Determination of m_{c} from $N_{f}=2+1$ QCD with Wilson fermions

Sjoerd Bouma

Friedrich-Alexander Universität Erlangen-Nürnberg University of Regensburg

Motivation

- Quark masses are fundamental parameters of the standard model
- Input for many phenomenological predictions, including for BSM physics.
- Not directly measurable (confinement) - values depend on renormalization scheme.
- Charm observables difficult to simulate on the lattice - in between relativistic and non-relativistic regimes; $a m_{c}$ large for many lattice spacings currently used.
- We use 5 lattice spacings down to 0.04 fm to
 control discretization effects
- CLS-generated ensembles $N_{f}=2+1$ Wilson-Clover $\mathcal{O}(a)$ improved fermions.
- 5 lattice spacings ~ 0.085 to 0.04 fm
- Pion masses from 420 MeV down to the physical point
- Three different chiral trajectories:
- $m_{s}=m_{s}^{\text {phys }}$
- $m_{s}=m_{\ell}$
- $\operatorname{Tr}\left[M_{q}\right]=2 m_{\ell}+m_{s}=$ constant

- \Rightarrow we can adjust for any 'mistuning' in the fit.
- For each ensemble, simulated 2 heavy quark masses around $m_{c}^{\text {phys }}$ and interpolate the PCAC mass to $\sqrt{8 t_{0}} m_{\bar{D}}:=\sqrt{8 t_{0}^{\text {phys }}} m_{\bar{D}}^{\text {phys }}$, where

$$
\sqrt{8 t_{0}^{\text {phys }}}=0.413(5)[\operatorname{arXiv}: 1608.08900] \text { and } m_{\bar{D}}=2 m_{D}+m_{D_{s}}
$$

Coordinated Lattice Simulations (CLS): Berlin, CERN, Mainz, UA Madrid, Milano Bicocca, Münster, Odense, Regensburg, Rome I and II, Wuppertal, DESY-Zeuthen, Kraków.

Motivation

- Using the lattice PCAC relation:

$$
a m_{i j}=\frac{\partial_{0} C_{A_{0} P}+c_{A} a \partial_{0}^{2} C_{P P}}{2 C_{P P}}
$$

and the Vector-Ward Identity (VWI) quark masses:

$$
a m_{q, i j}=\left(\frac{1}{4 \kappa_{i}}+\frac{1}{4 \kappa_{j}}-\frac{1}{2 \kappa_{\text {crit }}}\right),
$$

we can determine the renormalization-group independent (RGI) mass:

$$
m_{i j}^{\mathrm{RGI}}=Z_{M} m_{i j}\left[1+\left(b_{A}-b_{P}\right) a m_{q, i j}+\left(\tilde{b}_{A}-\tilde{b}_{P}\right) a \operatorname{Tr}\left[M_{q}\right]\right]+\mathcal{O}\left(a^{2}\right)
$$

where, following arXiv:1906.03445, arXiv:1502.04999, arXiv:1802.05243 :

$$
\begin{aligned}
Z_{M} & =\frac{M}{m\left(\mu_{\mathrm{had}}\right)} \frac{Z_{A}\left(g_{0}^{2}\right)}{Z_{P}\left(g_{0}^{2}, a \mu_{\mathrm{had}}\right)}, & C_{O O^{\prime}}(t) & =\left\langle O(t) O^{\prime}(0)\right\rangle, \\
\operatorname{Tr}\left[M_{q}\right] & \approx 2 m_{\ell}+m_{s}, & \partial_{0} f(t) & =\frac{f(t+a)-f(t-a)}{2 a} .
\end{aligned}
$$

- PCAC masses determined by fitting to a constant in a 'plateau' region.
- Ansatz for boundary effects and contact terms:

$$
a m_{\mathrm{PCAC}}(t) \approx a m_{\mathrm{PCAC}}+c_{1} e^{-b_{1} t}+c_{2} e^{-b_{2}\left(T_{b d}-t\right)}
$$

- Plateau defined as the region where

$$
4 \cdot\left(c_{1} \cdot \exp ^{-b_{1} t}+c_{2} e^{-b_{2}\left(T_{b d}-t\right)}\right) \leq \Delta^{\text {stat }} a_{\mathrm{PCAC}}(t)
$$

- Have to deal with autocorrelations in lattice and Monte-Carlo time
- Strategy: estimate errors through a binned jackknife procedure
- Bin in Monte-Carlo time and obtain jackknife error on m_{PCAC} at each bin size S.

- Then extrapolate to infinite bin size using the formula:

$$
\frac{\sigma^{2}[S]}{\sigma^{2}[1]} \approx 2 \tau_{\mathrm{int}}\left(1-\frac{c_{A}}{S}+\frac{d_{A}}{S} e^{-S / \tau_{\mathrm{int}}}\right)
$$

Chiral-continuum extrapolation

For the chiral-continuum extrapolation, the following parametrizations were used:

$$
\begin{aligned}
f_{\chi \mathrm{PT}}\left(\overline{\mathrm{M}}^{2}, \delta \mathrm{M}^{2}, \mathrm{~m}_{D}\right)= & p_{0}+p_{1} \overline{\mathrm{M}}^{2}+p_{2} \delta \mathrm{M}^{2}+p_{7} \delta \mathrm{~m}_{D} \\
& +p_{3} \overline{\mathrm{M}}^{4}+p_{4} \delta \mathrm{M}^{4} \\
& +p_{8} \mathrm{~m}_{D} \overline{\mathrm{M}}^{2}+p_{9} \mathrm{~m}_{D} \delta \mathrm{M}^{2}+p_{10} \delta \mathrm{~m}_{D}^{2}+p_{11} \overline{\mathrm{M}}^{2} \delta \mathrm{M}^{2}+p_{14} \delta \mathrm{~m}_{D}^{3},
\end{aligned}
$$

and

$$
\begin{aligned}
f_{\text {latt }}\left(a^{2} / t_{0}^{*}, \bar{M}^{2}, \delta \mathrm{M}^{2}, m_{D}\right)=\frac{a^{2}}{t_{0}^{*}}[& p_{15}+p_{16} \bar{M}^{2}+p_{17} \delta \mathrm{M}^{2}+p_{20} \delta \mathrm{~m}_{D} \\
& \left.+p_{24} \delta \mathrm{~m}_{D}^{2}+p_{27} \mathrm{~m}_{D} \overline{\mathrm{M}}^{2}+p_{28} \mathrm{~m}_{D} \delta \mathbb{M}^{2}\right] \\
+ & \left(\frac{a^{2}}{t_{0}^{*}}\right)^{k}\left[p_{18}+p_{21} \delta m_{D}+p_{25} \overline{\mathrm{M}}^{2}+p_{26} \delta \mathbb{M}^{2}\right],
\end{aligned}
$$

where

$$
\begin{aligned}
m & =\sqrt{8 t_{0}} m \\
\delta m_{D} & =m_{D}-m_{D}^{\text {phys }}
\end{aligned}
$$

$$
\begin{aligned}
\bar{M}^{2} & =\frac{2 m_{K}^{2}+\mathrm{m}_{\pi}^{2}}{3} \\
\delta \mathbb{M}^{2} & =2\left(\mathrm{~m}_{K}^{2}-\mathrm{m}_{\pi}^{2}\right) .
\end{aligned}
$$

Chiral-continuum extrapolation

- We use a generalized chi-squared fit, in which the π, K and D masses are included as priors, and their correlations with the PCAC masses are also taken into account.
- Fit parametrizations were varied by including/excluding different fit parameters.
- Different combinations of chiral + lattice terms were tried:

$$
\begin{array}{l|l}
\text { non-linear, cubic } & m^{\mathrm{RGI}}=f_{\chi \mathrm{PT}} \times\left(1+f_{\text {latt }}(k=3 / 2)\right) \\
\text { non-linear, quartic } & m^{\mathrm{RGI}}=f_{\chi \mathrm{PT}} \times\left(1+f_{\text {latt }}(k=2)\right) \\
\hline \text { linear, cubic } & m^{\mathrm{RGI}}=f_{\chi \mathrm{PT}}+f_{\text {latt }}(k=3 / 2) \\
\text { linear, quartic } & m^{\mathrm{RGI}}=f_{\chi \mathrm{PT}}+f_{\text {latt }}(k=2)
\end{array}
$$

- The flavour composition in the PCAC current was varied between $H H=c c, H I$ and Hs ;
- Two definitions of the physical point were used: either

$$
m_{\bar{D}}=2 m_{D}+m_{D_{s}}=m_{\bar{D}}^{\text {phys }} \text { or } m_{D_{s}}=m_{D_{s}}^{\text {phys }} ;
$$

- Finally, two different definitions of the discrete derivative were employed

$$
\left(\partial_{\mathrm{std}} f(t)=\frac{1}{2}(f(t+1)-f(t-1)) \text { and } \partial_{\mathrm{fit}} f(t)=\frac{1}{2} \log \left(\frac{f(t+1)}{f(t-1)}\right) f(t)\right.
$$

- In total, around ~ 100 different fits were tried for each choice of flavour combination, derivative and D-meson. These were then combined by weighting them according to their AIC in order to estimate the systematic error.

Preliminary results

- Reasonable fit quality $\left(\chi_{\text {red }}^{2} \sim 1\right)$ for many fits
- Good agreement between the different definitions
- Final value slightly higher than FLAG ($\sim 1 \sigma$); compatible with Munster (which used a subset of the same data, but a different method).

Preliminary results

- Similar results when using D_{s} instead of \bar{D}
- Slightly larger gap between HH and Hs, HI results. Discretisation effects for HH are larger than those for HI, Hs, particularly at the coarsest lattice spacing.

Preliminary results

- Chiral extrapolation for ($\left.\partial_{\text {std }}, H s, \bar{D}\right)$
- Chiral dependence subdominant compared to continuum extrapolation; seems to be under good control.

Error budget (contribution to $\sigma_{\text {tot }}^{2}$)	
Statistical (PCAC masses, $\left.m_{\pi}, m_{D}, t_{0}\right)$	9%
$\mathcal{O}(a)$ improvement	19%
Renormalization	11%
Scale setting $\left(t_{0}^{\text {phys }}\right.$)	21%
Renormalization scale	35%
$N_{f}=3 \rightarrow 4$ conversion	1%
Fit parametrization	5%

- As our preliminary result, we quote the result for $\partial_{\text {std }}, H s, \bar{D}$, converted to the 4-flavour scheme:

$$
m_{c}^{R G I}\left(N_{f}=4\right)=1.557(19)^{\text {stat }}(14)^{\text {scale }}(5)^{\text {sys }}(2)^{\text {conv }}=1.557(24) \mathrm{GeV}
$$

- The overall error is dominated by the errors on the renormalization scale, $t_{0}^{\text {phys }}$, and the $\mathcal{O}(a)$ improvement coefficients.
- Result for m_{c} / m_{s} on the way!

