

Contribution ID: 304 Type: Oral presentation

Form factors for $B_c^+\to D^0\ell^+\nu_\ell$ and rare $B_c^+\to D_s^+\ell^+\ell^-$ with HISQ

Thursday 29 July 2021 06:45 (15 minutes)

We present HPQCD's results of the first lattice QCD calculation of the weak matrix elements for $B_c^+ \to D^0 \ell^+ \nu_\ell$ facilitated by a $b \to u$ transition. Together with observation of this process from LHCb, our form factors will lead to a new determination of V_{ub} . In tandem, we also calculate the form factors for rare $B_c^+ \to D_s^+ \ell^+ \ell^-$. Results are derived from correlation functions computed on MILC Collaboration gauge configurations with three different lattice spacings including 2+1+1 flavours of dynamical sea quarks in the Highly Improved Staggered Quark (HISQ) formalism. HISQ is also used for all of the valence quarks. We cover the full range of q^2 . The uncertainty on the branching fractions $\mathcal{B}(B_c^+ \to D^0 \ell^+ \nu_\ell)$ from the error on our form factors is roughly twice as large as the contribution from the uncertainty on the present PDG value for V_{ub} . Prospects for reducing errors on our form factors are discussed which will guide future calculations, setting out the path towards highly precise determinations of the form factors.

Primary author: COOPER, Laurence (University of Glasgow)

Co-authors: DAVIES, Christine (University of Glasgow); WINGATE, Matthew (University of Cambridge)

Presenter: COOPER, Laurence (University of Glasgow)

Session Classification: Standard Model Parameters

Track Classification: Standard Model Parameters