Static force with and without gradient flow

Viljami Leino

Based on:

Nora Brambilla¹, V.L.¹, Owe Philipsen², Christian Reisinger²³, hep-lat/2106.01794 Antonio Vairo¹, and Marc Wagner²³

Nora Brambilla¹, V.L.¹, Julian Mayer-Steudte¹, and Antonio Vairo¹: In preparation

Affiliations: ¹Technische Universität München, ²Goethe-Universität Frankfurt am Main, ³Helmholtz Research Academy Hesse for FAIR

Lattice 2021 30.7.2021

Static energy $E_0(r)$

• Perturbatively known to N³LL ¹:

$$E_0(r) = \Lambda_s - \frac{C_F \alpha_s}{r} \left(1 + \#\alpha_s + \#\alpha_s^2 + \#\alpha_s^3 + \#\alpha_s^3 \ln \alpha_s + \ldots \right)$$

From lattice can be measured from Wilson loop

$$E(r) = -\lim_{T \to \infty} \frac{\ln \langle \operatorname{Tr}(W_{r \times T}) \rangle}{T}, \qquad W_{r \times T} = P \left\{ \exp \left(i \oint_{r \times T} dz_{\mu} \, g A_{\mu} \right) \right\}$$

- Useful: Scale setting, strong coupling extraction
- Both perturbation theory and lattice come with arbitrary constant contributions
- ullet Interesting physics encoded in the shape o Static force

$$F(r) = \partial_r E_0(r)$$

¹ For review of perturbative results, see: X. Tormo Mod. Phys. Lett. A28 (2013)

Static force F(r)

- On lattice requires noisy numerical derivative by default
- Alternatively define directly¹:

$$F(r) = -\lim_{T \to \infty} \frac{i}{\langle \operatorname{Tr}(W_{r \times T}) \rangle} \left\langle \operatorname{Tr} \left(P \left\{ \exp \left(i \oint_{r \times T} dz_{\mu} g A_{\mu} \right) \hat{r} \cdot g E(r, t^{*}) \right) \right\} \right\rangle$$

as chromoelectric field E inserted to Wilson (or Polyakov) loop

- On lattice E has finite size and Different discretizations
- $\bullet\,$ The self energy contributions of E converge slowly to continuum 2
 - \rightarrow need renormalization Z_F

A. Vairo Mod. Phys. Lett. A 31 (2016) & EPJ Web Conf. 126 (2016), Brambilla et.al.PRD63 (2001)
 See e.g. Lepage et.al.PRD48 (1993), G. Bali Phys. Rept. 343 (2001), and many others . . .

Measured operators

Wilson loop with Clover

$$E_i = \frac{1}{2iga^2} \Big(\Pi_{i0} - \Pi_{i0}^{\dagger} \Big)$$

$$\Pi_{\mu\nu} = \frac{1}{4} \Big(P_{\mu,\nu} + P_{\nu,-\mu} + P_{-\mu,-\nu} + P_{-\nu,\mu} \Big)$$

Used with multilevel and flow

Polyakov loop with Butterfly

$$E_i = \frac{1}{2} \Big(F_{0i} + F_{-i0} \Big)$$

$$F_{\mu
u}=rac{1}{2iga^2}\Big(P_{\mu,
u}-P_{\mu,
u}^{\dagger}\Big)$$

$$P_{\mu,\nu}(x) = U_{\mu}(x)U_{\nu}(x+\hat{\mu})U_{\mu}^{\dagger}(x+\hat{\nu})U_{\nu}^{\dagger}(x)$$

Only used with multilevel

Simulation Algorithms

Multilevel

- Update each sublattice independently keeping boundaries fixed
- Better signal
- Only works in pure gauge

Gradient flow

- ullet "Diffuse" with fictitious time au_F
- Continuous smear of radius $\sqrt{8\tau_F}$
- Works un-quenched
- Automatically renormalizes

Simulation details

- Use Wilson gauge action, pure gauge
- Heath bath with overrelaxation
- 3 Ensembles A: a=0.06fm, B: a=0.05fm, C: a=0.04fm
- Tree-level improve the force¹:

$$r_{\rm I} = \sqrt{\frac{2a}{4\pi \left[G(r+a) - G(r-a)\right]}} \qquad G(r) = \frac{1}{a} \int_{-\pi}^{\pi} \frac{{\rm d}k^3}{(2\pi)^3} \frac{\cos(rk_3/a)}{4\sum_j \sin(k_j/2)}$$

- Multilevel and Wilson loops: APE-smearing for spatial links
- For gradient flow, use Symanzik flow
- Calculate the leading flow time dependence for potential

Renormalization constant $Z_E = \partial_r E(r)/F_E(r)$

Ensemble	a in fm	Z_E from Wilson loops	Z _E from Polyakov loops
А	0.060	1.4068(63)	1.4001(20)
В	0.048	1.3853(30)	1.3776(10)
С	0.040	1.348(11)	1.3628(13)

- ullet Force from numerical derivative of E_0 differs from force from F_E
- Nonperturbative Z_E . Very little r-dependence

Multilevel result

- Remove Z_E by dividing with measurement at $r^* = 0.48r_0$
- Proof of concept:
 - Both derivative of potential and direct force agree
 - Both Wilson loop and Polyakov loops agree

Gradient flow results

- Gradient flow automatically renormalizes the force at finite flowtime
 - ightarrow No need for $Z_{
 m E}$
- Early GF results indicate a good agreement to multilevel results
- The continuum and zero flowtime limits still need to be done

Conclusions

- Proof of concept: Static force can be measured directly from lattice by inserting chromoelectric field to a Wilson loop.
- Issue with self energy of chromoelectric field can be solved by:
 - Dividing the force with force at fixed separation r^*
 - Using gradient flow
- This work can be expanded in future to many operators appearing in NREFTs

Conclusions

- Proof of concept: Static force can be measured directly from lattice by inserting chromoelectric field to a Wilson loop.
- Issue with self energy of chromoelectric field can be solved by:
 - Dividing the force with force at fixed separation r*
 - Using gradient flow
- This work can be expanded in future to many operators appearing in NREFTs

Thank you!