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Abstract

We report on a two-flavor lattice QCD determination of the Bs → Ds and
Bs → D∗s transitions, which in the heavy quark limit can be parameterized by the
form factors G, and hA1, hA2 and hA3. In the search of New Physics through tests
of lepton-flavour universality, Bs decay channels are complementary to B decays
and widely studied at B factories and LHCb. The purpose of our study is to ex-
plore a suitable method to extract form factors associated with b → c currents
from lattice QCD. In particular, we present numerical results for G and hA1.

Introduction

We consider the semi leptonic decay Bs to D(∗)
s with both mesons at rest.
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Figure 1: Schematic of the decay B̄0
s → D

+(∗)
s `−ν̄`

The decay width includes the CKM matrix element Vcb as well as a QCD
form factor. We focus on Bs→ Ds, where this factor is called G. It is hA1

for Bs→ Ds
∗

dΓBs→Ds

dw
∝ |Vcb|2 · |G(w) |2 (1)

The decay can be parametrized as

〈Ds(k)|b̄γµc|Bs(p)〉 = Aµ(p, k) G(w) + Bµ(p, k)f0(w), (2)

where w =
EDs
mDs

is the relative velocity of the Ds meson.

Data

The correlators were measured on eight CLS ensembles with Nf = 2.
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Figure 2: Parameters of the different Ensembles.

Figure 3: Examplatory three point correlator. Cylindical coordinates to emphasize peri-
odic time axis.

To get the matrix elements corresponding to semi leptonic decays, we need
three point correlators. The source and sink are kept at maximum distance
T
2 , while the operator inbetween is varied.

GEVP
To improve the overlap with the ground state, each observable is measured
for 4×4 smearing levels. To get the eigenvectors, we solve the GEVP for
the two point correlators, where the source and sink are identical.
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We can then project the three point correlator with those vectors.
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Figure 4: Demonstration of the effect of the GEVP on the plateau of the effective mass.

Extrapolation to w = 1

Eq.2 can not be solved for G at zero recoil. We perform the extrapolation
of G at different Ds momenta and extrapolate to w = 1.

Figure 5: Linear extrapolation of G to the zero recoil point for two ensembles.

The form factor hA1
can be extracted directly at w = 1.

Mass Step Scaling
None of the correlators were measured directly at the b-quark scale.
Instead six different heavy quark masses were tuned so that the ratios
between the pseudoscalar masses are constant:

mHs(h) = mDs

(
mBs

mDs

)h
6

. (5)

The analysis was performed seperately for each quark mass. We then
extrapolate the final result to the physical Bs mass. This approach is
especially interesting for Bs→ Ds. In the elastic case G is one by
definition.

GBs
=

6∏
h=0

σh with σh =
Gh+1

Gh
(6)

Some correlations as well as renormalization factors can be avoided by
only considering the ratios.

Extrapolation to the physical point
G and hA1

must be extrapolated to the physical point. We use the simple
ansatz

O = O0 + O1

(
a

aβ=5.3

)2

+ O2

(
mπ

m
phys
π

)2

. (7)

This is done for each quark mass independently.

Results

Figure 6: Check, that Gelastic is compatible with one at the physical point.

Figure 7: Ratios Gh+1
Gh

at different mass step scaling steps.

The ratios are compatible with a mean value.

GBs
= σ6 = 1.03(14) (8)

The same is done for hA1
with the difference being, that it is not equal to

one if mHs(h) = mDs
.

Figure 8: Analogous extrapolation of hA1

We get the result:

hA1
= hDs

∗→Ds
A1

σhA1

6 = 0.85(16) (9)

Discussion
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Figure 9: Comparison of G and hA1 to published lattice results using a Nf = 2 twisted-
mass fermions and b staggered fermions with non-relativistic b-quark.

We show, that we can control:

• cut-off effects using mass step scaling

• excited states using the GEVP

•w → 1 using a linear extrapolation

The large statistical error was estimated independently with binning and
the Γ-method. The source-sink separation of T2 > 2 fm may be reduced to
improve it. The GEVP results are mostly consistent with the most smeared
operators, which could be used exclusively to reduce costs.


