\qquad

$B_{s} \rightarrow D_{s}^{(*)}$ form factors from lattice QCD with $\mathrm{N}_{\mathrm{f}}=2$ Wilson-clover quarks

```
Abstract
We report on a two-flavor lattice QCD determination of the }\mp@subsup{B}{s}{}->\mp@subsup{D}{5}{}\mathrm{ and 
Bs->D*** transitions, which in the heavy quark limit can be parameterized by the
form factors G, and h}\mp@subsup{h}{A}{},\mp@subsup{h}{A}{},\mathrm{ and }\mp@subsup{h}{A,}{}\mathrm{ . In the eserch of New Physics trough tests
and widely studied at B factories and LHCb. The purpose of our study is to ex-
plore a suitable method to extract form factors associated with b->c curr
```


Introduction

We consider the semi leptonic decay B_{s} to $D_{s}^{(*)}$ with both mesons at res.

Figure 1: Schematic of the decay $B_{s}^{0} \rightarrow D_{s}^{+(+)} \ell^{-}-\bar{\nu}_{l}$
The decay width includes the CKM matrix element $V_{c b}$ as well as a OCD form factor We focus on $B_{s} \rightarrow D_{s}$, where this factor is called G. It is h_{A} for $B_{s} \rightarrow D_{s}{ }^{*}$

$$
\begin{equation*}
\frac{d \Gamma_{B_{s} \rightarrow D_{s}}}{d w} \propto\left|V_{c c}\right|^{2} \cdot|\mathrm{G}(\mathrm{w})|^{2} \tag{1}
\end{equation*}
$$

The decay can be parametrized as

$$
\left\langle D_{s}(k)\right| \bar{b} \gamma_{\mu} c\left|B_{s}(p)\right\rangle=A_{\mu}(p, k) \mathbf{G}(\mathbf{w})+B_{\mu}(p, k) f_{0}(w),
$$

Data

The correlators were measured on eight CLS ensembles with $N_{f}=2$.

Figure 2: Parameters of the different Ensembles.

Figure 3: Examplatory three point correlator. Cylindical coordinates to emphasize peri
To get the matrix elements corresponding to semi leptonic decays, we need three point correlators. The source and sink are kept at maximum distance

GEVP

To improve the overlap with the ground state, each observable is measured To improve the overlap with the ground state, each observable is measured
for 4×4 smearing levels. To get the eigenvectors, we solve the GEVP for for 4×4 smearing levels. Io get he eigenvectors, we solve the
the two point correlators, where the source and sink are identical.

$$
\begin{array}{r}
v_{D_{s}^{(*)}}^{T}\left\langle\left\langle D_{s}^{(*)}(t) \mid D_{s}^{(*)}(0)\right\rangle\right\rangle_{i, j} v_{D_{s}^{(*)}} \propto e^{-E_{D_{s}^{(s)}} t} \\
v_{B_{s}}^{T}\left\langle\left\langle B_{s}(t) \mid B_{s}(0)\right\rangle\right\rangle_{i, j} v_{B_{s}} \propto e^{-m_{B_{s}} t}
\end{array}
$$

We can then project the three point correlator with those vector

$$
\begin{equation*}
\left.v_{D_{s}}^{T}{ }^{(*)}\left\langle D_{s}^{(*)}\right| O^{\mu}\left|B_{s}\right\rangle\right\rangle_{i, j} v_{B_{s}} \tag{4}
\end{equation*}
$$

Figure 4: Demonstration of the effect of the GEVP on the plateau of the effective mass

Benoît Blossier ${ }^{\text {a }}$, Pierre-Henri Cahuéb ${ }^{\text {b }}$, Jochen Heitger ${ }^{\text {c }}$,

Simone La Cesa ${ }^{\text {a }}$, Jan Neuendorf ${ }^{\text {a,c }}$, Savvas Zafeiropoulos ${ }^{\text {d }}$

${ }^{\mathbf{a}}$ Laboratoire de Physique des 2 Infinis Irène Joliot-Curie, CNRS/IN2P3, Université Paris-Saclay, Bâtiment 210, F-91405 Orsay Cedex, France ${ }^{\mathbf{b}}$ Laboratoire de Physique Subatomique et de Cosmologie, CNRS/IN2P3, 4 Allée des Martyrs, F-38000 Grenoble,
France ${ }^{\mathbf{c}}$ Institut für Theoretische Physik, Universität Münster, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany ${ }^{\mathbf{d}}$ Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France

Extrapolation to $w=1$

Eq. 2 can not be solved for G at zero recoil. We perform the extrapolation of G at different D_{s} momenta and extrapolate to $w=1$.

Figure 5: Linear extrapolation of G to the zero recoil point for two ensembles. The form factor $h_{\mathrm{A}_{1}}$ can be extracted directly at $w=1$.

Mass Step Scaling

 None of the correlators were measured directly at the b-quark scale.Instead six different heavy quark masses were tuned so that the ratios between the pseudoscalar masses are constant:

$$
m_{H_{s}(h)}=m_{D_{s}}\left(\frac{m_{B_{s}}}{m_{D_{s}}}\right)^{\frac{h}{6}}
$$

The analysis was performed seperately for each quark mass. We then
extrapolate the final result to the physical B_{s} mass. This approach is extrapolate the final result to the physical B_{s} mass. This approach is
especially interesting for $B_{s} \rightarrow D_{s}$. In the elastic case G is one by definition.

$$
\begin{equation*}
G_{B_{s}}=\prod_{h=0}^{6} \sigma_{h} \quad \text { with } \quad \sigma_{h}=\frac{G_{h+1}}{G_{h}} \tag{6}
\end{equation*}
$$

Some correlations as well as renormalization factors can be avoided by
only considering the ratios.

Extrapolation to the physical point

G and $h_{\mathrm{A}_{1}}$ must be extrapolated to the physical point. We use the simple ansatz

$$
\begin{equation*}
O=O^{0}+O^{1}\left(\frac{a}{a_{\beta-5.3}}\right)^{2}+O^{2}\left(\frac{m_{\pi}}{m_{\pi}^{\text {phys }}}\right)^{2} \tag{7}
\end{equation*}
$$

This is done for each quark mass independently.
Results

Figure 6: Check, that $G_{\text {essicic }}$ is compatible with one at the physical point.

Figure 7: Ratios $\frac{G_{h+1}}{G_{h}}$ at different mass step scaling steps.
The ratios are compatible with a mean value

$$
\begin{equation*}
G_{B_{s}}=\bar{\sigma}^{6}=1.03(14) \tag{8}
\end{equation*}
$$

The same is done for $h_{\mathrm{A}_{1}}$ with the difference being, that it is not equal to one if $m_{H_{s}(h)}=m_{D_{s}}$.

Figure 8: Analogous extrapolation of h_{A}
We get the result:

$$
h_{\mathrm{A}_{1}}=h_{\mathrm{A}_{1}}^{D_{s}^{*} \rightarrow D_{s}}{\overline{\sigma_{\mathrm{A}_{1}}}}^{6}=0.85(16)
$$

Discussion

Figure 9: Comparison of G and $h_{A_{A}}$ to published lattice results using ${ }^{a} N_{f}=2$ twistednass fermions and ${ }^{b}$ staggered ${ }^{\text {chen }}$ wh non-relativistic b-quark
We show, that we can control:

- cut-off effects using mass step scaling
- excited states using the GEVP
- $w \rightarrow 1$ using a linear extrapolation

The large statistical error was estimated independently with binning and the Γ-method. The source-sink separation of $\frac{T}{2}>2 \mathrm{fm}$ may be reduced to improve it. The GEVP results are mostly consistent with the most smeared operators, which could be used exclusively to reduce costs.

