ei (tf−t)

e−Ei (t−ti )
XXXXe−Ei (tf−t) e−Ef (t−ti )���

�
e−Ef (tf−t)

(7)

(
〈Pf (pf )|Vµ (q)|Pi (pi )〉

√
4 Ei Ef√

ZV 〈Pi (pi )|Vµ (0)|Pi (pi )〉ZV 〈Pf (pf )|Vµ (0)|Pf (pf )〉

)
(8)

Bearing in mind (11), all the extraneous factors cancel, leaving

R2 = ZV 〈Pf (pf )|Vµ (q)|Pi (pi )〉 (9)

NB: Whether we construct the ratio from the bare correlators or not, we do not need to multiply by ZV at the end
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Extracting ZV

ZV 〈Pf (pf )|Vµ
(

q2
)
|Pi (pi )〉 = f Pi Pf

+

(
q2
)

(pi + pf )µ + f Pi Pf
−

(
q2
)

(pi − pf )µ (10)

Charge conservation (f Pi Pi
+ = 1), q2 = 0 and rest frame =⇒ pi + pf = (2Ei , 0) and pi − pf = 0 give

ZV =
2Ei

〈Pi (0)|V0 (0)|Pi (0)〉
(11)

C̃i (t ,p) ≡ Ci (t ,pi )−
1
2

Ci

(
T
2
,p
)

e−Ei ( T /2−t) (12)

C̃i (t ,p) '
|Zi |2

2Ei
e−Ei t (away from the midpoint – ×2 at midpoint) (13)

We use this to extract ZV by taking a ratio of (13) over the three-point correlator

C̃Pi (tf − ti , 0)

C(0)
Pi Pi bare (ti , t , tf , 0, 0)

=

|Zi |2
2Ei

e−Ei (tf−ti )

|Zi |2
4E2

i
〈Pi (0)|V0 (0)|Pi (0)〉 e−Ei (t−ti +tf−t)

(14)

=
2Ei

〈Pi (0)|V0 (0)|Pi (0)〉
= ZV (15)
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Ds → K at maximum momentum transfer (spatial)

PreliminaryConsistent with n2 = 4 temporal

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

-15 -10 -5  0  5  10  15

R
1

(t-ΔT/2)/a

R1 ΔT=16 

R1 ΔT=20 

R1, Ds⟶K, n2=4, Vi (point-point)
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