SU(3) symmetry breaking in f_B and f_{Bs}

Shanette De La Motte, **Sophie Hollitt**, Ross Young, James Zanotti Lattice2021, July 26-30 2021 @ MIT

Decay constants and the Standard Model

- Discrepancy between inclusive and exclusive measurements of $|V_{cb}|$ and $|V_{ub}|$
- Future exclusive measurements of $B^+ \rightarrow \tau^+ \nu$ may help
 - Decay constants instead of form factors
 - Independent exclusive measurement without charm background

Lattice2021, 29 Jul

f_{Bs}/f_B current status and overview

- CSSM/UKQCD/QCDSF fBs/fB:
 - Four lattice spacings at $N_f = 2 + 1$
 - Ensembles with light and strange quark varying (SU(3) controlled)
 - Multiple *b* quarks used and best *b* is interpolated
- SYSTEMATICS:
 - Study of fit/extrapolation methods for final result
 - Largest contribution in systematics: choice of correlator fit windows
 - Currently working on improved methods!

Central value: $m_{\pi}L > 4$ ensembles, single fit to all *a*: $\frac{f_{Bs}}{f_B} = 1.159 \pm 0.015 \text{ (stat)} \pm 0.07 \text{ (syst)}$

Lighter quarks and ensembles

Lighter quarks and ensembles

- Order a improved Wilson clover action (sea and valence quarks)
- Overall principle: keep average mass of three lightest quarks constant across all ensembles

ms

physical

point

 $m_l = m_s$

usual approach

 $m_s = constant$

 \overline{m} = constant

Generating *b*-quarks

 Use an anisotropic, clover-improved action (Relativistic Heavy Quark Action), and then tune the free parameters to physical quantities for the B meson.

 Generate seven b quarks per ensemble in a "star" shape, and interpolate to the best b

Aoki, Y et al (2012). "Nonperturbative tuning of an improved relativistic heavy-quark action with application to bottom spectroscopy." *Physical Review D*, 86(11), 116003. doi:10.1103/PhysRevD.86.116003

Tuning outcomes on one ensemble

Calculating f_B

• METHOD:

- Calculate f_B or f_{Bs} for each *b* quark
- Interpolate result at position of best
 b from tuning
- Repeat for all ensembles
- In this figure:
 - Statistical error mostly from interpolation
 - Simple fit across all lattice spacings*
 - Good match with linear expectation of SU(3) expansion!

*see backup slides for detailed ensemble information

Systematic studies in f_{Bs}/f_B : extrapolations

- Test of different extrapolation methods to physical pion and continuum
- Controlled SU(3) breaking of ensembles means f_{Bs}/f_B expected to be mostly linear

Systematic studies in f_{Bs}/f_B : correlators and tuning

- How much does the tuning affect the result?
 - Test nominal best tuning (dark blue) against refit of hyperfine splitting (pale orange)
 - Test effect of these interpolated tunings (cross) compared to the centre point in the tuning star

Systematic studies in f_{Bs}/f_B : correlators and tuning

b interpolation

Fixed quadratic

fB fit window tuning fit window no b interpolatior nominal

- Correlator fits for the tuning and the tuning itself affects the final f_{Bs}/f_B result
- Result is strongly affected by last result close to m_{π}
- The best f_B and f_{Bs} fit windows can be quite different for each b quark.

Improving fit reproduceability

- B meson fit procedure requires a large number of fits:
 - 7 b quarks * 2 lighter quarks * (6 correlators for tuning + 1 extra for simple f_B)
 - = 98 fits per ensemble (after tuning is complete)
 - Large number of fits: high chance of variation from analyst impacting result!
- Updated approach: make use of weighted fitting methods
 - Calculate more fits but improve reliability
 - Better quantify the difference in quality between fits

Using a weighted fitting framework

- First tests of weighted fit in this B meson analysis
 - This example: fits to the hyperfine splitting
 - Example effective mass fit with plateau 5-20
- Testing different weighting systems:
 - p-value-like weights

$$w^{f} = \frac{p_{f}(\delta E_{0}^{f})^{-2}}{\sum_{f'=1}^{N_{\text{success}}} p_{f'}(\delta E_{0}^{f'})^{-2}} \qquad p_{f} = \frac{\Gamma(N_{\text{dof}}/2, \chi_{f}^{2}/2)}{\Gamma(N_{\text{dof}}/2)}$$

• and Bayesian weights (example, left)²

$$w_i = \exp(-\frac{1}{2}\chi_{\nu,i}^2 + N_{DOF,i})$$

See also: poster by Shanette De La Motte (location C6)

Beane, S. R. et al (2021). "Charged multi-hadron systems in lattice QCD+QED." *Physical Review D* <u>https://doi.org/10.1103/PhysRevD.103.054504</u>

2 William I. Jay and Ethan M. Neil (2021). "Bayesian model averaging for analysis of lattice field theory results" *Physical Review D* <u>https://doi.org/10.1103/PhysRevD.103.114502</u>

Lattice2021, 29 Jul

Summary

- We have developed a framework for calculating the decay constants f_{Bs} and f_B using the UKQCD/QCDSF ensembles
- Several different sources of systematic uncertainty affecting the result have been investigated
- Work is ongoing to improve our current estimate:
 - Adding new ensembles closer to the physical point
 - Using weighted fitting to make the process more consistent/improve f_B estimates

BACKUP SLIDES

Overview of ensembles used

Table 1: Table of lattice ensembles used in this work. * indicates ensembles with a different value of \overline{m} , further from the physical \overline{m} . [†] indicates ensembles where multiple sources per configuration are used to produce additional samples. Marked ensembles use 2 randomised sources, except for the $64^3 \times 96$ sample with 4 randomised sources used.

β	a (fm)	Lattice volume	# Samples	$(\kappa_{ m light},\kappa_{ m strange})$	m_{π} (MeV)	$m_K \ ({\rm MeV})$	
5.4	0.082	$32^3 \times 64$	1015	(0.11993, 0.11993)	408	408	
			1004	(0.119989 , 0.119812)	366	424	
			877	$(\ 0.120048 \ , \ 0.119695 \)$	320	440	
			1006	$(\ 0.120084 \ , \ 0.119623 \)$	290	450	
5.5	0.074	$32^3 \times 64$	677^{\dagger}	$(\ 0.12095 \ , \ 0.12095 \)$	403	403	
			786	$(\ 0.12104 \ , \ 0.12077 \)$	331	435	
			1021	$(\ 0.121099 \ , \ 0.120653)$	270	454	
		$32^3 \times 64$	778	$(\ 0.1209 \ , \ 0.1209 \)$	468	468	*
			758	$(\ 0.12104 \ , 0.12062 \)$	357	505	*
			902^{\dagger}	$(\ 0.121095 \ , \ 0.120512 \)$	315	526	*
			1002	$(\ 0.121145 \ , \ 0.120413 \)$	258	537	*
		$48^3 \times 96$	1251^{+}	$(\ 0.121166 \ , \ 0.120371)$	226	539	*
5.65	0.068	$48^3 \times 96$	500	$(\ 0.122005 \ , \ 0.122005 \)$	412	412	
			500	$(\ 0.122078 \ , 0.121859 \)$	355	441	
			845^{\dagger}	$(\ 0.12213 \ , 0.121756)$	302	457	
			576	$(\ 0.122167 \ , \ 0.121682)$	265	474	
		$64^3 \times 96$	320^{\dagger}	$(\ 0.122227 \ , \ 0.121563 \)$	155	480	
5.8	0.059	$48^3 \times 96$	298	$(\ 0.12281 \ , \ 0.12281 \)$	427	427	
			415	$(\ 0.12288 \ , 0.12267 \)$	357	456	
			525	$(\ 0.12294 \ , \ 0.122551 \)$	280	477	

Tuned b parameters on each ensemble

Grey band: size of tuning star Coloured spot: tuned position for that ensemble Table 1: The calculated 'best' tuning parameters and error margins for each of the ensembles used. * denotes ensembles with a different value of \overline{m} , further from the physical \overline{m} , represented in dark blue in all Figures. [†] denotes the near-physical 64^3x96 ensemble which has extrapolated parameters

β	κ_l	m_0	c_P	ζ
5.4	0.11993	3.56 ± 0.14	3.73 ± 0.36	1.59 ± 0.12
	0.119989	3.62 ± 0.13	3.88 ± 0.35	1.60 ± 0.12
	0.120048	3.58 ± 0.15	3.73 ± 0.40	1.57 ± 0.14
	0.120084	3.76 ± 0.16	4.27 ± 0.41	1.53 ± 0.14
5.5	0.12095	2.92 ± 0.13	3.86 ± 0.34	1.23 ± 0.12
	0.12104	2.82 ± 0.13	3.59 ± 0.34	1.38 ± 0.10
	0.121099	2.83 ± 0.12	3.61 ± 0.31	1.26 ± 0.11
5.5^{*}	0.1209	2.80 ± 0.13	3.60 ± 0.34	1.30 ± 0.11
	0.12104	2.65 ± 0.11	3.19 ± 0.29	1.37 ± 0.11
	0.121095	2.86 ± 0.11	3.70 ± 0.29	1.21 ± 0.09
	0.121145	2.92 ± 0.14	3.86 ± 0.35	1.11 ± 0.14
	0.121166	2.75 ± 0.10	3.42 ± 0.25	1.34 ± 0.08
5.65	0.122005	2.67 ± 0.14	4.18 ± 0.38	1.07 ± 0.10
	0.122078	2.48 ± 0.15	3.72 ± 0.39	1.12 ± 0.11
	0.12213	2.52 ± 0.09	3.78 ± 0.24	1.16 ± 0.08
	0.122167^{\dagger}	2.49 ± 0.13	3.67 ± 0.34	1.25 ± 0.10
5.8	0.122227	3.18 ± 0.20	5.42 ± 0.52	0.96 ± 0.13
	0.12281	3.03 ± 0.09	5.30 ± 0.24	1.21 ± 0.07
	0.12288	3.28 ± 0.09	6.06 ± 0.27	1.14 ± 0.06
	0.12294	3.00 ± 0.08	5.25 ± 0.22	1.30 ± 0.06

Lattice2021, 29 Jul

Choosing light and strange quarks

Expanding for f_B and fit functions

$$\frac{f_B(q\bar{b})}{f_{X_B}} = 1 + G(\delta\mu_q) + (H_1 + H_2)\delta\mu_q^2$$
$$- (\frac{2}{3}H_1 + H_2)(\delta m_u^2 + \delta m_d^2 + \delta m_s^2)$$
$$+ \dots$$

Type of fit	Functional form
Linear	$G_0\left(M_{\pi}^2/X_{\pi}^2-1\right)+1$
Quadratic	$H\left(M_{\pi}^{2}/X_{\pi}^{2}-1\right)^{2}+G_{0}\left(M_{\pi}^{2}/X_{\pi}^{2}-1\right)+1$
Quadratic with a^2	$H\left(M_{\pi}^{2}/X_{\pi}^{2}-1\right)^{2}+\left(G_{0}+G_{1}a^{2}\right)\left(M_{\pi}^{2}/X_{\pi}^{2}-1\right)+1$

Calculating the decay constant f_{Ba}

 $f_B = \frac{\hbar c}{a} Z_{\Phi} \left[\Phi_B^0 + c_A \Phi_B^1 \right]$

Renormalisation factor:

Ratio of 2 point and 3 point functions with constant coefficient $\rho=1$

Lattice decay constant:

2 point functions with different operators in the quark propagators, and mass of B

Improvement term:

2 point correlators & coefficient c_A

Currently take $c_A=0$, Exact value can be calculated using perturbative QCD

A closer look at the decay constant fits [nominal]

A closer look at the hyperfine splitting [weighted]

Lattice2021, 29 Jul