Charmed semileptonics with twisted-mass valence quarks

Julien Frison The 38th International Symposium on Lattice Field Theory, 29.07.2021

- Collaboration Main idea Objectives Setup
 - Contractions Form Factor decomposition (continuum) Ensembles and parameters

Selected preliminary results

Single ensemble preliminary results Analytical structure and z-expansion Momentum correlations The choice of Δt Continuum limit Chiral limit Ward identity and hypercubic effects Hypercubic effects: why does our action work so well? Conclusion

Collaboration

JF, Andrea Bussone, Gregorio Herdoíza, Carlos Pena, Jose Ángel Romero, Javier Ugarrio Project born at the IFT, Madrid. Within ALPHA/CLS

Alessandro Conigli: Charm physics in tmQCD, **earlier this morning Gregorio Herdoíza:** Light meson physics and scale setting from a mixed action with Wtm valence quarks, **tomorrow 07:30**

Previous proceedings:

- > [1711.06017]
- > [1812.01474]
- > [1812.05458]
- > [1903.00286]
- > [1911.02412]

Main idea

Charm physics is mostly about improving discretisation. Two sides:

CLS $N_f = 2 + 1$ configurations

- > non-perturbative O(a) improvement for sea effects
- OpenBC: Lowers the barrier between topological sectors
 Finer ensembles are accessible with good sampling

Twisted mass fermions

- Automatic O(a) improvement (no am_h, residual sea effects)
- > Applied to all valence quarks
- Not really a different action, same renormalisation
- Actually renormalisation is even simplified a bit

Objectives

Main form factors of interest:

- > $D
 ightarrow \pi l
 u$ at arbitrary q^2 ($|V_{cd}|$)
- > $D \rightarrow K l \nu$ at arbitrary q^2 ($|V_{cs}|$)
- \Rightarrow Not only we have a charm quark, but we also need large momenta keeping both good systematics and signal

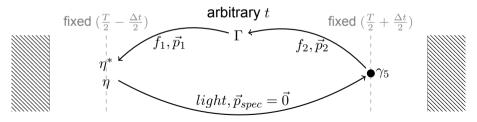
Future/ongoing:

> How far towards the B can we push?

۲

Contractions

- > One-hand trick and sequentials
- > Spectator always light, other two take any flavour/twist
- Source and sink timeslices are kept fixed
- > Time at the insertion of the matrix element operator is free



Form Factor decomposition (continuum)

$$~~= \frac{M_D^2 - M_P^2}{\mu_c - \mu_l} f_0(q^2)~~$$

$$<\hat{V}_{\mu}> = \left[P_{\mu} - q_{\mu} \frac{M_D^2 - M_P^2}{q^2}\right] f_+(q^2) + q_{\mu} \frac{M_D^2 - M_P^2}{q^2} f_0(q^2)$$

Because of twisted mass

- > When I write S, V in the physical basis, it is actually P, A in the code
- > Only need the renormalised \hat{V} (hence the hat), while $\mu < S >$ is already invariant
- > We know $Z_{V,A}$ but simpler to impose from charge conservation, aka $\langle \pi(p) | O_{\Gamma} | \pi(p) \rangle$
- > We have some Ward Identities relating those (redundancy/check)

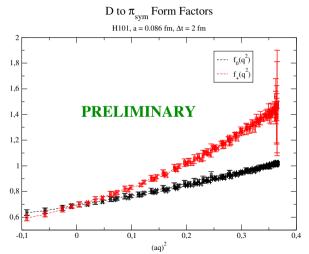
Ensembles and parameters

id	β	$N_{\rm S}$	Nt	m_{π} [MeV]	$m_K {\rm [MeV]}$	$m_{\pi}L$	Δt [fm]	N_{η}	$a\mu_c$
H101	3.40	32	96	420	420	5.8	1.3, 1.5, 2.0	1(+B)	0.22
H102	3.40	32	96	350	440	4.9	1.5	í1 í	0.22
H105	3.40	32	96	280	460	3.9	1.5, 2.0	1	0.22
H400	3.46	32	96	420	420	5.2	1.9, 2.7	1, 6(+B)	0.21
H200	3.55	32	96	420	420	4.4	2.0, 2.6	1+6(+B), 1	0.18
N202	3.55	48	128	420	420	6.5	2.6	(B)	0.18
N203	3.55	48	128	340	440	5.4	2.0	1	0.18
N200	3.55	48	128	280	460	4.4	2.6	1	0.18
D200	3.55	64	128	200	480	4.2	2.0	1	0.18
N300	3.70	48	128	420	420	5.1	1.9, 2.5	1, 5(+B)	0.14
J303	3.70	64	192	260	470	4.1	1.9	1	0.14

- > 4 β s along the $m_{ud} = m_s$ line (Fifth planned), $0.087 \dots 0.050$ fm (0.039 fm)
- > Many M_{π} , down to 200 MeV
- > Handle on volume, in particular H200-vs-N202
- > Noise sources currently not saturated

Selected preliminary results

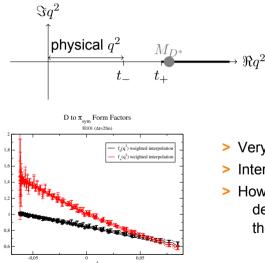
Single ensemble preliminary results



- Plenty of points O(N²_{mom}) fully model-independent
- Smooth curves No hypercubic terms
- Momentum does not degrade the signal (much)

> Can interpolate
$$q^2 = 0$$

Analytical structure and *z*-expansion



Conformal mapping of cut to disc allows an expansion around some t_0 :

$$z(q^2, t_0) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{(t_+ - q^2)} + \sqrt{t_+ - t_0}}$$

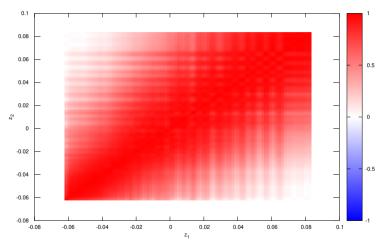
- > Very linear in z, most of the curvature is absorbed
- > Interpolating gets even easier
- > However, significant curvature for $q^2 < 0$ despite good correlated χ^2 for first-order BCL therefore our direct computation is useful

Momentum correlations

 $f_+(z)$ correlations for H101 (2 fm)

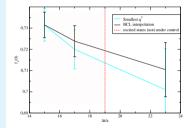
Correlations have to be taken into account to get correct fits *and* for a reasonable **balance of the CPU cost** between:

- > more momenta
- > more source-sink separations
- > more source noises



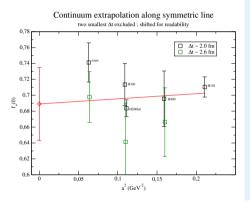
The choice of Δt

- > Trade-off statistical precision vs excited-state contaminations
- Consistency checked on many q^2 , not just this figure
- > Hatched area shows obvious inconsistencies (sawteeth) on f_+ at large q^2 , but f_0 and low- q^2 are guite robust
- Small Δt might still be useful: working on multi-exp (combined correlated Bayesian-averaged) fits
- Before chiral&continuum extrapolation, all points have errors smaller than FLAG avg for $D \to K$ and $D \to \pi$



Continuum limit

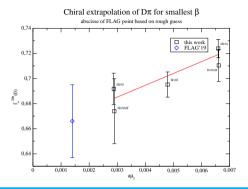
Here: Only a slice of the fit we want, will be included in a global fit.



Precision on finer ensemble is critical

- > $f_+^{\text{sym}}(0) = 0.689(46)$ is still far from the level of precision we need
- > 4 extra noise hits on N300 (2 fm) should get us there. Planned
- > Improving H101 and H400 is essentially free
- An extra J500 point would allow to make sure we only use points in the scaling regime. Not obvious now
- Anyway, statistically compatible with no discretisation effects at all

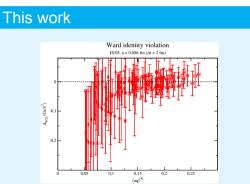
Chiral limit



> At $q^2 = 0$ no chiral logs expected (large momenta) and far from the D^* (moving) pole

- > Looks already well-controlled and having reached the minimal precision we need
- > Error largely indep from mass, cost as well (except through volume)
- > Data at this β is cheap to improve, until FV might become limiting factor ($M_{\pi}L \gtrsim 3.9$)

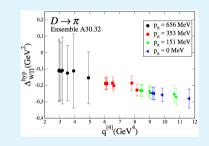
Ward identity and hypercubic effects



Both **no signal** and **much smaller** Extremely similar lattice

$\Delta_{WTI} = (\mu_c - \mu_l) \langle S \rangle - q_\mu \langle \hat{V}_\mu \rangle$

ETMc hep-lat/1706.03017



A model for hypercubic form factors was fitted from that.

Hypercubic effects: why does our action work so well?

Short answer: we do not know, any suggestion is welcome!

But it is worth noting a few things:

- > We keep the NP c_{SW} . It is known that in some contexts it has a major impact on $O(a^2)$ effects [Becirevic:0605006]
- The critical mass is determined close to the chiral limit, so there is necessarily a small action-dependent mismatch of the charm twisting angle
- Maximal twisting on valence is simpler, can be done very precisely ensemble-by-ensemble
- > Lüscher-Weisz vs Iwasaki gauge action
- > We observed that an incorrect treatment of systematics such as excited states can produce Lorentz-breaking effects

Conclusion

- I presented a framework to reduce discretisation errors in charm physics while keeping a relativistic and manifestly local action
- Preliminary results show a very nice behaviour of charm semileptonics, both in terms of signal and manageability of the discretisation effects
- There are indications of a possible elimination of the worrying hypercubic effects
- The whole range of kinematics is directly accessible, which is encouraging for B physics where it will become more of a challenge
- Our precision and continuum limit are not vet satisfying, but with full statistics improving over current FLAG values seems doable
- Finer ensembles available, to be used anytime soon

Thank you!

Contact

DESY. Deutsches Elektronen-Synchrotron

www.desy.de

Julien Frison 0000–0002–1125–5928 ZPPT/NIC julien.frison@desy.de

