The decoupling strategy for the determination of α_s

Mattia Dalla Brida^a, Roman Höllwieser^b, Francesco Knechtli^b Tomasz Korzec^b, Alessandro Nada^c Alberto Ramos^d, **Stefan Sint**^e, Rainer Sommer^{c, f}

^a CERN, Geneva, Switzerland
^b Bergische Universitä Wuppertal, Germany
^cNIC-DESY, Zeuthen, Germany
^d IFIC, Valencia, Spain
^e Trinity College Dublin, Ireland
^f Humboldt Universität, Berlin, Germany

Lattice '21, Boston/Dublin, 30 July 2021

Reminder of Λ -parameter and RGI quark mass

Given $\bar{g}_s(\mu)$, $\overline{m}_s(\mu)$ in mass independent scheme s, N_f quarks:

$$\begin{split} \Lambda_s^{(N_{\rm f})} &= \mu \times \varphi_s^{(N_{\rm f})}(\bar{g}_s^{(N_{\rm f})}(\mu)) \,, \\ \varphi_s^{(N_{\rm f})}(\bar{g}_s) &= (b_0 \bar{g}_s^2)^{-b_1/(2b_0^2)} {\rm e}^{-1/(2b_0 \bar{g}_s^2)} \times \exp\left\{-\int_0^{\bar{g}_s} {\rm d}x \, \left[\frac{1}{\beta_s(x)} + \frac{1}{b_0 x^3} - \frac{b_1}{b_0^2 x}\right]\right\} \\ M &= \overline{m}_s(\mu) \left[2b_0 \bar{g}_s^2(\mu)\right]^{-\frac{d_0}{2b_0}} \exp\left\{-\int_0^{\bar{g}_s(\mu)} \left[\frac{\tau_s(x)}{\beta_s(x)} - \frac{d_0}{b_0 x}\right] \, dx\right\} \,, \end{split}$$

- Scheme dependence: $\Lambda_s^{(N_{\rm f})}/\Lambda_{\overline{
 m MS}}^{(N_{\rm f})}$ exactly computable in a 1-loop calculation
- β -function, $\beta(g) = -b_0g^3 b_1g^5 + \ldots$, and quark mass anomalous dimension $\tau(g) = -d_0g^2 d_1g^4$ have leading coefficients

$$b_0 = (11 - \frac{2}{3}N_{\rm f})/(4\pi)^2$$
, $d_0/2b_0 = 4/(11 - \frac{2}{3}N_{\rm f})$ (= 4/9 if $N_{\rm f} = 3$).

• We define $m_{\star} = \overline{m}_{\overline{\mathrm{MS}}}(\overline{m}_{\overline{\mathrm{MS}}})$

Decoupling in terms of Λ , M

Athenodorou et al (ALPHA '18) reformulate decoupling in terms of the Λ -parameter:

Decoupling strategy (Dalla Brida et al, ALPHA '19)

- Gradient flow couplings in finite volume, s' = GF and s = GFT (s. below)
- Define scale μ_{dec} by $\bar{g}_{s'}^2(\mu_{dec}) = C_{dec}$
- $\Rightarrow~$ measure massive coupling $u_M=\bar{g}_s^2(\mu_{\rm dec},M)$ at fixed $\mu_{\rm dec}$ and large values of $z=M/\mu_{\rm dec}.$
 - Approach to continuum and decoupling limit of u_M:
 - leading power k of 1/M?
 - leading logarithmic corrections to a² and 1/M^k?

Gradient flow couplings:

• GF-scheme: SF boundary conditions at $x_0 = 0, T$; projection to $Q_{top} = 0$:

$$\bar{g}_{\mathsf{GF}}^2(L) = \mathcal{N}^{-1} \left. \sum_{i,j=1}^3 \int d^3 \mathbf{x} \; t^2 \left\langle \operatorname{tr} \left\{ G_{ij}(t,x) G_{ij}(t,x) \right\} \right\rangle \right|_{T=L,\;M=0}^{x_0=T/2,\;c=\sqrt{8t}/L}$$

- GFT-scheme: same as GF but T = 2L, i.e. double the distance to the times boundaries at $x_0 = 0, T$
- flow-time t, fix the ratio $\sqrt{8t}/L = c$; in practice c = 0.3, 0.42
- Choice of schemes: GF to define μ_{dec} , GFT with $M \neq 0$ to define u_M .
- GF couplings are proportional to expectation values $\langle O_{gf} \rangle$.

Symanzik expansion

Assume non-perturbative O(a) improvement, obtain $O(a^2)$ effects using the Symanzik expansion for gradient flow observable O_{gf} (ignore time boundaries):

$$\langle O_{\rm gf} \rangle_{\rm lat} = \langle O_{\rm gf} \rangle_{\rm cont} - a^2 \langle O_{\rm gf} S_2 \rangle_{\rm cont} + O(a^3)$$

• All a^2 corrections to gradient flow observables arise from insertion of

$$S_2 = \int d^4x \sum_{i=1}^{18} \omega_i O_i^{d=0}$$

- Effective theory can be treated in renormalized continuum PT ($\overline{\text{MS}}$ -scheme) at the scale $\mu = 1/a$, with $\omega_i = \omega_i(\alpha \frac{(N_{\rm f})}{\overline{\text{MS}}}(1/a))$.
- Given the 1-loop anomalous dimension matrix, γ_0 , pass to RGI operators (Balog, Niedermayer, Weisz '09; Husung, Marquard, Sommer '19-21)

$$(O_{\mathsf{R}})_{i}(\mu = 1/a) \propto \sum_{j=1}^{18} \left(\left[\alpha_{\overline{\mathrm{MS}}}^{(N_{\mathrm{f}})}(1/a) \right]^{\gamma_{0}/2b_{0}} \right)_{ij} O_{j}^{\mathsf{RGI}} \times \left(1 + O(\bar{g}^{2}) \right)$$

- Changing to an operator basis with diagonal γ_0 renders the leading $a^2 [\alpha(1/a)]^{\hat{\Gamma}_i}$ terms explicit (cf. talk by N. Husung).
- Exponents $\hat{\Gamma}_i$ obtained as eigenvalues of $\gamma_0/2b_0$, shifted by 0 or 1, depending on leading order in expansion of ω_i 's.
- Gradient flow observables: complete matrix γ_0 only known for Yang-Mills theory (Husung '21)

Quark mass dependence in QCD with $N_{\rm f} \geq 2$

Gluonic observables: quark mass dependence through fermion determinant:

Ginsparg-Wilson regularization & index theorem (each quark flavour):

$$\det[D_{\mathsf{GW}}(-m)] = (-1)^{Q_{\mathsf{top}}} \det[D_{\mathsf{GW}}(m)]$$

- ⇒ must hold in continuum theory, too!
- Spurion analysis (either $N_{\rm f}$ even or $N_{\rm f} > 2$ odd with $Q_{\rm top} = 0$ projection):

$$\Rightarrow \qquad \langle O_{\rm gf} \rangle_{(m)} = \langle O_{\rm gf} \rangle_{(-m)}, \qquad \langle O_{\rm gf} S_2 \rangle_{(m)} = \langle O_{\rm gf} S_2 \rangle_{(-m)},$$

- Conclusion for GF couplings with Wilson quarks (ignoring boundaries):
 - no 1/M or a^2/M corrections;
 - no a^2M , a^2M^3 corrections
 - $a^2 M^2$ effects are the leading cutoff effects, from operators (in S_2):

$$m^2 \times \underbrace{\frac{1}{g^2} \operatorname{tr} (F_{\mu\nu} F_{\mu\nu})}_{\equiv \mathcal{B}_0}, \qquad m^3 \bar{\psi} \psi \quad (\in S_2)$$

Decoupling expansion for $\langle O_{gf} \rangle$

• Effective decoupling theory, action:

$$S_{\text{dec}} = S_{\text{dec},0} + \frac{1}{m^2} S_{\text{dec},2} + O(1/m^4), \qquad S_{\text{dec},0} = \int d^4x \frac{1}{2g_0^2} \operatorname{tr} \left(F_{\mu\nu}(x) F_{\mu\nu}(x) \right)$$

• 2 dimension-6 pure gauge operators:

$$S_{\text{dec},2} = \int d^4x \left\{ \tilde{\omega}_1 \frac{1}{g^2} \operatorname{tr} \left(D_\mu F_{\mu\nu} D_\rho F_{\rho\nu} \right) + \tilde{\omega}_2 \frac{1}{g^2} \operatorname{tr} \left(D_\mu F_{\rho\nu} D_\mu F_{\rho\nu} \right) \right\}$$

Their one-loop anomalous dimension matrix is known (Husung '21), eigenvalues: $\hat{\gamma}_{1,2}=0,\,7/11$

• In diagonal basis & using $M/m_\star \propto [\alpha(m_\star)]^{4/9} [1+O(\alpha)]$:

$$\langle O_{\rm gf} \rangle = \langle O_{\rm gf} \rangle_{\rm dec} + A_1 \frac{\alpha_{\overline{\rm MS}}(m_\star)^{-8/9+n}}{M^2} \left(1 + A_2 \alpha_{\overline{\rm MS}}(m_\star)^{7/11} + O[\alpha_{\overline{\rm MS}}(m_\star)] \right)$$

- $A_{1,2}$ are constants and $\tilde{\omega}_{1,2}(\alpha) = k_{1,2}\alpha^n + O(\alpha^{n+1}).$
- Note that $\alpha_{\overline{\rm MS}}^{(N_{\rm f})}(m_{\star}) = \alpha_{\overline{\rm MS}}^{(N_{\rm f}=0)}(m_{\star}) + O(\alpha^3)$, so no distinction required.

Decoupling expansion of a^2 terms

- Expanding $\langle O_{\rm gf} \underbrace{O_i(\mu)} \rangle_{\rm cont}$ proceeds in 2 steps:
 - Solution RG evolve from $\mu = 1/a$ to $\mu = m_{\star}$ using leading order γ_0 , mixing matrix:

$$\left(\left[\alpha_{\overline{\mathrm{MS}}}^{(N_{\mathrm{f}})}(1/a)\right]/\alpha_{\overline{\mathrm{MS}}}^{(N_{\mathrm{f}})}(m_{\star})\right]\right)^{\gamma_{0}}$$

2 At scale $\mu = m_{\star}$ match to effective $N_{\rm f} = 0$ theory:

• effective field for observable: $[O_{gf}O_i(\mu)]_{dec} = \Phi_0 + \Phi_1/m_\star^2 + \dots;$ Φ_0 : 3 possible operators: $O_{gf} \times B_{1,2}$ and $m_\star^2 \times O_{gf} \times B_0.$ $\langle \Phi_0 \rangle_{dec} \rightarrow a^2 M^2, a^2$ • insertion $\langle \Phi_0 \rangle_{L} \rightarrow a^2 M^2/M^2 - a^2$

(2) insertion
$$\langle \Phi_0 S_{\text{dec},2} \rangle_{\text{dec}} \rightarrow a^2 M^2 / M^2 = a^2$$

(a)
$$\langle \Phi_1 \rangle_{dec}$$
: new terms $\propto a^2/M^2 \longrightarrow$ neglect

Continuum extrapolation at fixed values $m_{\star,i}$ (with constants c_i , $p_{1,2}$): •

$$u_{M_i} = c_i + p_{1,i} \times a^2 M_i^2 [\alpha_{\overline{\text{MS}}}^{(N_f)}(1/a)]^{\hat{\Gamma}_1} + p_{2,i} \times \frac{a^2}{L^2} [\alpha_{\overline{\text{MS}}}^{(N_f)}(1/a)]^{\hat{\Gamma}_2} + \dots$$

• Leading exponents $\hat{\Gamma}_{1,2}$ not yet known but likely in the range [-1,1] for the CLS action.

Boundary effects

SF boundary conditions \Rightarrow S_{dec} gets additional boundary term at order 1/m:

$$S_{\text{dec},1} = \omega_b \int d^3 \mathbf{x} \operatorname{tr} \{ F_{0k}(0, \mathbf{x}) F_{0k}(0, \mathbf{x}) + F_{0k}(T, \mathbf{x}) F_{0k}(T, \mathbf{x}) \}$$

Define & estimate contribution to $\mathit{O}_{\rm gf} = {\rm GFT}$ coupling

$$\begin{split} \Delta(z) &= \langle O_{\rm gf} \rangle - \langle O_{\rm gf} \rangle_{\rm dec} = -\frac{1}{m_\star} \langle O_{\rm gf} S_{1,\rm dec} \rangle_{\rm dec} + \dots, \qquad z = M L_{\rm dec} \\ &= \frac{\omega_b}{z} \frac{M}{m_\star} \left(\lim_{a \to 0} \frac{L_{\rm dec}}{a} Z_b \frac{d}{dc_{\rm t}} \left[\bar{g}_{\rm GFT}^{(N_{\rm f}=0)}(L_{\rm dec}) \right]^2 \right) \end{split}$$

- $\omega_b = -0.054 \times N_f \times \alpha_{\overline{MS}}(m_\star) + \dots$ from SF coupling (S.& Sommer '95):
- insertion of bare lattice Hamiltonian measurable as c_{t} -derivative, use 1-loop renormalization Z_{b} .
- Using z = 4 and z = 6 and flowtime parameters c = 0.3, 0.42
- $\Rightarrow 1/M \text{ "contamination" in GFT} \\ \text{coupling } u_M \text{ is reasonably small} \\ \text{compared to statistical error} \\ \longrightarrow \text{negligible!}$

Conclusions

- Theoretical framework of decoupling for gradient flow observables well-developed, based on effective Symanzik and decoupling theories.
- PT only used at the scales $\mu = m_{\star}$ (effective decoupling theory) and $\mu = 1/a$ (Symanzik effective theory)
- With non-perturbatively O(a) improved Wilson quarks and O(a²) improved gradient flow (Zeuthen flow) we find
 - No odd terms in M in the bulk and up to $O(a^2)$; Leading correction terms:
 - $\propto a^2 M^2$, a^2 in the continuum limit;
 - $\propto 1/M^2$ in the decoupling limit.
 - The decoupling limit (like the continuum limit) receives logarithmic correction to $1/M^2$, which take the form $\alpha(m_*)^{\hat{\Gamma}}/M^2$ with fractional exponents $\hat{\Gamma}$.
- SF b.c's: contaminations by O(1/M) boundary terms below statistical error.
- Given $u_M = u_\infty + \Delta u$ with $\Delta u = [\alpha(m_\star)]^{-8/9+n}/M^2 + ...,$ translate to Λ -parameter:

$$\varphi_s^{(0)}(\sqrt{u_M}) = \varphi_s^{(0)}(\sqrt{u_\infty}) + \Delta_u \times \frac{\varphi_s^{(0)}(\sqrt{u_\infty})}{-2\sqrt{u_\infty}\beta_s(\sqrt{u_\infty})} + \dots$$

・ロト・日本・モート・モート モークへで 10/10

 $(\rightarrow \text{ talk by Roman Höllwieser})$

Thank you!